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ABSTRACT

This paper focuses on the design and implementation of
a control algorithm for balancing of a two-wheeled
robotic machine (TWRM). The machine comprises a
rod on an axle incorporating two wheels. The balancing
of the rod in the upright position is achieved using a
proportional-derivative (PD) controller. The Newton-
Euler dynamic formulation is used to develop a
mathematical model of the system. Matlab Simulink is
used as a simulation environment. The intermediate
body (IB) is considered to be in the upright position. An
external disturbance force is applied at different
locations of the IB in order to test the robustness of the
developed controller. A payload is considered, and this
is attached at different locations along the rod.
Investigations are carried out on the effect of changing
the duration and location of disturbance force, and
changing the location of the payload on the system in
the balancing mode. Two PD controllers are developed,
one for the angular position of the rod and one for the
cart linear displacement. Simulation results are
presented assessing the performances of the controllers.

INTRODUCTION

An inverted pendulum system is an under-actuated
mechanical system and inherently open loop unstable
with highly non-linear dynamics. It is thus a perfect test-
bed for the design of a wide range of classical and
contemporary control techniques. It has wide ranging
applications from robotics to space rocket guidance
systems. The concept of balancing a robot is based on
the inverted pendulum model. This model has been
widely used by researches worldwide in the design and
control of wheeled legged robots, etc. (Formal and
Martynenko 2005). The inverted pendulum problem is
common in the field of control engineering. The
uniqueness and wide application of technology derived
from this unstable system has drawn interest of many
researches and robotics enthusiasts around the world. In
recent years, researchers have applied the idea of a

mobile inverted pendulum model to various problems,
such as designing walking gaits for humanoid robots,
robotic wheelchairs and personal transport systems
(Kim, et al. 2005). The type of intelligent robot
proposed here is a mobile robot with a two wheeled
inverted pendulum. This design was chosen because its
mechanism has an inherently clumsy motion for
stabilizing the robot’s body posture. The robot has a
body with two wheels for moving in a plane and a head
similar to a human head for controlling the motion. Two
independent driving wheels are used for position control
and for fast motion in a plane without casters.

TWO-WHEELED INVERTED PENDULUM ROBOT

Several kinds of wheels can be attached to the wheeled
mobile robot, but they fall into one of two categories:
driving wheels and auxiliary wheels. The driving wheels
are rotated to permit the robot to move when torque is
applied to the axles. The auxiliary wheels merely ease
the movement of the robot and enable its body to be
suspended when no torque is applied to the axles. In
most wheeled mobile robots at least one wheel is an
auxiliary wheel. For a two-wheeled mobile robot, one
can ask what would happen if the auxiliary wheels were
removed altogether instead of being replaced with
something different or instead of improving the
performance of the wheels. By removing the auxiliary
wheels, the number of wheels attached on the robot
would be reduced. Moreover, the mechanical
characteristics of the robot would be completely altered
because no elements could suspend and balance the
robot’s body except for the driving wheels. That is, the
robot would have to move and balance its body with
only two driving wheels (Kim, et al. 2005). The
mechanical structure of a robot with only two driving
wheels is similar to an inverted pendulum (D’Andrea
and Earl 2005).

MATHEMATICAL MODELLING

The dynamic characterisation of the robot is described
in this section by introducing the governing main
equations describing the mathematical model of the
two-wheeled robotic machine (TWRM). The model is
derived based on the Newton-Euler equations of motion.
The dynamic model of the whole system consists of two
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separate sub-models, namely: the non-linear model of
the inverted pendulum, and a linear model of the
permanent magnet (PM) direct current (DC) motor
activating the cart.

Linear model of the DC motor

The robot is powered by two DC motors, Figure 1,
where aV represents the applied voltage, i the armature
current. The mathematical model of the DC motor is
derived and then used in the dynamic model of the robot
to provide a relationship between the input voltage to
the DC motors and the control signal needed to stabilise
the robot.

Figure 1 Schematic diagram of a DC motor

Using Figure 1, the following two fundamental
equations of motion of the DC motor can be written as:
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where R and L are the armature resistance and
inductance, eV represents the winding emf, RI the rotor
inertia and fK the friction constant, ω is the angular

velocity of the motor shaft, ek and mk represent the
back emf Constant and proportionality constant and aτ
is the motor shaft torque. Equations (1) and (2) are used
to build the motor model in the Matlab environment.
The inputs to the model are the applied voltage

aV and

the applied torque aτ . The model outputs are the angular
displacement θ and angular velocityω of the motor
shaft. Both equations are first order and linear functions
of the armature current and velocity of the motor shaft.

Non linear model of the two-wheeled inverted
pendulum

The pendulum and wheel dynamics are analysed
separately at the beginning, but this will eventually lead
to two equations of motion which completely describe
the behaviour of the TWRM.

Consider Figure 2 which represents the free body
diagram of the right and left wheels of the robot, Where

frH and rH are the friction force between the wheel
and the ground and the interaction force at the rod and
axle interface respectively for the right wheel.

Figure 2 Free body diagrams of robot wheels

The dynamic equation of motion of the wheels can be
described as:
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Consider Figure 3 which represents the free body
diagram of the IB with the external applied disturbance
force, F . Applying the Newton’s second law of motion
in the horizontal direction yields

Figure 3 Free body diagrams of the IB
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Considering the sum of the applied forces in a direction
perpendicular to the rod gives
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Equating the sum of the applied moments around the
global centre of mass yields
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Manipulating the above equations yields the following
two first order non-linear differential equations
describing the motion of the system under the effect of
an applied payload and impact disturbance force on the
rod:
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Effect of Changing the Payload Location

Let the payload, M be located at a variable distance
Q from the IB origin O , as shown in Figure 3, where
Q can be expressed as a factor y multiplied by the rod
half length l as follows:

lyQ = (9)

where y can take a value from 0 to 2 according to the
position of the payload M from the origin O as
follows:

For M to be concentrated at the upper end of the
rod 2=y ,
For M to be concentrated at the mid-span of the
rod 1=y , and
For M to be concentrated at the lower end of the
rod 0=y

Changing the payload position will affect both the
overall moment of inertia, gI and the location of the

global centre of mass of the IB, gL . The overall
moment of inertia of the IB is affected and modified as:
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The location of the global centre of mass of the IB will
be affected as:
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BALANCE CONTROL USING PD CONTROLLER

At this stage the inverted pendulum rod is considered
initially in the upright position. With a disturbance force
applied to the rod, it will move from that upright
position with an angle (measured from that position)
proportional to the magnitude and direction of the
disturbance force. In order to keep the whole system
controlled, two PD controllers are developed; one for
controlling the angular position of the rod for returning
the rod back to the upright position after a change
caused by the disturbance force, and one for keeping the
cart wheels within a specified linear position from a
specific reference position. The parameters of the two
PD controllers are tuned manually to achieve the desired
target at the balancing mode.
PD control parameters for the linear position of the
wheels were tuned as 3.61 =pK , 1501 =DK
PD control parameters for the angular position of the
rod were tuned as 52 =pK , 302 =DK

SIMULATION RESULTS

Simulations were carried out on the system using the
numerical parameters describing the system features,
listed in Tables 1 and 2. The simulations presented to
highlight the way the vehicle will behave with the effect
of changing the values of three different variables and
the control effort required to accomplish the required
task. Those variables are the level of the applied
disturbance force, the duration of the disturbance force
and the position of the payload attached to the vehicle
rod. The target was to estimate the limits of those
variables beyond which the control algorithm will not
be able to balance the system around the upright
position. The disturbance force was applied after 10
seconds at the start of the simulation and then after each
90 second interval. This interview was determined as
the safe limit for repeating such impact forces to the
rod. Below such limit, it was found that the developed
controller would not completely keep the IB at a stable
position.

Table 1: DC Motor technical properties

Parameter Description Units

3=R Nominal terminal Resistance Ohms
0=L Rotor Inductance H

006078.0=eK Back EMF Constant radVs /
0=eV Back EMF Voltage Vlots

0=rI Rotor Inertia 2kgm



Table 2: Two-wheeled inverted pendulum properties

Parameter Description Units

051.0=wR Wheel Radius m
2=wM Wheel Mass kg
2=pM Pendulum Mass kg

50=M Payload kg
000039.0=wI Wheel Inertia 2kgm

0041.0=pI Pendulum inertia 2kgm
07.0=l Length to the Pendulum COM m

Effect of Different Disturbance Levels

The effect of changing the level of the applied
disturbance force is considered in this section. Four
levels of disturbance amplitudes including zero to test
the validity of the developed controller in coping with
external disturbances. The simulations are carried out by
considering the disturbance force applied at different
positions on the IB of the vehicle. Such assumptions
may be useful in applications such as extended height of
crane arms if subjected to sudden external forces
through their stems especially during motion.
Figures 4, 5 and 6 show the system performance with
the disturbance force applied at the upper end, mid-span
and lower end of the IB respectively.
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Figure 4: System performance with disturbance applied

at the IB upper end
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Figure 5: System performance with disturbance
applied at the IB mid-span

It can be noted from Figures 4(a), 5(a) and 6(a) that the
higher the level of the disturbance force the longer the
fluctuation of the rod angle from the upright position. It
can also be noted that the closer the location of the
applied disturbance force to the IB origin the harder it is
to balance the system as it takes the control system a
long time to bring the rod to the target position.

The cart linear displacement is presented in Figures
4(b), 5(b) and 6(b). Increasing the level of the applied
disturbance tends to decease the cart overshoot beyond
the specified limit. That is because the amount of the
applied force acts as a drag force for the cart and slows
the cart which in turn increases the rise time of the
system response. This phenomenon is clearly repeated
when the force is reapplied to the system. The lower the
level of the disturbance force the faster the cart in
achieving the desired position.

Changing the level of the disturbance force also affected
the control effort, as clearly presented through Figures
4(c), 5(c) and 6(c). Higher levels of the applied force
tended to increase the time the control signal takes to



settle down. The location of applying the disturbance
force also greatly affected the control behaviour. The
closer the position of the force to the rod origin the
more the control effort fluctuation and the higher the
control effort at the time of applying the force.
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Figure 6: System performance with disturbance
applied at the IB lower end

Effect of Disturbance Duration

The duration of applying such disturbances is another
variable of interest. Four different durations of applying
the disturbance force are used to estimate the safe limits
beyond which the developed controller will not be able
to cope.

Figures 7 and 8 show the IB tilt angle the vehicle
displacement, with different duty cycles of a disturbance
force of 100 N and 30 N respectively. It is noted in
Figure 7 that the amount of overshoot in the IB tilt angle
increases as the period of the force is increased, and the
controller still copes well with such higher periods of
time especially for the pendulum tilt angle. The system
can recover faster to the desired position with shorter
force duty cycles

For the cart linear displacement, as described in Figure
8, the situation not as good as for the tilt angle;
increasing the force duty cycle made the system slower
in achieving the target and increased the rise time and
decreased the cart overshoot. But for shorter duty
cycles, the overshoot tended to be higher which is a
characteristic of such impulse disturbance force but
accelerated the system behaviour to reach the desired
position.
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Figure 7 Intermediate body tilt angle
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Figure 8 Linear displacement of the vehicle wheels

The control effort is presented in Figure 9. It is noted
that the longer the disturbance duty cycle the higher the
control effort required and the longer the time for the
control signal to settle down.
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Figure 9 Controller output signal to the system

Effect of Payload Position

The third variable of interest is the location of the
payload attached to the IB. The system behaviour
including the IB tilt angle and the cart linear
displacement are presented and the control effort
required for three different locations of the payload. The
load is positioned at upper, mid-span and the lower end
of the IB. Changing the location of the load mainly
affects the location of the global centre of mass and the



whole moment of inertia of the pendulum as presented
before.

Two different levels of the disturbance force are
implemented here with the assumption of the force at
the upper end of the rod. Figures 10 and 11 show the
system performance with different load positions and
disturbance forces of 100 N and 30 N respectively.
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Figure 10: System performance with load positions
and 100 N disturbance force

It is noted from Figures 10(a) and 11(a) that the closer
the payload to the IB origin the harder the balancing in
the upright position. More fluctuations of the rod occur
as the load is closer to the origin. This phenomenon is
similar to the system behaviour for the case of applying
the disturbance force at the lower end of the rod as
previously described in Figures 6. Therefore, this means
that the harder it is to balance the IB when either the
force is applied at lower positions of the rod or the
payload is closer to the origin. Hence, the worst and
most hard case of balancing is more likely to happen
when the payload and disturbance force are both close
to the IB origin.

Changing the payload position in the previous manner
did not affect the cart linear displacement much as noted
in Figures 10(b) and 11(b). This is not expected to still
happen for longer pendulum rod. However, the effect
was more due to the value of the disturbance force
applied on the rod.

The control effort seems to have more fluctuations when
the payload is closer to the origin as noted in Figures
10(c) and 11(c).
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Figure 11: System performance with load positions
and 30 N disturbance force

CONCLUSIONS

The mathematical model of a robotic machine system
with two wheels has been developed. An external
disturbance force has been considered for application to
the IB at different locations, and a payload has been
attached to the rod. PD controller has been used to
achieve the system performance target. The PD
controller has been implemented on the developed
model of the two-wheeled robotic machine in the
balancing mode. Simulations have been carried out for
different cases of changing three variables namely; the
disturbance force level, the time duration of the



disturbance force and the position of the payload. The
system dynamic behaviour has been presented with
control effort for achieving the system performance
target in those different cases. It has been noted that the
developed control algorithm can cope well in stabilising
and balancing the system under different scenarios
involving variations in the disturbance force value and
duty cycle, and load position.
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