
OPENMP CODE GENERATION BASED ON A MODEL DRIVEN ENGINEERING
APPROACH∗

Julien Taillard
LIFL / INRIA

Email: Julien.Taillard@lifl.fr

Frédéric Guyomarc’h
University of Rennes / INRIA

Email: Frederic.Guyomarch@inria.fr

Jean-Luc Dekeyser
LIFL / INRIA

Email: Jean-Luc.Dekeyser@lifl.fr

KEYWORDS
MDE, HPC, Code generation, OpenMP

ABSTRACT
In this paper, we present a methodology which allows
OpenMP code generation and makes the design of paral-
lel applications easier. The methodology is based on the
Model Driven Engineering (MDE) approach. Starting
from UML models at a high abstraction level, OpenMP
code is generated through several metamodels which
have been defined. Results show that the produced code
is competitive with optimized code.

INTRODUCTION
A physical barrier has been attained by processor sup-
pliers which implies that frequency can not be increased
like in the past. Previously, a basic processor replacement
allowed to gain performance thanks to the higher fre-
quency. Nowadays, the only way to reach performance
is to carry out parallel computing and the multi-core pro-
cessors development is making it even more important.

Unfortunately parallel computing is not easy for non-
specialists. It requires knowledge of parallel algorithms
and parallel coding for different kinds of architectures.
From shared memory to distributed memory, the range
of parallel machines is wide and program optimization is
machine dependent. The complexity is even increasing
now with the mix of all these concepts into multi-core
machines joined into a grid.

Higher levels of parallel languages (like Fortress (2))
are made to simplify writing, but they are still for special-
ists. Methods to help the non-specialists to write parallel
code must be defined.

The trend in software engineering is to model software
at a high abstraction level in order to be more produc-
tive and to make the software durable. A high abstrac-
tion level enables to be independent from any language
and the designers do not have to handle all implemen-
tation details. In the Model Driven Engineering (MDE)
conception flow, input models (expressed at a very high
level) are transformed into lower abstraction levels to fi-
nally generate code.

Our contribution is twofold. First, we propose a meta-
model to model OpenMP programs that could be used

∗This work has been partially supported by the CNRT FuturElec
and the CNRS PEPS program

in any model approach. This metamodel is based on
a metamodel of procedural language wherein OpenMP
concepts have been added. Secondly, we present a way
to generate OpenMP programs starting from a high ab-
straction model using the OpenMP metamodel.

The paper is organized as follows. The next section
presents some works about the automatic generation of
parallel code. Then, the main concepts of the MDE are
introduced. Later, an approach based on the MDE to
produce OpenMP code is presented. Afterwards, some
results about the produced code is analyzed. Finally,
conclusions are given and some on-going works are pre-
sented.

RELATED WORK

The automatic parallelization is a widely studied domain.
Lots of tools are available to handle it. Two approaches
can be distinguished: the generation of parallel code and
the parallelization during the compilation. Since our goal
is to generate OpenMP code, we describe here only a few
works closely related, which also deal with paralleliza-
tion using OpenMP.

The classical approach is to generate OpenMP code
starting from a sequential code. Tools such as CAPO (11;
10) and the POST project (1) are based on this approach.
Starting from a sequential code, and through a data de-
pendencies analysis, the tools will automatically identify
the main characteristics of the code including the differ-
ent types of loops. Then, there are two approaches: either
the code is automatically generated with the insertion of
the appropriate OpenMP directives or the tool indicates
the user which loops can be parallel and helps him to de-
cide.

Another approach is to generate OpenMP code from
another parallel language. Thus, Krawezik et al. (13) pro-
pose to generate OpenMP code starting from MPI code.
The resulting program is a program written in the same
style as the MPI code: the Single Program Multiple Data
(SPMD) style. Such approach is used because OpenMP
is often better on shared memory architecture than MPI.

Our approach promotes the use of visual programming
(the models), thus users don’t need to handle code di-
rectly. As the models are made at a very high abstrac-
tion level, they can be reused for any other parallel lan-
guages. Code generation is made automatically without
any user’s intervention.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

MODEL DRIVEN ENGINEERING (MDE)
Models are being used since a long time. Painting and
sculpture can be considered as models of what they rep-
resent (8). They are used in computer science since time
now. The first use of models in computer science is to
make a system understandable for different developers.
It is used as documentation and specification for the sys-
tem developers. These kind of models is named contem-
platives. In order to raise productivity, the idea is to make
models productive and executable, and the MDE (18) has
been introduced. It consists of using models at each level
of conception, and to make models transformations be-
tween these levels. So that, once the system is modeled
at a high abstraction level, only refinements are needed
instead of rebuilding all the system at the new level. Such
an approach allows to be independent of implementation
details since they are managed by the transformations.

Model
A model is an abstraction of the reality. It is composed by
concepts and relations in order to represent the system.
When a designer models a system, he thinks about what
he is interested in the system. Models are made with
the designer’s point of view. The same system could be
modeled in different ways depending on the designer.

Models are usually made using the Unified Modeling
Language (UML) (14) which is the standard from the
Object Management Group (OMG) for visual program-
ming.

In the HPC field, the designers are interested in the
parallelism. Models of application and architecture need
to express all the available parallelism to take advantage
of the high number of processors available.

Metamodel
A metamodel defines the available concepts and relations
that can be used to create a model. It could be compared
to the grammar of a programming language. Designers
are guided by the metamodel in order to produce same
kind of models. A model made using a metamodel is
said conform to this metamodel.

In our framework the metamodels must propose a
mechanism to express all the parallelism in the models
and also the mapping of software onto hardware archi-
tectures. The distribution of tasks on hardware is an im-
portant point to raise performances as different mappings
of the same application can highly impact these perfor-
mances.

Transformation
As the MDE promotes the use of models in each level
of conception (abstraction level), an automatic genera-
tion of the different intermediate models is mandatory.
A model transformation is performed between a source
model and a target model, respectively conformed to the
source and target metamodels. It could be seen as a com-
pilation process. A transformation relies on a set of rules:

a rule expresses how to transform a source concept (resp.
relation) into an equivalent target concept (resp. rela-
tion). It facilitates the writing, extensions and maintain-
ability since each rule is independent of others and can
then be modified independently. The transformation of
models are typically used to reach a low level model (the
code) from a high abstraction level model. Each trans-
formation is designed in order to add details to the mod-
els. It is a refinement used to be able to obtain the code
with the appropriate implementation details. Several ap-
proaches of model transformations have been proposed.
The Query/View/Transformation (QVT) (15) approach
is an OMG standard for transformation. It proposes a
declarative and an imperative language to write transfor-
mations. Unfortunately transformations tools are not yet
mature and no complete implementation of QVT is avail-
able. SmartQVT (20) is a partial implementation of QVT
based on the declarative language but it was not entirely
developed when we started development. So, we devel-
oped our transformation tool called MoMoTE (Model to
Model Transformation Engine). It is build as an Eclipse
plugin using the EMF tools (7).

For the HPC area, the goal is to produce parallel code
starting from a high abstraction level. Thus, a language
independent model to express parallelism will be trans-
formed into a language dependent model to express the
parallelism. The high level expression of parallelism will
be refined in order to produce optimized code in the tar-
geted language, here OpenMP (C and Fortran).

METAMODEL OF PROCEDURAL LANGUAGE
USING OPENMP
As the targeted languages were Fortran and C, the most
efficient strategy was to define a metamodel which al-
lows to generate both languages. Since both are proce-
dural languages, a metamodel of a general procedural
language wherein the OpenMP concepts are added has
been specified. The metamodel has been inspired by the
C-ANSI Yacc grammar (12). An overview of the meta-
model of procedural language is first presented and then
the introduction of OpenMP statements in the procedural
language metamodel is exhibited. Other procedural lan-
guages than C and Fortran have not been studied in detail
to create the metamodel, but should be compatible with
this metamodel with only minor changes.

Procedural language metamodel description
This metamodel aims to be of general-interest. It is not
specific for our goal and could be used for any other
purposes. It permits to declare programs, libraries, rou-
tines, functions, variables, expressions and all the avail-
able constructions. Pointers are not yet supported in the
metamodel because we do not need it at the language
level. In fact, in the higher level, all data are organized as
multidimensional arrays which can be natively translated
in languages we target.

The figure 1 presents an excerpt of the statements

available in the procedural language. The most common
expressions of languages can be modeled: the condi-
tional statements (if and ifelse), the loop statements (for
and while), the call of subroutines/functions and the con-
struction of expressions.

Figure 1: Statements in the procedural language meta-
model

Adding OpenMP statement to procedural language
metamodel

As the goal is to generate OpenMP code, OpenMP state-
ments have to be available to generate OpenMP di-
rectives and function calls. OpenMP statements are
added to the metamodel while OpenMP functions, like
omp get num thread(), are modeled in a library which
is referenced when OpenMP procedural language model
makes a function call.

Figure 2: OpenMP statement added

The figure 2 illustrates the OpenMP statements added
in the classical statement. An OpenMP statement can
have OMP Clause (such as private or shared).

The figure 3 illustrates a model made with the meta-
model (as a graphical representation is not generated with
the metamodel). In this example, we illustrate the tree
organization of a model: an OMP Parallel statement con-
tains an ordered list of statements (S1,S2,S3) and two
synchronization barriers (B). Each statement is also hi-
erarchic: S2 contains an if statement.

Figure 3: Tree representation of a model

OPENMP CODE GENERATION

The OpenMP code generation is implemented in a
framework called Gaspard2 (21). It provides an Inte-
grated Development Environment (IDE) for Multipro-
cessor System-On-Chip (MpSOC) co-modeling and for
High Performance Computing application design (fig-
ure 4). Gaspard2 is able to manage both targets because
the modeled systems are the same: MpSOC are mas-
sively parallel architectures and so are computers used
for HPC, targeted applications are parallel in both cases
and mapping of application on hardware architecture also
needs to be expressed. Thus Gaspard2 has different tar-
gets (Synchronous, SystemC, VHDL, OpenMP) starting
from the same high level model. The Synchronous target
allows to do verification and validation of an application
with the help of synchronous language. The SystemC tar-
get is able to make System On Chip co-simulation with
SystemC. The VHDL one allows the generation of an
hardware accelerator on a FPGA for a part of the applica-
tion. The OpenMP target generates shared memory code
executable on supercomputers. In the following, we fo-
cus on this later.

Figure 4: The Gaspard Y Chart

Gaspard2 is based on the component assembly in or-
der to make components reusable. As a component, we
define an elementary or composed system with fixed size
input and output ports (the data). There is no state in a
component, output values (on output ports) depend only
on input values. The basic units of models are Elemen-
tary Components which are deployed to a function (usu-
ally from a library), they can be compared to a black box
associated to a piece of code.

The global methodology, as seen in figure 4, is as fol-
lows: the first step is to design application and hardware
architecture independently of each other. This separa-
tion of concepts allows to reuse these models and to keep
them human readable. Then, with the help of an allo-
cation mechanism, the computation tasks are distributed
over processors and the data are mapped onto memories1.
After that, a transformation chain (a succession of mod-
els transformations) leads to the generation of the desired
code.

This MDE approach permits a great flexibility: tar-
gets can be added, reusing a part of the actual chains.
Moreover, it encourages reuse of models and compo-
nents. Once a component has been designed, it could be
reused in several models. An application could also be
reused to target several languages and hardware architec-
tures. Thus, to target a new hardware architecture, users
have to do the association between application model and
hardware architecture. Code will be automatically gen-
erated for this architecture with the specified mapping.
Similarly, several distributions of an application on an ar-
chitecture could be tested easily. User just has to change
the distribution specification, the new code , with the new
distribution, will be automatically generated.

The integration of a new standard of OpenMP, such
as the future version 3.0 (17), could also be easily done
since user just needs to modify the last transformation
generating the code itself, and also maybe between the
loop and the OpenMP model (and add the new OpenMP
features in the corresponding metamodel). In fact the
transformations before these are mainly used to express
the parallel loops. Concept will always be present in
data-parallel languages.

OpenMP code is generated in the SPMD style. SPMD
style is one of the most efficient styles compared to
the classical loop level one (13) because there are less
OpenMP directives since all the code is in a PARALLEL
directive. As the mapping of application tasks on threads
is explicit (using the number of threads), data locality can
be assured whereas it cannot be with OpenMP directives
which depends on the OpenMP compiler efficiency. In
the code generation, a thread is considered to be associ-
ated to a processor in order to use the cache efficiently.

1for OpenMP, we do not place data onto different memories but
for other targets of code like SystemC, we could simulate the effect of
different placements

The high level model
The high level models are made with a profile (4) which
is a subset of the UML Modeling and Analysis of Real-
Time and Embedded systems (MARTE) profile (16; 19).
A profile allows to add semantics to UML elements. This
profile allows the modeling of software, hardware archi-
tecture and the association between them. It is a com-
ponent based approach using UML 2 (14) components.
Using a concept called repetitive structure modeling, the
profile allows to express the repetitions of the same com-
ponent instance (details could be found in (6)). This con-
cept could be used in software as well as in hardware. It
is based on the Array-Oriented Language (Array-OL) ex-
pression (5) which is a specification language to express
all the parallelism available. Data-parallelism and task-
parallelism could be modeled in the application model
and available parallelism in the hardware architecture
model is also expressed.

An application model can be seen as a hierarchical Di-
rected Acyclic Graph (DAG) of tasks where nodes are
tasks and edges are data dependencies between tasks.
An application model is illustrated in figure 5. This is
a simple application which consists of the initialization
of two matrices, making the multiplication between both
and checking the result obtained.

Figure 5: A simple application model

The task parallelism is expressed by several tasks with-
out data dependencies between them. Then, if all the in-
puts data of the tasks have already been produced, all the
tasks can be executed in parallel. Thus, in the figure 5,
tasks iM1 and iM2 can be executed in parallel: there
is no data dependency between them. A model which
expresses data-parallelism is shown in figure 6. It rep-
resents a matrix multiplication, used in the application
model of figure 5, using dot product algorithm. The dP
instance is repeated (4,4) times to compute the (4,4) out-
put matrix. There is no dependency between each repeti-
tion of the dP instance. This means the 16 computations
can be done in parallel. The connectors stereotyped as
Tiler express which part of the input/output arrays each
repetition uses. Detailed information about Tiler can be
found in (5).

Tasks distribution over processors is expressed using
Array-OL expression. It expresses the distribution of the
repetition of tasks over the repetition of processors (see
details in (6)). Classical High Performance Fortran dis-
tributions such as BLOCK or CYCLIC distribution can
easily be expressed.

Figure 6: Matrix multiplication expressed with data-
parallelism

Only “complete” models can be used for code genera-
tion. A “complete” model is an application model asso-
ciated with an hardware architecture. To target OpenMP,
each elementary component needs to be deployed on a
function and each instance of elementary component has
to be mapped onto a processor (directly or one compo-
nent instance it belongs to using the hierarchy tree).

Brief explanation from the high level to loop model
The transformation starts from a “complete” high level
model. Transformations are decomposed into small ones
which are easier to develop, debug and can be reused for
several targets. Both transformations briefly explained
here are used for the OpenMP code generation as well as
for the SystemC code generation.

The first step (high level model to polyhedron model)
is to merge high level models into one model: the poly-
hedron one. During this transformation the expression
of the tasks distribution over processors is transformed
into the polyhedral model. This is a classical model in
the data parallelism area. Considering that the repetition
of a task can be seen as a multidimensional polyhedron,
the mapping expression defines how to scan this polyhe-
dron depending on the processor number (or the thread
number in OpenMP). A polyhedron is generated for each
mapping information and is given to the concerned tasks
which are linked with the processor (or repetition of pro-
cessors).

Once polyhedron model is obtained, the second step
is to get closer to the implementation. Polyhedrons are
transformed into loops using a tool called CLooG (3;
Chunky Loop Generator) which generates loops scan-
ning the polyhedrons. In the application part of the
model, each polyhedron will be replaced by a nested
loop scanning the polyhedron. The resulting application
model is still a DAG where the mapping of tasks is ex-
pressed in loop expressions.

Generation of OpenMP procedural language model
This is the last transformation of the chain. The goal is
to obtain a model in OpenMP procedural language meta-

model starting from a loop model. Only the application is
used until now, but hardware could be used to optimized
code depending on the architecture.

Different tasks have to be done from this model to gen-
erate OpenMP code, they are:

- task scheduling

- generate OpenMP directives

- allocate variable

- determine shared variables

- put synchronization barrier

As we generate SPMD code style, all the generated
code, which depends on thread number, is included in
an OpenMP parallel section. The allocation and affec-
tation of the thread number (p0) is also done automati-
cally.Variables are private by default and shared variables
have to be declared.

The transformation is made as follow: transformation
rules first analyze the components at the highest hierar-
chical level, afterward each of these components is an-
alyzed again to determine the sub-levels of component
hierarchy.

The mapping between application tasks and proces-
sors expresses where each task or repetition of tasks will
be executed but it does not express an execution order.
Therefore a scheduling of the tasks of the graph is needed
in order to produce a valid application. A scheduling is
determined for each level of the hierarchy. The basic rule
to determine the scheduling is: a task can be scheduled
only if all its inputs have already been produced. Once
a component can be scheduled, the transformation ana-
lyzes the sub-level of the component hierarchy.

The model in the OpenMP procedural language meta-
model contains variables which have to be allocated. As
we deal with shared memory architecture, data place-
ment are not taken into account but data needs to be al-
located and declared shared or private between threads.
The basic way is to declare each port as variable, but
this causes lot of variable allocation and worse, many
useless memory copies penalizing performance. Ports
which connect a sub-task to its containing task can be
discarded: we just need to know where to read the data
into the memory (they are sub-values of the superior port
actually), instead of copying the data in a private vari-
able. A variable is identified as shared variable and put on
the SHARED clause declaration when it is used on tasks
mapped on several threads. Variables names depend on
the port name and a generated number is used to assure
the unicity of variables.

When the transformation deals with an elementary
component, it generates a call to the function on which
the component is deployed. Tilers are computed or op-
timized in order to reduce the number of intermediary
variables.

Insertion of synchronization barrier is needed in order
to respect the data dependencies between parallel tasks.

The determination of synchronization barrier is done on
the same principle. A synchronization is needed when
tasks with data dependencies are not in the same thread
(this could be determined with analysis of the loops).
Once a hierarchical level has been mapped on a thread (as
this is a sequential part), no synchronization are needed
and variables used in this part should be private.

Figure 7: Tree representation of the OMP model

Based on a tree representation of the model, the gen-
erated model for the example given on figure 5 will look
like in figure 7. It illustrates the OpenMP procedural lan-
guage model generated for the application mapped on
four processors. The mapping expressed that the iM1
instance is placed on processor 0, the iM2 instance is
placed on processor 1 and the cM instance is placed on
the processor 0. The distribution of the (4,4) repetitions
of the dP instance expresses that each processor has to
compute a column of computation.

We can observe that two synchronization barriers have
been generated: one before the matrix multiplication
(threads are waiting at the end of the initialization) and
one after the matrix multiplication (waiting for all threads
to finish the tasks they have to compute). The if state-
ments are generated by the mapping of a single task on
a single processor whereas the for statement is generated
to distribute repetition of the (4,4) dP instance on the pro-
cessor.

Code generation from OpenMP procedural language
model
Since the model of lowest level is actually very close to
the code itself (at least in structure), the code generation
from the OpenMP procedural language model is nothing
but a “pretty printer”; it translates the model representing
the code into the code itself using templates.

The figure 8 illustrates the code generated from the
model presented in figure 7. Elementary components are
deployed on a routine corresponding to the component
name (initMatrix routine for the initMatrix component).

RESULTS
In order to illustrate the use and the efficiency of such an
approach, we have compared the execution time of dif-
ferent implementations of a classical program: the ma-
trix multiplication (with (2000,2000) matrices). We have
compared automatically produced code with the hand-
written library GotoBLAS (9). Code was executed on a

program m a t r i x M u l t i p l i c a t i o n
double p r e c i s i o n , dimension (4 , 4) : : ou t1
double p r e c i s i o n , dimension (4 , 4) : : ou t2
double p r e c i s i o n , dimension (4 , 4) : : C
i n t e g e r : : p0 ! p r o c e s s o r number
i n t e g e r : : x
i n t e g e r : : y

! $omp p a r a l l e l d e f a u l t (p r i v a t e)
! $ shared (out1 , out2 , C)

p0 = o m p g e t n u m t h r e a d ()
! i n i t m a t r i c e s
i f (p0 ==0) then

c a l l i n i t M a t r i x (ou t1)
end i f
i f (p0 ==1) then

c a l l i n i t M a t r i x (ou t2)
end i f
! $omp b a r r i e r
do y =0 ,3

x=p0
c a l l d o t P r o d u c t (. .)

end do
! $omp b a r r i e r

i f (p0 ==0) then
c a l l c h e c k M a t r i x (C)

end i f
! $omp end p a r a l l e l

end program

Figure 8: Generated code example

3Ghz bi-Xeon dual core processor, running Linux with
a total of 2Gb of shared memory. Parallel programs run
over four threads.

Algorithm Best execution time Average
Row-column algorithm 0:21.11 0:21.60

Block multiplication 0:12.59 0:13.17
Block multiplication with

GotoBLAS task 0:01.25 0:01.26
Parallel GotoBLAS 0:01.03 0:01.05

Sequential GotoBLAS 0:03.34 0:03.39

Figure 9: Square matrices - Execution times on four
threads - Average is made on 100 executions

Three codes have been generated through Gaspard2:
row-column multiplication, block multiplication and the
block multiplication using GotoBLAS tasks on sequen-
tial parts. The two first generated algorithms go to the
scalar operation (addition and multiplication) where as
the last one use GotoBLAS function as soon as we are in
a sequential part. Results are given in figure 9. We can
observe that both codes which go to scalar operation are
not competitive compared to the sequential and parallel
hand written code. This is due to the fact that we are
not able to optimize sequential code. The block multipli-
cation using GotoBLAS task for sequential part is com-
petitive with the parallel hand-written function. Results
show that the best way to use Gaspard2 is to let Gaspard2
manage the parallelism using optimized sequential tasks.

CONCLUSION AND FURTHER WORK
In summary, we have presented the Gaspard2 frame-
work that generates OpenMP code based on an MDE ap-
proach. All the transformations have been implemented
as an Eclipse plugin. The results show that letting Gas-
pard2 manage the parallelism using optimized tasks on
sequential part is the right way to use the framework.
This method permits to generate code with performances
closed to the optimized library. Programming at a high
abstraction level allows to be language independent and
to reuse models for different targeted language. This ap-
proach has also been tested on a conjugate gradient solv-
ing Maxwell equation and the acceleration is promising.

Several further works can be extracted from this ap-
proach. The first one is to optimize the generated
OpenMP code to provide a better data locality. The use
of private arrays instead of shared arrays should improve
the use of cache and raise performance. As the multi-
core processors are widely widespread, the second work
which should be carried out is to optimized code for
multi-core architecture which is not a classical SMP ar-
chitecture since multi-core architectures share more re-
sources as cache memory level. The last task is to target
new hardware architectures such as the Graphical Pro-
cessing Units which are a special kind of shared memory
architecture, and the distributed memory architecture us-
ing MPI to manage communications.

REFERENCES

[1] Adhianto, L., Chapman, B., Lancaster, D., and Wolton, I. (2000).
Tools for OpenMP Application Development: The POST Project.
Concurrency: Practice and Experience, 12:1177–1191.

[2] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessn, J.-W.,
Ryu, S., Jr., G. L. S., and Tobin-Hochstadt, S. (2007). The Fortress
Language Specification Version 1.0 Beta. Technical report, Sun Mi-
crosystems, Inc.

[3] Bastoul, C. (2004). Code generation in the polyhedral model is
easier than you think. In PACT’13 IEEE International Conference
on Parallel Architecture and Compilation Techniques, pages 7–16,
Juan-les-Pins.

[4] Ben Atitallah, R., Boulet, P., Cuccuru, A., Dekeyser, J.-L., Honoré,
A., Labbani, O., Le Beux, S., Marquet, P., Piel, E., Taillard, J., and
Yu, H. (2007). Gaspard2 uml profile documentation. Technical
Report 0342, INRIA.

[5] Boulet, P. (2007). Array-OL revisited, multidimensional intensive
signal processing specification. Research Report RR-6113, INRIA.

[6] Boulet, P., Marquet, P., Piel, E., and Taillard, J. (2007). Repetitive
Allocation Modeling with MARTE. In Forum on specification and
design languages (FDL’07), Barcelona, Spain. Invited Paper.

[Chunky Loop Generator] Chunky Loop Generator. CLooG home
page. http://www.cloog.org.

[7] eclipse.org (2005). Eclipse. http://www.eclipse.org.

[8] Favre, J.-M. (2005). Foundations of model (driven) (reverse)
engineering : Models – episode i: Stories of the fidus papyrus
and of the solarus. In Bezivin, J. and Heckel, R., editors, Lan-
guage Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany.
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany.

[9] Goto, K. and van de Geijn, R. (2002). On Reducing TLB Misses
in Matrix Multiplication. Technical Report TR-2002-55, The Uni-
versity of Texas at Austin, Departement of Computer Sciences.
FLAME Working Note #9.

[10] Ierotheou, C. S., Jin, H., Matthews, G., Johnson, S. P., and Hood,
R. (2005). Generating OpenMP code using an interactive paral-
lelization environment. Parallel Computing, 31(10-12):999–1012.

[11] Jin, H., Frumkin, M., and Yan, J. (2000). Automatic Generation
of OpenMP Directives and Its Application to Computational Fluid
Dynamics Codes. pages 440–456.

[12] Jutta Degener (1995). Ansi c yacc grammar. URL: http://
www.lysator.liu.se/c/ANSI-C-grammar-y.html.

[13] Krawezik, G. and Capello, F. (2003). Performance comparison
of MPI and three OpenMP programming styles on shared memory
multiprocessors. In SPAA ’03: Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures, pages
118–127, New York, NY, USA. ACM.

[14] Object Management Group, Inc., editor (2004). UML 2 Su-
perstructure (Available Specification). http://www.omg.org/
cgi-bin/doc?ptc/2004-10-02.

[15] Object Management Group, Inc. (2005a). MOF Query /
Views / Transformations. http://www.omg.org/docs/ptc/
05-11-01.pdf. OMG paper.

[16] Object Management Group, Inc., editor (2005b). UML Pro-
file for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE) RFP. http://www.omg.org/cgi-bin/
doc?realtime/2005-02-06.

[17] OpenMP Architecture Review Board (2007). OpenMP Applica-
tion Program Interface Draft 3.0.

[18] Planet MDE (2007). Model Driven Engineering. http://
planetmde.org/.

[19] ProMarte partners (2007). UML Profile for MARTE,
Beta 1. http://www.omg.org/cgi-bin/doc?ptc/
2007-08-04.

[20] SmartQVT (2007). A QVT implementation.

[21] WEST Team LIFL, Lille, France (2005). Graphical Array Spec-
ification for Parallel and Distributed Computing (GASPARD-2).
http://www.lifl.fr/west/gaspard/.

AUTHOR BIOGRAPHIES
JULIEN TAILLARD is a PhD student on computer
science. His research interest are models and high
performance computing.

FRÉDÉRIC GUYOMARC’H is assistant professor
in University of Rennes and currently spends one year
as researcher at the INRIA Lille - Nord Europe. He is
interested in Linear Algebra and parallel algorithms.

JEAN-LUC DEKEYSER is professor in the Computer
Science department at the University of Lille. He is also
the scientific leader of the DaRT project at INRIA Lille
- Nord Europe and the WEST team at LIFL (Laboratoire
d’Informatique Fondamentale de Lille).

