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Abstract—MPhyScas - Multi-Physics and Multi-Scale Solver
Environment - is a computational system aimed at supporting
the automatic development of simulators for coupled problems,
developed at the Department of Mechanical Engineering of the
Federal University of Pernambuco - Brazil. It provides a frame-
work, which is flexible enough to accommodate representations
for all levels of computation that can be found in simulators
based on the finite element method. MPhyScas is built on a set
of a powerful language of patterns supporting abstractions for so-
lution algorithms; phenomena, geometric entities; phenomenon-
phenomenon and phenomenon-geometry relationships and oth-
ers, together with a library of low level entities - like finite
elements, reference finite elements, numerical integration tools,
and so on. In despite of its completeness in what regards all stages
of a multi-physics simulation, the current version of MPhyScas
produces sequential simulators only. Thus, it does not support any
kind of communication between its computational entities besides
those defined by direct references (pointers). In this work we
present the architecture of an improvement of MPhyScas, called
MPhyScas-P (MPhyScas Parallel), which can be used for the
automatic development of either sequential or parallel simulators.
We take an advantage of the architecture in layers of MPhyScas
in order to define a hierarchical parallel computational scheme
in such a way that communication procedures are automatically
identified, localized and built. That hierarchy also provides a
natural way of defining data structures and access dynamics
for all memory levels, providing simpler ways of dealing with
non-uniform memory access patterns. Some preliminary results
obtained with a prototype will be shown and analyzed.

Index Terms—TFinite element method, Simulator, Multi-physics,
Coupled phenomena

I. INTRODUCTION

MPhyScas (Multi-Physics Multi-Scale Solver Environment)
is an environment dedicated to the automatic development of
simulators based on the finite element method. The term multi-
physics can be defined as a qualifier for a set of interacting
phenomena defined in space and time. These phenomena are
usually of different nature (deformation of solids, heat transfer,
electromagnetic fields, etc.) and may be defined in different
scales of behavior (macro and micro mechanical behavior of
materials). A multi-physics system is also called a system of
coupled phenomena. If two phenomena are coupled, it means
that a part of one phenomenon’s data depends on information
from other phenomenon. Such a dependence may occur in any
geometric part, where both phenomena are defined. Other type
of data dependence is the case where two or more phenomena
are defined on the same geometric component and share
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the geometric mesh. Multi-physics and multi-scale problems
are difficult to simulate and the building of simulators for
them tend to be very costly in terms of time spent in the
programming and testing of the code. The main reason for
that is the lack of reusability. A detailed discussion can be
found in [1]-[2].

Usually, simulators based on the finite element method can
be cast in an architecture of layers. In the top layer global
iterative loops (for time stepping, model adaptation and artic-
ulation of several blocks of solution algorithms) can be found.
This corresponds to the overall scenery of the simulation. The
second layer contains what is called the solution algorithms.
Each solution algorithm dictates the way linear systems are
built and solved. It also defines the type of all operations
involving matrices, vectors and scalars, and the moment when
they have to be performed. The third layer contains the solvers
for linear systems and all the machinery for operating with
matrices and vectors. This layer is the place where all global
matrices, vectors and scalars are located. It is also responsible
for the definition of the finer details for the assembling of
matrices and vectors. The last layer is the phenomenon layer,
which is responsible for computing local matrices and vectors
at the finite element level and assembling them into global
data structures.

The definition of those layers is important in the sense of
software modularization. But it does not indicate neither how
entities belonging to different layers interact nor what data
they share or depend upon. That is certainly very important
for the definition of abstractions, which could standardize
the way those layers behave and interact. The architecture
of MPhyScas presents a language of patterns in order to
define and represent not only a set of entities in each layer -
providing the needed layer functionalities - but also the transfer
of data and services between the layers. Thus, MPhyScas is
a framework that binds together a number of computational
entities, which were defined based on that language of patterns,
forming a simulator. Such a simulator can easily be recon-
figured in order to change solution methods or other types
of behavior [3]-[4]. Almost every single piece of code that
constitute MPhyScas computational entities in a simulator can
be reused in the building of other different simulators. This
makes the simulators produced by MPhyScas strongly flexible,
adaptable and maintainable.

However, the original architecture of MPhyScas provides



support for the automatic building of sequential simulators
only. For instance, it does not have abstractions that could
automatically define the distribution of data and procedures
and their relationships across a cluster of PC’s. In this work
we briefly present MPhyScas architecture for sequential sim-
ulators (called MPhyScas-S from now on) in order to proceed
with the main part of the work, i.e., the definition of a new
parallel architecture. This new architecture, called MPhyScas-
P, should satisfy a number of new requirements, including
the support for the parallel execution of the simulators in
clusters of PC’s. MPhyScas-S is a framework with the sup-
port of an extended finite element library and a knowledge
management system. MPhyScas-P uses the same extended
library and knowledge management system from MPhyScas-
S (with minor differences). It also makes use of the concept
of layers already used in MPhyScas-S in order to define
a hierarchical parallel structure. Such a hierarchy is useful
for the automatic definition of synchronization schemes; data
partition and distribution procedures; inter-process commu-
nication patterns and data management across several levels
of memory. Procedures are automatically specialized for the
pre-processing; the simulation and the post-processing phases,
depending on the hierarchical distribution and on the charac-
teristics of the hardware being used. Also, only two types of
communication between processes during a simulation, and
patterns are defined for their representation.

This work is organized as follows: first the architecture
of MPhyScas-S is briefly described paving the ground for
describing MPhyScas-P’s architecture. Next, comments on
some relevant related work are provided in order to build a
context for this article. After that is done, the architecture of
MPhyScas-P is presented, followed by a description of its be-
havior (in the context of the work load and flow requirements).
In the end some conclusions are drawn. Our purpose here
is more descriptive than analytic. However, whenever needed
some comments will be provided in order to make things a
bit clearer. In the end some conclusions are drawn.

II. THE ARCHITECTURE OF MPHYSCAS-S

The architecture of MPhyScas-S [5], [4] establishes a com-
putational representation for the computational layers using
some design patterns (see Figure 1), where the Kernel Level
represents the global scenery level, the level of the solution
algorithms is represented by the Block Level, the level of
solvers is represented by the Group Level and the phenomena
level is represented by the Phenomenon Level. The definition
of this structure is aimed at improving the quality of simulators
design. The defined architecture attempts to fill in the existing
gap in the development of FEM simulators for multi-physics
and multi-scales problems. The main requirements of this
architecture are: (i) Flexibility in the development of simu-
lators; (ii) Extensibility of simulators through the integration
of components and (iii) Improved reusability of code, data and
models.

The architecture of MPhyScas-S is shown in Figure 2.
The Static Library allows the maintenance of data employed
in the building of simulators and simulations. Those data
includes: methods (mesh generation, numerical integration,
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Fig. 1. Computational representation for the layers of the simulator

for instance), functions (constitutive parameters, for instance),
algorithms and phenomena. The Pre-Processor produces Data
for Simulation and builds the Simulator using the Static
Library. The Data for Simulation represents the input data in
a simulation as it is used by the Simulator. The Simulator is
responsible for the execution of a simulation. The Simulator
uses the Data for Simulation and produces the Results of the
Simulation. The Viewer uses the Results of the Simulation
and the Data for Simulation to produce the visualization of
the simulation results.
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Fig. 2. Architecture of the MPhyScas

The Simulator is considered as a pattern [6], [3] and [7]
(see Figure 3), which, simply speaking, is a workflow in the
form of a DAG (Direct Acyclic Graph) and divided into four
layers, which strongly follows the slices of concerns for each
layer, already cited in the introduction:

i) Kernel: it is responsible for initialization procedures
(transferred to Blocks in the lower level); for global time
loops and iterations; for global adaptive iterations and for
articulation of activities to be executed by the Blocks in
the lower level. The Kernel stores system data related to
the parameters for its loops and iterations;

ii) Block: it is responsible for the transfer of incoming
demands from the Kernel to its Groups in the lower level
(initialization procedures, for instance); for Block local
time loops and iterations (inner loops and iterations inside
a global time step, restricted to groups of phenomena);
for procedures inside time stepping schemes; for Block
local iterations (restricted to some groups of phenomena,
like in a Newton-Raphson iteration, for instance); for
Block local adaptive iterations (restricted to some groups
of phenomena); for operations with global quantities
(transferred to Groups in the lower level, which are the
owners of global quantities). The Blocks serve the Kernel
level. Each Block is responsible for a certain number
of Groups, which can not be owned by other Block.
All demands from a Block to the lower level should be
addressed to its Groups. The Blocks store system data
related to parameters for their own loops and iterations



and parameters for their procedures;

iii) Group: it is responsible for the transfer of incoming
demands from its Block to Phenomena in the lower
level (initialization procedures, for instance); for the
assembling coordination and solution of systems of linear
algebraic equations (the method used depends on the
solver component); for operations with global quantities
(by demand from its Block), for articulation of activities
to be executed by its Phenomena in the lower level
(basically concerned with computation and assembling of
global matrices and vectors). The Groups serve their re-
spective Blocks. Each Group is responsible for a certain
number of Phenomena, which can not be owned by other
Group. All demands from a Group to the lower level
should be addressed to its Phenomena only. The Groups
store global matrices, vectors and scalars and store the
GroupTasks, which are objects encapsulating standard
procedures, where articulation of the Group’s Phenom-
ena are needed. The GroupTasks are programmable and
their data are standard pieces of information, depending
only on the type of the GroupTask.

iv) Phenomenon: it is responsible for the computation of
local matrices, vectors and scalars (Phenomenon quan-
tities); for operations involving matrices and vectors at
the finite element level and their assembling into given
global matrices and vectors. The Phenomena serve their
respective Groups. The Phenomena store data related
to constitutive parameters or other parameters, which are
specific of the respective Phenomenon; store the geometry
where the respective Phenomenon is defined (different
Phenomena may share a geometry or a part of it);
store WeakForms, which are tools for computing and
assembling quantities defined on a certain part of the
geometry. A WeakForm may be active or not. Only
active WeakForms can be used during a simulation. A
WeakForm may store parameters, which are related to
specific simulation data (for instance, functions for the
definition of boundary conditions or parameters needed
for the computation of a quantity, which should be given
together within a simulation data set). The Phenomenon
should store methods, which are tools to be used in
certain Phenomenon specific tasks. For instance, those
tasks can be generation of geometric and Phenomenon
meshes, numerical integration at the element level, shape
functions, etc.

The simulation starts with the execution of the root of the
Kernel, which uses services provided by a set of Blocks,
which in turn uses services from a set of Groups. Each
Group owns a set of Phenomenon objects, which are used to
perform the production of local matrices and vectors and the
assembling of them into given (by the Group) global matrices
and vectors.

The states that define the configuration of each Phe-
nomenon object are stored in the respective Group object,
where solvers are located. This is convenient due to the fact
that the Group’s layer is responsible not only to assemble
and solve algebraic systems, but also to operate with scalars,
vectors and matrices in response to requests from a Block (see
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Fig. 5. Each Phenomenon object has its own set of states, which is stored
in its Group object

A quantity that a Phenomenon object can compute and
assemble may be coupled to other Phenomenon’s states (one
or more) as it is depicted in Figure 6. MPhyScas-S provides all
the machinery to make this procedure automatized following
the specification of some data related to the place where
coupling occur; handlers for the states and a reference to the
coupled Phenomenon object, which should be given to the
object responsible for the computation.

For further detailed information on MPhyScas-S see [4]. In
the next section we provide some relevant related work.
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Fig. 6. A quantity computed by a Phenomenon object may be coupled to a
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III. RELATED WORK

Definition and building of computational frameworks that
support programming of simulator for multiphysics problems
has been a very active area in the last decade. For the sake of
providing a simpler context for the present work, we classify
current research efforts into only two classes: (i) libraries,
which, besides providing important abstractions supporting
data, procedures and relationships for coupled physics sim-
ulation, do not provide a structural guidance (architecture) for
the building of simulators, and (ii) frameworks, which provide
a deep structure of abstractions and patterns in the form of
an architecture. We will comment more on the second class,
since MPhyScas is a framework with those characteristics. As
examples of class (i) we cite the Component Template Library
(CTL) [8] and Comsol [9]. CTL provide abstractions that
support the building of solutions algorithms for loose and tight
coupling (procedures in the level of Group and Phenomena). It
is an implementation of the component concept with an RMI
semantic similar to CORBA or Java-RMI components, which
can be used to build complex parallel simulators. It is sophisti-
cated in the sense that allows component in several languages
(C, C++, FORTRAN) and different communication models
(RMI, MPI, PVM, threads) among other features. Comsol is a
commercial package and not much of its internal behavior is
publicly exposed. Nevertheless, it provides abstractions that
allow users to define coupled procedures through handlers
to vector fields and provide encapsulated access to high
performance computing. It has a sophisticated GUI with CAD
and visualization modules. However, besides varying levels
of support for HPC, neither one of them provides structural
guidance for simulators (levels Kernel through Phenomena),
leaving that task to the user.

In the class of frameworks (class (ii)), one can find powerful
packages, such as Uintah [10], Cactus [11] and Sierra [12].
They are substantially different and have been applied to
extremely sophisticated simulations. Since the architecture of
MPhyScas is closer to Sierra’s architecture, we will comment
on this framework with more detail. Uintah Computational
Framework and Cactus Framework consist of a set of software
components and libraries that facilitate the solution of Partial
Differential Equations (PDEs) on Structured AMR (SAMR)
grids using hundreds to thousands of processors. Although
they do not provide a structure for simulators as done by Sierra
and MPhyScas, they are in this class due to how they bind
components together; define and use coupling information and
provide access to high performance (e.g. parallel) processing
through a shared service infrastructure. That characterizes
them as having a deep interoperability system. Uintah uses
CCA (Common Component Architecture) [13] for designing
and describing components interfaces. It does not have a pre-
defined structure for simulators. Thus, in order to provide
framework functionality it defines on top of its primary set
of abstractions another set of components and supporting
libraries, which targets the solution of PDE’s on massively
parallel architectures. This set is called Uintah Computational
Framework (UCF). UCF builds a graph called TaskGraph,
which describes the data dependencies between the various
computation steps in a simulator. Also, it defines a simulator’s
workflow as a direct acyclic graph of Tasks. Communication
between Tasks is made through a DataWareHouse, which
provides the illusion that all memory is global. If a Task
correctly describes its data dependencies, then the data stored
in the DataWareHouse will match the desired data (variable
and region of state). Communication is scheduled by a local
scheduling algorithm that approximates the true globally op-
timal communication schedule. Because of the flexibility of
single-assignment semantics, the UCF is free to execute tasks
close to data or move data to minimize future communication
[10].

The following nice summary of Cactus structure is found in
[14]: ”The Cactus Flesh acts as the coordinating glue between
modules that enables composition of the modules into full
applications. The Flesh is independent of all modules, includes
a rule based scheduler, parameter file parser, build system,
and at run time holds information about the grid variables,
parameters, methods in the modules and acts as a service
library for modules. Cactus modules are termed Thorns and
can be written in Fortran 77 or 90, C or C++. Each thorn
is a separate library providing a standardized interface to
some functionality. Each thorn contains four configuration files
that specify the interface between the thorn and the Flesh
or other thorns (variables, parameters, methods, scheduling
and configuration details). Drivers are a specific class of
Cactus Thorns that implement the model for parallelism. Each
solver thorn is written to an abstract model for parallelism,
but the Driver supplies the concrete implementation for the
parallelism” (see also [11]).

Sierra framework provides a structural guidance in layers
composed of (from top to bottom) Application, Procedure,
Region and Mechanics. Application articulates user-provided



algorithms in order to establish high-level activities. It uses
services from a set of Procedures, which can freely articulate
Regions using a set of user-provided algorithms. A Region
defines activities, which are related to a fixed geometric region,
for which a mesh is provided. Those activities are defined by
user-provided algorithms. It uses services provided by a set of
Mechanics. In order to perform the desired work, a Mechanics
uses a set of MechanicsInstances and a set of user-provided
algorithms. A Mechanics implements procedures related to a
specific physics - defined on a subset of its Region’s mesh
- and its MechanicsInstances are responsible for atomistic
operations defined on a subset of its Mechanics’ mesh. A
Mechanics may use another set of Mechanics, building more
layers downwards. This may be used in multiscale computa-
tions, where a lower level Mechanics is used to compute con-
stitutive data for a MechanicsInstance of its parent Mechanics
[12]. If a Mechanics A needs data from another Mechanics B
(provably defined in another Region), the Advanced Services
of Sierra provide means to transfer mesh-dependent data from
one mesh to the other. The result is then stored in the Region of
Mechanics A. The SIERRA Framework Core Services manage
the parallel distribution of mesh objects for an application.
Management of a parallel distributed mesh is defined in three
parts: (i) policies and distributed mesh sets, relations, and
data structures; (ii) parallel operations that do not modify
the distributed-mesh data structures, and (iii) operations that
modify the distributed-mesh data structures. Sierra has a so-
phisticated management system for parallel operations, which
is strongly supported by its defined topology. As far as the
authors are concerned Sierra supports only SPMD (single
process multiple data) type of parallel processing.

Clearly, it is possible to provide a parallel between the
architecture of MPhyScas and that of Sierra. Application
relates to Kernel; Procedure relates to Block; Region relates to
Group; Mechanics relates to Phenomenon and MechanicsIn-
stance relates to WeakForm (geometry-related atomistic piece
of code). However, there are several and important notes that
should lead to marked differences:

i) MPhyScas is strongly concern-oriented, instead of
procedure-oriented or context-oriented. Concerns are
more easily mapped into requirements and architectures.
Also, concerns are related to the fundamentals of the
classes of problems being tackled and are less vulnerable
to programming traditions and limitations. Adequate
separation of concerns may lead to more reusable, main-
tainable and adaptable code. Therefore, MPhyScas was
built to satisfy a nested set of concerns (functional and
non-functional) related to the numerical approximation
to solutions of partial differential equations (mainly
those solutions defined by the finite element method).
For instance, layers in MPhyScas are slices of the code
following a set of concerns already cited before. Sierra
is more procedure-oriented.

ii) The specification for the Kernel (simulator’s scenery)
is more detailed than that for Sierra’s Application. It
has only one shallow algorithm limited by the designed
responsibilities of the layer of Blocks. Of course, that
algorithm can be freely designed, but should satisfy

iif)

iv)

the concerns specified by what we call the Scenery
of the Simulation (it can be understood as a general
specification for the simulator, which gets more refined
when requirements for the other layers are detailed).
MPhyScas’s Block is quite similar to Sierra’s Procedure
in their generality (their behavior is determined solely
by their algorithms). However, one Block never shares a
Group with other Block. This constraint does not apply
to the relationship between Procedure and Region in
Sierra framework. The justification for both Procedure
and Block is the need for the articulation (in adaptive
iterations, nonlinear solver iterations, and other situa-
tions) of sets of solvers involving different phenomena
(physics). As Sierra does it, MPhyScas limited the depth
of this layer in a slice of a generic simulator, where
activities related to time stepping methods, nonlinear
iterations and other processes are defined and articulated
for one fixed set of subsets of phenomena . However, in
MphyScas each Block also has the responsibility to de-
fine its cone of influence in a disjoint way. The reason is
that MPhyScas would like to support dynamic exchange
of components in all levels of computation. Therefore if
two Blocks were allowed to establish relationships to the
same Group, concerns related to both would get messed
up, making it extremely difficult to define the parts of
code affected by changes in one Block.

A Region in Sierra is based on operations (Mechanics
and algorithms) and vector fields, which are defined on
a geometric entity and its geometric mesh. Transfer of
vector fields from one mesh to the other is provided
by the Advanced Services of Sierra. All vector fields
in a Region are defined in subsets of the same mesh.
The motivation for the Group in MPhyScas is based
on a set of Phenomenon objects and their data, which
participate in formation of linear monolithic algebraic
systems. Thus, all data needed to assemble and solve
those algebraic systems are stored in the Group. Thus,
there might be Phenomenon objects in a Group defined
on different meshes. That becomes manageable because
a Group does not know anything neither about geometry
domains nor about meshes. The transfer of vector fields
between meshes is performed by a especially designed
Phenomenon (instantiated and executed as a normal
Phenomenon object). Those pieces of information are
located in the respective Phenomenon objects. There
are special data structures that allow two Phenomenon
objects to share the mesh of a geometric entity, whenever
they are defined in that geometric part [4]. All matrices
and vectors are stored in the Group and their relationship
with the Group’s Phenomenon objects is described by
user-provided data. The location of matrices and vectors
in the Group was motivated by the location of linear
solvers in the Group. All dependencies between Phe-
nomenon objects are resolved in the Phenomenon layer.
Besides the solvers, a Group is entirely programmable;
does not depend on other user-defined algorithm and
does not share Phenomenon objects with other Group
(therefore providing the influence cone). There are other



differences, but the cited references are able of providing
further information.

v) Mechanics in Sierra encapsulate procedures related to a
particular physics. It articulates its MechanicsInstances
and algorithms in order to provide the computation
of quantities and the assembling of them. MPhyScas
provide those functionalities with Phenomenon objects
and their activated WeakForm objects. A Phenomenon
object accepts algorithms for activities such as numerical
integration, error estimation, mesh adaptation (geomet-
ric and phenomenon meshes), shape functions (trial
and test), mesh generation (geometric and phenomenon
meshes). A Phenomenon has two types of meshes: geo-
metric and phenomenon. Phenomenon meshes describe
the distribution of polynomial order of approximation
over the geometric mesh. It seems Sierra does not
support p and h-p adaptivity, because it does not data
structures for such procedures. This certainly would
complicate transfer procedures and the way coupled
vector fields are used in Sierra. That is supported by
MPhyScas and is one of the concerns, which was
considered when placing meshes at the Phenomenon
layer.

Both architectures (MPhyScas’ and Sierra’s) were devel-
oped independently. The first definition of the MPhyScas’
architecture was published in 2001. Nevertheless, they present
a similar structure with some marked differences (mainly in
the execution graph and placement of some data structures),
which get sronger in MPhyScas-P, where the tree structure
of the architecture of MPhyScas is used in the control of the
simulator execution on a cluster of PC’s (see next section). It
is important to note that while MPhyScas-P is in the beginning
of its development, Sierra is already a mature, complex,
fully developed system with far more functionalities than
MPhyScas-P. MPhyScas-P is being developed to be applied
in a production environment (analysis of material degradation
for the petroleum industry).

IV. THE ARCHITECTURE OF MPHYSCAS-P

In modern clusters of PC’s one can identify at least four
hierarchical levels of different procedures and/or memory
usage:

i) Cluster Level: it is composed of all processes running
in all machines being used in a simulation.

ii) Machine Level: it is composed of all processes running
in one individual machine among all those used in a
simulation

iii) Processor Level: it is composed of all processes running
in one individual processor among all those running in
one individual machine.

iv) Process Level: it is composed of one single process
running in one individual processor (provably multi-core)
among all other processes in this same processor. It can
be divided into two groups:

ivii) Core Sub-level: it is composed of all parts of the

code from one individual process, which is not
strongly hardware specific.

iv.ii) Software-Hardware (SH) Sub-level: it is composed
of all parts of the code from one individual process,
which is strongly hardware specific (cache manage-

ment, fpga acceleration, etc.)

Whenever the architecture of a computational system allows
for a hierarchy of procedures, it may be a good idea to
define a hierarchy of processes in such a way that few of
them would accumulate some very light management tasks.
The benefits for this strategy include: (i) procedures can
be hierarchically synchronized (from coarse to fine grain),
reducing management concerns and increasing correctness;
(i1) since locality concerns change along the hierarchy levels,
memory management can become more and more specialized
from top to bottom. Communication processes can also ben-
efit from locality knowledge; (iii) The hierarchy allows for
the encapsulation of concerns, making it easier the design
of exchangeable components. Besides the natural benefit of
this aspect, it also allows for the adaptation of the code to
new hardware and software technologies, without incurring in
heavy reprogramming in all levels of the hierarchy.

A. Interprocess Communication Process

Next we provide a description of how interprocess com-
munication is considered in MPhyScas-P architecture. Com-
munication between processes is a very important issue for
problems with only one physics and gets even more crucial for
multi-physics problems. The cause for that is the fact that for
those types of problems communication is not needed only to
complete information during linear algebra operations, but also
to transfer information (vector fields and meshes) from one
phenomenon to the other. Furthermore, such a data dependence
between phenomena does not occur only on the boundaries
between two mesh components, but on any geometric entity.
There are other complication factors that contribute to make
things even worse. Changing solution algorithms means that
the linear systems, which are going to be solved, may be dra-
matically changed. For instance, changing from a monolithic
scheme to an operator splitting one will require the solutions
of several different coupled linear systems (inside an iteration
loop) instead of only one.

The architecture of MPhyScas-S has satisfactorily solved
those problems related to data dependence and sharing be-
tween Phenomenon objects for the sequential processing. It is
also able of representing solution algorithms in such a way that
the entire simulator can be adapted with a minimum amount
of reprogramming (maximum amount of reuse). However,
the essential difference, when considering parallel processing,
is the appearance of interprocess communication procedures,
which can be of four types:

i) Communication during linear algebra operations: The
inclusion of code parallelization as a requirement implies
that interprocess communication is needed during linear
algebra operations. For instance, parallel matrix-vector
multiplication requires interprocess communication in
order to complement the job done by each process.

ii) Communication along process hierarchy: The estab-
lishment of the hierarchy of procedures will require some
processes to assume some kind of leadership depending



on the layer, where they are located. This will require
interprocess communication throughout the hierarchy.

iii) Communication for coupled information - I:
MPhyScas-S has dealt with coupling dependences be-
tween different phenomena already, but in parallel pro-
cessing this type of dependence can become very com-
plex. For instance, this is the case whenever the interface
between two coupled phenomena coincides with a bound-
ary between two components of the mesh partition. That
means that vector fields and respective meshes data have
to be transferred from one process to the other.

iv) Communication for coupled information - II: If two
coupled phenomena have different geometric meshes, all
components in one mesh partition may be different from
all components in the other partition. Thus, there will be
a need for interprocess data transfer from one phenomena
to the other, whenever coupled quantities have to be
computed.

Well-thought distribution schemes and data representation
abstractions can eliminate both types of communication for
coupled information. This can be done by copying the coupled
vector fields and meshes data, to the processes where they
are needed. Those copies will be updated whenever needed
(communication of type (i) only). Processes will have to be
given a larger memory space, but that can be made a minimum.
The important thing is that the whole data set of a coupled
mesh will not be transferred between two processes when a
coupled quantity is to be computed. Thus, only types (i) and
(i) will be needed. They will be called communications of
Type-I and Type-II, respectively.

In order to simplify the presentation of the MPhyScas-P’s
architecture some requirements have to be made: (i) If two
or more phenomena are coupled in one geometric entity, then
they share the same geometric mesh on that geometric entity.
We will not consider transfer of data between different meshes
in this work; (ii) All phenomena have to be represented in each
process with a nonempty geometric mesh; (iii) Only three
hierarchical levels will be considered in this work: Cluster,
Machine and Process Levels. We do not differentiate the
running processes by their processors in the same machine.
Furthermore, we will not divide a process code into Core and
Software-Hardware Sub-levels.

Requirements (i) and (iii) are made for simplification of
explanation, since if they were not made, some details about
mesh partition and distribution and the use of software-
hardware procedures would be needed, blurring the center
piece of this work. Requirement (ii) is needed because of
the lack of a better alternative: we are making an option
for a SPMD scheme. A MPMD scheme would require an
automatic analysis of the solution algorithm in order to decide
what procedure branches could be executed in parallel. Such
a solution algorithm analysis is still the subject of an ongoing
work.

B. Logical and Topological Views
There are two views of the MPhyScas-P’s architecture:

i) Logical View: the logic of MPhyScas-P’s workflow is
the same as the MPhyScas-S’, that is, it has the same lev-

els of procedures (Kernel, Blocks, Groups and Phenom-
ena), all relationships between them are preserved and
all procedures within each layer are technically the same
(besides the fact that data are now distributed). Therefore
the relationships among entities in the different levels
of MPhyScas-P is also a DAG (direct acyclic graph).
Thus, we are able of cloning a suitable modification of
MPhyScas-S to all processes in a SPMD scheme. In this
sense, one can imagine that MPhyScas-P is MPhyScas-S
with distributed data and a hierarchical synchronization
scheme (see Topological View below).

ii) Topological View: the topology of the procedures in the
workflow of MPhyScas-S is implemented in MPhyScas-
P in a hierarchical form with the aid of a set of processes,
which are responsible for the procedures synchroniza-
tion. There are three types of leader processes (see
Figure 7):
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Fig. 7. Hierarchy of the simulator in MPhyScas-P

ii.i) ClusterRank Process: it is responsible for the
execution of the Kernel and to synchronize the
beginning and the end of each one of its level’s
tasks, which requires demands to lower level pro-
cesses. In a simulation there is only one ClusterRank
process (for instance, the process with rank equal to
zero in an MPI based system). Figure 8 depicts the
relationship between a ClusterRank process and the
simulator layers.
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Layers with procedures executed by clusterRank in MPhyScas-P

ii.ii) MachineRank Processes: one process is chosen
among all processes running in an individual ma-



chine to be its leader. Thus, there is only one
MachineRank process per machine. It is responsible
for the execution of procedures in the Block level
and to synchronize the beginning and the end of
each one of its level’s tasks, which requires demands
to lower level processes. ClusterRank is also the
MachineRank in its own machine. Figure 9 depicts
the relationship between a MachineRank process
and the simulator layers.
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Fig. 9. Layers with procedures executed by machnineRank processes in
MPhyScas-P

execution of the procedures in the Group level.
The ClusterRank and all MachineRank processes
are also ProcessRank processes. Figure 10 depicts
the relationship between a ProcessRank process and
the simulator layers.
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MPhyScas-P

Knowing that MPhyScas-S transfer commands from the
Kernel level down to the Phenomenon level in the
form of a tree structure, it can be seen that ClusterRank
only demands services from all MachineRanks, which
only demands services from all of its ProcessRanks.
Since the activities in one level returns to the level
immediately above after they are accomplished (with the
exception of the Kernel level) there are natural ways of
synchronizing each activity (for instance, using barriers
after each demand to the respective lower level has been
executed). The heavy computational load is located in
the ProcessRank processes. Since all processes are also

ProcessRanks and the extra management duties of the
leader processes are extremely light, there is no waste
of processing power. Furthermore, there is certainly an
advantage with the tremendous simplification in the
synchronization tasks. Note that the activities in Group
and Phenomenon levels are left for a finer granularity of
management. In both levels there are well localized CPU
intensive operations, which could be accelerated with a
suitable software optimization and the use of hardware
devices (for instance, fpga’s).

As it has been seen, MPhyScas-P can be considered as
MPhyScas-S running in different processes with distributed
data. Besides the natural differences between sequential and
parallel programs, there is also a specialization of some of the
processes, which is important in the synchronization activities.
However, when coming to the more demanding parts of the
computation, all processes will participate as well. Those parts
are coded almost exactly in the same as they are in MPhyScas-
S. In what follows we explain the main procedures executed
by the preprocessor and by the simulator.

V. COMPUTATIONAL WORK LOAD AND FLOW IN
MPHYSCAS-P

In this section we summarize several aspects of the main
activities related to the simulator building, the preprocessing of
user data and the simulation. In what follows we will describe
the following activities: (i) definition and instantiation of the
simulator; (ii) Input of simulation data; (iii) Preprocessing; (iv)
Simulation execution; (v) Mesh partition and (vi) Visualiza-
tion.

A. Simulator definition and instantiation

Simulator objects are complex computational entities and
are built following a set of user data (actually, meta-data).
Simulators in MPhyScas-P architecture do not behave the same
in all processes. Therefore, the preprocessing builds simulators
able of instantiating different behaviors . Behavior instantiation
will be performed depending on the role of each running
process, that is, ClusterRank, MachineRank and ProcessRank
type processes will behave differently, since they have different
management duties. However, in the present implementation,
they will perform virtually the same procedures, when it comes
to activities at the Group and Phenomenon levels (the most
computationally intensive procedures). The definition of a
simulator behavior in each process comprises the following
activities:

a. ClusterRank (Rank Zero): (i) Interacts with user in order
to build/configure the simulator; (ii) Identifies all other
processes as either MachineRank or ProcessRank and
provides a tag to each one of them; (iii) Format simulator
specification data for distribution to each MachineRank
process; (iv) Distributes simulator specification data to
all MachineRank processes.

b. MachineRanks: (i) Receive simulator specification from
ClusterRank; (ii) Format simulator specification data
for distribution to its ProcessRanks processes; (iii) Dis-
tribute simulator specification data to all its Process-
Ranks processes.



c. ProcessRanks: Receive simulator specification from its
MachineRank process.

d. All processes: Instantiate simulator (processes from one
hierarchical level to another have different simulation
instantiation mechanism).

B. Simulation data input

Input of simulation data in MPhyScas-P is exactly the same
as for MPhyScas-S (for more information see [4]). However,
since processes are specialized - depending on where they
are placed in the hierarchy of the simulator - the transfer of
simulation data start with the ClusterRank and goes down the
hierarchy down to the ProcessRanks. The input procedures are:

a. ClusterRank: (i) Interacts with user in order to in-
put simulation data: (i.1) Geometry; (i.2) Phenomenon
types; (i.3) Relation phenomenon x geometry; (i.4)
Quantity to be activated for each phenomenon object;
(1.5) Group data;(i.6) Phenomenon data; (i.7) Com-
plementary data for the definition of the preprocessor
behavior; (ii) Formats simulation data for distribution to
all MachineRanks; (iii) Distributes simulation data to all
MachineRanks.

b. MachineRanks: (i) Receive simulation data from Clus-
terRank; (ii) Format simulation data for distribution to
its ProcessRanks; (iii) Distribute simulation data to its
ProcessRanks.

c. ProcessRanks: Receive simulation data from its Machin-
eRank.

d. All processes: Instantiate preprocessor object.

C. Preprocessing

Preprocessing is an activity responsible for the building
of data structures for the simulation data in a way that can
be understood by the simulator. Not only that, of course,
because part of the user data is transformed severely, before
becoming available for the simulator. Those tasks can be
very computationally demanding and can be performed either
sequentially - with the result being distributed afterwards -
or in parallel. One of such an example is mesh generation. In
MPhyScas-P the preprocessing is also especialized, depending
on the process type along the hierarchy. In any case, the
idea is that the processes in each level will perform part of
the preprocessing and will send subsets of raw data together
with subsets of already preprocessed data to processes in the
lower level. This helps not only load balancing, but also the
simplification of procedures.

1) Preprocessing Dynamics: The dynamics of the prepro-
cessing activities can be described through the actions taken
at each level of computation:

a. ClusterRank: (i) If preprocess is sequential: (i.1) Prepro-
cess whole simulation data including mesh generation
and partition; (i.2) Format preprocessed simulation data
to all MachineRanks; (i.3) Distribute preprocessed simu-
lation data to all MachineRanks, or else (i.1) Preprocess
the whole simulation data in parallel with all other
processes (communication with other processes depends
on the methods used, i.e., mesh generation)

b. MachineRanks: (i) If preprocess is sequential: (i.1) Re-
ceive preprocessed simulation data from ClusterRank;
(1.2) Preprocess a small part of its simulation data; (i.3)
Format preprocessed simulation data for distribution to
its ProcessRanks; (i.4) Distribute preprocessed simula-
tion data to all its ProcessRanks, or else (i.1) Preprocess
the whole simulation data in parallel

c. ProcessRanks: (i) If preprocess is sequential: (i.1) Re-
ceive preprocessed simulation data from rank machine;
(1.2) Preprocess a small part of its simulation data; or
else (i.1) Preprocess the whole simulation data in parallel

d. Notes: (i) The Preprocessor object is actually a very
complex machine. It encapsulates a great variety of other
objects, which were instantiated following data (choices)
given by the user; (ii) This object is specialized depend-
ing whether the node is a ClusterRank or a MachineRank
or a ProcessRank; (iii) It is not the intention of this
paper to go into details about the preprocessing stage.
Nevertheless, short explanations about mesh generation
and distribution will be needed; (iv) A third party mesh
generation in parallel for MPhyScas should require that:
(@iv.1) ClusterRank starts the process and distributes data
to be performed in parallel with all MachineRanks; (iv.2)
Then all MachineRanks will process the data a little bit
more and then redistribute them to all ProcessRanks;
(iv.3) Since ClusterRank and all MachineRanks are also
ProcessRanks, the heaviest work will be done after the
data is spread among all processes; (v) When the mesh
generation is sequential, only ClusterRank executes the
mesh generator and then makes the partition and distri-
bution of the mesh; (vi) Being able of using a third party
mesh generator is also a requirement for MPhyScas-
P. Thus, it is wrapped inside an object, which is also
responsible to transfer data in and out of the mesh
generator.

2) Preprocessing activities: The following activities com-
prise the main activities in the preprocessing. For clarity pur-
poses, we assume that the mesh generation is done sequentially
by the ClusterRank:

a. ClusterRank: (i) Instantiate Phenomenon objects; (ii) For
each Phenomenon object: (ii.1) Build GeomGraph; (ii.2)
Build PhenGraph; (ii.3) Activate quantities; (ii.4) Build
relationship Phenomenon x Phenomenon based on cou-
pled quantities; (ii.5) Establish mesh sharing relation-
ship; (ii.6) Instantiate methods; (iii) Relate Phenomenon
objects with simulator Groups; (iv) For each Group:
(iv.1) Build GroupTask objects and load their data;
(iv.2) Build QuantityGroup objects with their Group-
Task objects; (iv.3) Instantiate methods; (v) Generate
geometric meshes; (vi) Generate phenomenon meshes
for each Phenomenon; (vii) Partition each one of the
geometric meshes and respective phenomenon meshes
among MachineRank processes; (viii) Partition Geom-
Graphs following geometric mesh partition; (ix) Parti-
tion PhenGraphs following the partition of the respective
GeomGraphs; (x) Build Phenomenon objects for each
partition; (xi) Format data (Group data and Phenomenon
data for each partition) to be sent to the MachineRanks



processes; (xii) Distribute preprocessed data to Machin-
eRanks processes.

b. MachineRank: (i) receive data from ClusterRank; (ii)
Instantiate Phenomenon objects; (iii) For each Phe-
nomenon object: (iii.1) Build GeomGraph; (iii.2) Build
PhenGraph; (iii.3) Activate quantities; (iii.4) Build re-
lationship Phenomenon x Phenomenon based on cou-
pled quantities; (iii.5) Establish mesh sharing relation-
ship; (iii.6) Instantiate methods; (iv) Relate Phenomenon
objects with simulator Groups; (v) For each Group:
(v.1) Build GroupTask objects and load their data;
(v.2) Build QuantityGroup objects with their Group-
Task objects; (v.3) Instantiate methods; (vi) Recover
geometric meshes; (vii) Recover phenomenon meshes
for each Phenomenon; (viii) Partition each one of the
geometric meshes and respective phenomenon meshes
among its ProcessRank processes; (ix) Partition Geom-
Graphs following geometric mesh partition; (x) Partition
PhenGraphs following the partition of the respective
GeomGraphs; (xi) Build Phenomenon objects for each
partition; (xii) Format data (Group data and Phenomenon
data for each partition) to be sent to its ProcessRank
processes; (xiii) Distribute preprocessed data to its Pro-
cessRank processes

c. ProcessRank: (i) receive data from its MachineRank;
(i1) Instantiate Phenomenon objects; (iii) For each Phe-
nomenon object: (iii.1) Build GeomGraph; (iii.2) Build
PhenGraph; (iii.3) Activate quantities;(iii.4) Build rela-
tionship Phenomenon x Phenomenon based on coupled
quantities; (iii.5) Establish mesh sharing relationship;
(iii.6) Instantiate methods; (iv) Relate Phenomenon ob-
jects with simulator Groups; (v) For each Group (v.1)
Build GroupTask objects and load their data; (v.2)
Build QuantityGroup objects with their GroupTask ob-
jects; (v.3) Instantiate methods; (vi) Recover geometric
meshes; (vii) Recover phenomenon meshes for each
Phenomenon; (viii) Build Phenomenon objects

D. Simulation execution

The execution of the simulation requires synchronization in
all levels of the hierarchy. We will not describe this mechanism
in detail. However, it is important to mention that the execution
of tasks at a given level, which requires tasks to be executed by
other processes in the lower level, is used as a synchronization
point for all processes involved. The main procedures can be
viewed below:

a. ClusterRank: (i) Interacts with the user in order to start
simulation; (ii) Starts simulation by executing the Kernel
driver (it is an object): (ii.1) Whenever the Kernel driver
calls the execution of a procedure at the Block level,
it should broadcast a message with the needed data to
all MachineRanks; (ii.2) Execute its own Block level as
requested by the Kernel driver (ClusterRank acts as a
MachineRank); (ii.3) Upon the end of the execution of
the procedure in the Block level, ClusterRank broadcasts
a message to all MachineRanks for synchronization
purposes.

b.
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MachineRanks: (i) Receive message from ClusterRank
to execute a procedure in the Block level; (ii) Execute
the required procedure; (iii) Whenever a procedure in
a Block object demands the execution of a procedure -
operation of type BLAS I, II or IIT or the execution of
a GroupQuantity object - at the Group level, it should
broadcast a message with the needed data to all its
ProcessRanks; (iv) Upon the end of the execution of
the procedure in the Group level, MachineRank broad-
casts a message to all ProcessRanks for synchronization
purposes; (v) At the end of the procedure, MachineRank
sends a message answering the synchronization broad-
cast sent by ClusterRank

ProcessRanks: (i) Receive message from its Machin-
eRank to execute a procedure in the Group level; (ii)
Execute the required procedure; (iii) At the end of the
procedure, ProcessRank sends a message answering the
synchronization broadcast sent by its MachineRank.
Notes: It is noticeable that the described hierarchi-
cal execution in parallel allows also for parallelization
schemes of type MPMD (multiple processes multiple
data), because it links components in a DAG (direct
acyclic graph) structure. The DAG structure allows for
automatic and dynamic analysis, load balancing, algo-
rithm partitioning and scheduling of the execution of all
its parts on a given set of processors. This is currently
being pursued and will be published elsewhere.
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Fig. 11. Geometric domain

E. Further notes

this subsection we present some notes to further clarify

some issues.

Mesh partition and distribution: For what follows, con-

sider the geometric domain in Figure 11 and its geometric
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Fig. 15. Neighboring partition components, such that the interface is an
existent geometric entity

each one of its nodes (PhenGraphNodes), which are to
be computed on the geometric entities of the respective
GeomGraphNodes.
b. The partition of the mesh represents a partition of the
geometry and thus requires an associated graph partition.
Fig. 13. Partition component in contact with the outer boundary The current geometric entities will then be partitioned -
after their mesh partition - and new geometric entities
will be formed (including those on the mesh interface
mesh 12, which is partitioned for twelve processes. Assume between two mesh parts), see Figures 13 and 14. Note
that phenomena Phy and Phs act on S7 and S, respectively.
Note that both domains were partitioned into twelve parts
(processes i, 1 = A, ..., L) in order for each process to contain
both Phenomenon objects with nonempty meshes.

a. MPhyScas architecture associate procedures (quantity
computations and other tasks) to geometric entities [15],
[4]. They are performed at the Phenomenon level, but
their execution and required parameters are established
at the Group level. Those procedures and the geometry
are then organized in the form of two graphs, the
GeomGraph and the PhenGraph, which have the same
structure. However, while the GeomGraph encapsulates
a geometric entity (points, curves, surfaces, volumes)
at each one of its nodes (GeomGraphNodes), the Phen-
Graph encapsulates the procedures (called WeakForm) at ~ Fig. 16.  Added CouplingPhenomenon to the process on one side
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Fig. 17. Added CouplingPhenomena to the process on the other side

that ghost elements are always included in the parts of
a partition.

. The partition of already existent geometric entities will
produce new geometric entities (Figure 13), which will
inherit all WeakForms from the former. However, the
new geometric entities obtained at the interface between
two partitions will be given new WeakForms, depending
on the solution algorithm implemented in the simulator.
Nevertheless, the vector fields restricted to those brand
new geometric entities will represent the data to be
exchanged between the neighboring processes.

. Following item (c) above, new GeomGraphs and Phen-
Graphs will be generated for each partition. It is im-
portant that a process P can retrieve the id’s of its
neighboring processes and the connectivity of the mesh
nodes at each interface between P’s mesh and its
neighboring mesh parts. Those pieces of information
can also be localized at the PhenGraphNode associated
to the GeomGraphNode, which contains the geometric
interface between two mesh parts. Two processes are
neighbors if their geometric meshes have a nontrivial
intersection.

. It may happen that an interface between two mesh parts
is also a part of an existent geometric entity at the
contour of the geometric domain, Figure 15. Suppose
that this geometric entity divides the geometry into two
regions, where one phenomenon acts on one side and
a different one acts on the other (for instance, part A
and part D in Figure 15 and 16). In this case, if there
is exchange of data between both phenomena during
simulation, then, special procedures should take place.
This is so because one cannot afford the transfer of
coupling data (vector fields and Phenomenon meshes)
across processes each time one Phenomenon object
needs data from other Phenomenon on the boundary of
its geometric domain.

. In order to tackle the problem described in item (e)
above, consider that both meshes were partitioned
among all processors in such a way that each process
has all Phenomenon objects with nonempty mesh parts.
Suppose now that Phy computes a quantity g, on the
interface between S and Ss (that is, curve Cg), where it

needs data from phenomenon Ph;. Consider process A,
which contains two mesh partitions, A — 0, for Phg and
1— A for Ph;. Consider now process D, which contains
two mesh partitions, 0 — D, for Phg and 1— D for Ph;.
Note that the interface between 0— A and 1— D coincides
with a part of the curve Cg. Thus, the computation of
qq by process A will need information from Ph;, which
is not in process A (note that 1 — A is far from that
curve). The solution is, then, to add to process A another
Phenomenon object called CouplingPhen (in the same
Group as Phg), containing the copy of the geometric
entity, where the coupling occur (interface 0— A-1— D),
together with its mesh and related vector fields, Figure
17. Also, this object should know process D’s id and
handler to its locale in Ph; in D. In this way, whenever
required, the CouplingPhen object will update - through
communication between both processes - only the vector
field data from process D related to the geometric part
1 — D. Mesh data (geometric and phenomenon meshes)
is already local to process A and need not be transferred.

g. The structure of CouplingPhen is exactly the same as a
regular Phenomenon object. The difference is that the
instantiation of CouplingPhen is dynamic and does not
need data from the user. Also, the coupling information
needed in the computation of a coupled quantity (like
qq in the above example) is automatically built from the
original information (provided by the user), which linked
the computation of g, by Phy with data from Ph; on
the curve Cg.

h. Note that geometric interfaces between two parts can
be either a point, or a mesh curve, or a mesh surface.
This is so because those entities can be shared by more
than one partition. Actually, points (in 2-D and 3-D) and
mesh curves (in 3-D) can be interfaces between many
partitions at the same time. This makes the above story
a little more demanding, but we will not go into further
details. The main picture is already set.

i. After the mesh partition and distribution is finished,
the preprocessing procedures will generate the new
GeomGraphs and PhenGraphs for each process. Then,
all CouplingPhen objects are instantiated. That is the last
thing the preprocessor will do before the simulation. The
simulator automatically schedules the updating requests
to CouplingPhen objects.

j- Mesh partition and distribution are far more complex
when two or more Phenomena objects - defined on the
same geometric entity - do not share the same geometric
mesh. It is when data transfer between meshes should
take place. This case is quite important, but will not be
considered here.

2) Visualization and other types of external interfaces:
MPhyScas does not provide costume-made visualization ma-
chinery for simulation data and results. However, it does
provide interfaces to third party visualization software. An
interface should be implemented for each new visualization
software to be used. Also, the post-processing procedures are
implemented as Phenomenon objects, that is, all calculations
and format exchange of quantities to be visualized/analyzed



are implemented as coupled WeakForm’s in Phenomenon
objects. The execution of the visualization software can be
done through MPhyScas interface, although it can also be
done separately. Not only visualization events can be consid-
ered. Phenomenon objects can also encapsulate (through their
WeakForm’s) a variety of different types of interferences in the
simulation. For instance, interruptions and coupling between
simulation and laboratory experiments can be implemented
with this strategy. The simulation algorithm will dictate when
and where in the simulation those interferences will become
active.

VI. CONCLUSIONS

We presented the architecture of MPhyScas-P, a frame-
work aimed at supporting the automatic development of high
performance simulators for multi-physics problems. This ar-
chitecture inherits from MPhyScas-S (the sequential version)
all its workflow representation, with the obvious difference
that MPhyScas-P is distributed in a hierarchical way. Al-
though MPhyScas-S has already a fully functional prototype,
MPhyScas-P has a prototype (using MPI) currently being
tested. Besides those qualities that MPhyScas-S has already
demonstrated (strong reusability, maintainability, adaptability
and correctness), MPhyScas-P provides also another nice
feature: due to the DAG (direct acyclic graph) structure
of its workflow, its code can be dynamically analyzed and
reconfigured in such a way that MPMD schemes could be
used. At last but not least, it is important to notice that we
are dealing with very complex problems, with very complex
solution algorithms. We think that if MPhyScas-P would be
able to alleviate the burden of programming and changing code
for those types of problem, our task would be fulfilled. We are
currently building a graphic user interface coupled to a DBMS
in order to manage the use of components for MPhyScas-S and
MPhyScas-P and are planning in using an interface description
language in order to describe all interfaces of components.
One candidate being considered is SIDL from the Common
Component Architecture (CCA) [13].
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