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ABSTRACT

One of the most critical issues in parallel computing
is the efficient distribution of a workload and data
(workload balancing) amongst networked processors in
multiprocessor and multicomputer systems to achieve
optimal performance. Vast large scale scientific com-
puting, such as numerical and Digital Signal Processing
(DSP) problems have the nested loops as the main
parallelized code segment. The main concern in par-
titioning the iteration space is the trade off between
load balance, data locality, and minimizing scheduling
overheads. Therefore, it is important to study and
implement efficient decomposition techniques, which
play an important role in achieving optimal performance
and efficient use of multiprocessor and multicomputer
systems. In this work, we focus on static decomposition
of perfect triangular iteration space to achieve load
balancing across given processors in a homogenous
system. This paper introduces an intuitive near-optimal
partitioning approach to triangular iteration space of a
loop nest along the outermost loop index. Furthermore,
the obtained partitions thus consist of contiguous non-
overlapping parts which preserve data locality.

INTRODUCTION

Parallel computing is an efficient technique used to
achieve high performance and efficient use of multi-
processor and multicomputer systems which speedup
many applications over sequential processing on a single
processor. The major goal of parallelization is to min-
imize the elapsed time (ie., overall computation time)
by distributing the computation workload amongst the
available processors evenly. This distribution can be
done automatically by compilers (Chaundhary et al.,
1996; Haghighat and Polychronopoulos, 1996; Hudak
and Abraham, 1990; Jialin, 1998; Petkov et al., 2002), or
manually by programmers using compiler directives and

other different decomposition programming techniques
(Fahringer, 1998; Hancock et al., 2000b; Kejariwal et al.,
2005; Li et al., 2000; Sakellariou, 1996).

Significant amount of applications such as numerical,
large scale scientific problems, Digital Signal Process-
ing (DSP) (Li et al., 2000), computer vision, high-
definition television medical imaging, remote sensing
and many cryptographic algorithms, such as unchained
Skipijak and DES (Petkov et al., 2002), are consid-
ered to be multi-dimensional problems. It is gener-
ally agreed by researchers that most of the computa-
tion time is spent in loops, which can be single (one-
dimensional) or nested ones (multidimensional). In the
case of nested loops, the iteration space (number of iter-
ations of the loop body or workload) of these loops can
be of constant, or iteratively either increasing or decreas-
ing size. Thus, nested loops (loop nest) are the most im-
portant portion of these applications. Therefore, most
researchers pay much of their attention to loop paral-
lelization (D’Hollander, 1992; Chaundhary et al., 1996;
Haghighat and Polychronopoulos, 1996; Hancock et al.,
2000b; Hudak and Abraham, 1990; Jialin, 1998; Kejari-
wal et al., 2004, 2005; Li et al., 2000; Petkov et al., 2002;
Polychronopoulos et al., 1986; Sakellariou, 1996; Xue
et al., 2005).

Efficient parallel execution of these applications re-
quires efficient partitioning and mapping of the itera-
tion spaces of these nested loops across available proces-
sors to achieve perfect load balance. Therefore, it is
important to study effective mapping techniques to gain
significant speedup from parallelization. Thus, map-
ping of loop nests have received extensive attention in
literature; mapping of loop nests with rectangular it-
eration spaces has received coverage in (D’Hollander,
1992; Polychronopoulos et al., 1986), whereas partition-
ing of loop nests with non-rectangular iteration space
has been covered in (Haghighat and Polychronopoulos,
1996; Kejariwal et al., 2005; Sakellariou, 1996). How-
ever, (Haghighat and Polychronopoulos, 1996; Sakellar-
iou, 1996) do not partition the iteration space uniformly
across different processors and have several limitations,
such as trade-off between parallelism and data locality.
Furthermore, these approaches do not address the prob-
lem of partitioning iteration spaces with variable densi-
ties, i.e., loops with non-constant strides. Whereas in
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(Kejariwal et al., 2005), they address the distribution of
iteration spaces with variable densities based on geomet-
ric approach for computing the iteration space before
mapping.

Based on whether the workload is distributed before
or during run-time, loop partitioning can be classified
as static, (where, usually partitioning is the most im-
portant aspect) or dynamic (Hancock at al., 2000a; Han-
cock et al., 2000b) (where, usually scheduling is the most
important aspect), respectively. It should be noted that
dynamic scheduling techniques may require additional
communication and (runtime) overheads to achieve the
load balanc. Furthermore, the static load balancing on
heterogeneous systems, where the processors have dif-
ferent speeds and capacities is discussed in (Beaumont
et al., 2002).

This paper focuses on static partitioning of loop nest
with perfect triangular iteration space in homogenous
platforms. It introduces an approximation–based ap-
proach that partitions the iteration space along the axis
corresponding to the index of the outermost loop to
achieve near optimal load balancing. The analytical and
experimental results show that the proposed approach
competes the best known techniques by its simplicity.
Furthermore, the partition thus obtained consists of con-
tiguous and disjoint subsets, which facilitates exploita-
tion of data locality.

The rest of this paper is organized as follows: The
next section presents a background relevant to the loop
nest iteration space, partitioning problem, the terminol-
ogy, notions, and definitions used in this paper. There-
after, we introduce a new approximation–based near op-
timal partitioning approach to perfect triangular iteration
space (ANOP). Next to that section, evaluation and ex-
perimental results are presented. Finally, we conclude
and propose directions for future research.

BACKGROUND

In some applications, the workload balancing of the iter-
ation space is primitive. This can be achieved by divid-
ing the iteration space among P processors evenly into
P parallel tasks (possibly into embarrassingly or trivially
parallel tasks i.e., tasks that can be done independently
of any other computation, without any communication
among them). In other words, the load balance can be
achieved by the decomposition of the iteration space into
a collection of equivalent disjoint subsets (parts) of the
iteration space, whose union is all of the iteration space
(Scott et al., 2005). To illustrate this definition, consider
a very simple summation example.

A =
N∑

i=1

ai

This kind of operation is called reduction; it reduces
the vector (a1, a2, . . . , aN ) to the scalar A. Assume for

simplicity that P divides N (P |N ) i.e., N is an integer
multiple, c, of P processors: N = c.P . Then we can di-
vide the reduction operation into P disjoints partial sums:

Ak =
ck∑

i=(k−1)c+1

ai, for k = 1 . . . P, Then (1)

A =
P∑

k=1

Ak (2)

Considering Equation (1) and (2), we have managed to
create P embarrassingly parallel tasks, having c = N/P
addition operations (workload) to do on c data points.

Similarly, one can use this simple decomposition tech-
nique of the workload of loop nests having a rectangu-
lar structure. Such loop nests and their iteration spaces
can be represented by the pseudocode and its representa-
tion as a polytope in Figure 1(a). This geometric shape
approach i.e., polytope representation, which has been
used often since the early years of Lamport’s hyperplane
method (Lamport, 1974), allows us to deal with the prob-
lem from a geometric point of view hoping to provide
a clearer understanding. Partitioning an iteration space
along an axis corresponding to the outermost loop can
achieve a perfect workload balance. More detailed dis-
cussion on rectangular loop partitioning techniques can
be found in (D’Hollander, 1992; Polychronopoulos et al.,
1986; Sakellariou, 1996).

However, those simple decomposition approaches in
parallelizing cannot lead to workload balancing in many
problems containing non-rectangular nested loops, such
as triangular loop nests Figure 1(b). Vast number of tri-
angular loop nests can be found in some matrix opera-
tions, for example, adding lower/upper triangular matri-
ces, LU factorization problems, and prime numbers dis-
covery.

Triangular Loop Nests
Triangular loop nests (or triangular iteration space)
means a loop nest consisting of an outer loop and an in-
ner loop having bounds dependent on the index of the
outer loop. Moreover, the operation(s) in the inner loop
can be done independently of all others. Such triangular
loop nests and their iteration spaces can be represented
by the pseudocode and its representation as a polytope
in Figure 1(b) (Haghighat and Polychronopoulos, 1996;
Kejariwal et al., 2005; Sakellariou, 1996), where dots in-
dicate the number of iterations of the inner loop.

It should be noted that the operation(s) in the inner
loop can be as simple as shown in Figure 1(b), which
adds two lower triangular matrices, constant sequence of
operations or a multidimensional/multilevel independent
nested loops with constant iteration spaces i.e., invariant
iterator (Kejariwal et al., 2005).



for  i = 1, N
for  j = 1, N

(independent operations)
(eg., C[i,j]=A[i,j]+B[i,j])

enddo
enddo

for  i = 1, N
for  j = 1,  i

(Independent operations)
( e.g., C[i,j]=A[i,j]+B[i,j])

enddo
enddo

(a) Rectangular (b) Triangular

j j

i i

Figure 1: An Example to Illustrate Iteration Space of
Loop Nests (a) Rectangular (b) Triangular

It is known that the total workload W (loop itera-
tions) of such triangular loop nest shown in Figure 1(b) is
equivalent to the sigma notation in Equation (3), where c
represents the constant number of operations in the inner
loop body (which can be assumed 1 for simplicity), and
l and u are the lower and upper bounds of the outermost
loop (i.e., along the i axis), respectively.

W =
u=N∑

i=l=1

i∑

j=1

c = c

N∑

i=1

i = c
N(N + 1)

2
(3)

Detailed work on nested loops and computing loop it-
erations can be found in (Sakellariou, 1996).

Static Load Partitioning and Load Balancing
Partitioning the workload amongst processors of a mul-
tiprocessors or a multicomputer system plays a critical
role in parallel processing. One of the requirements for
decomposition is that the workload to be balanced across
all the processors. If the work is not distributed equally,
then one processor may end up taking longer time than
the others. Since we are doing a cooperative project, the
overall job cannot be accomplished until the slowest sub-
task is finished. Thus, Workload balancing is one of the
critical issues and goals which plays an important role in
parallel computing. Efficient and perfect distribution of
the workload will enable to achieve this goal, and conse-
quently will affect the overall performance and the effi-
ciency of the parallel processing. The author in (Sakel-
lariou, 1996) discusses the necessary conditions for par-
titioning a loop nest into equal workload. It should be

noted that this work discusses static workload partition-
ing on homogenous systems, where the processors have
equal speeds and capacities.

Assume that a set of P parallel tasks (indexed by
k = 1, . . . , P ), executes its assigned workload Wk

in an amount of time tk. Furthermore, assuming that
W ′

k represents the set of those operations whose work-
load is Wk, then W ′ = ∪p

k=1W
′
k and, for any two sub-

sets, W ′
i ,W

′
j , 1 ≤ i, j,≤ P, i 6= j, it must be the case

that W ′
i ∩ W ′j = θ. Consequently, it is clear that

W =
∑p

k=1 Wk.

In (Scott et al., 2005) they define the average execution
time and the load balance in term of time. Since we rarely
predict the exact execution time in advance which is al-
most a factor of the workload in homogenous platform
(i.e., tk = cWk), whereas we can frequently predict the
workload in advance, we can redefine the average work-
load:

ave{Wk : 1 ≤ k ≤ P} =
1
P

P∑

k=1

Wk

Furthermore, one can define the load balance β, result-
ing from a predetermined decomposition strategy, to be
the ratio of the average workload to the maximum work-
load (i.e., to the biggest task):

β =
ave{Wk : 1 ≤ k ≤ P}
max{Wk : 1 ≤ k ≤ P} (4)

Therefore; a set of tasks is said to be load balanced if β
is closed to one. The optimal (perfect) load balance Wopt

is achieved if, for all k, 1 ≤ k ≤ P ,

Wk =
W

P
= Wopt (5)

in this case, β equals one.

On the other hand, inefficient distribution leads to load
imbalance D. Whenever there is a process k for which
the difference or deviation Dk = Wk−W/p is non-zero,
then the workload assigned to k-th processor exhibits an
imbalance equal to Dk. Negative value of Dk means that
k-th processor is assigned less workload than the average
share, while positive value of Dk indicates that processor
k is assigned more workload than the average workload
and can be considered ‘overloaded’. As a result of this
overload, the latter processor determines the overall par-
allel computation time. Consequently, the exhibited load
imbalance, D, resulting from a given distribution of the
workload W amongst P processors (Sakellariou, 1996),
given by

D = max
1≤k≤p

(Dk) = max
1≤k≤p

(Wk − W

p
) = Wmax − W

p
(6)



In order to assess the impact of the load imbalance
D on the overall parallel elapsed time, Sakellariou in
(Sakellariou, 1996) introduces a relative load imbalance
DR:

DR =
D

Wmax
=

Wmax − W
P

Wmax
= 1− W

PWmax
(7)

It is clear that DR takes values in the interval [0, 1 −
1/p]. Values close to zero denote perfect load balance
and a closed to linear-speedup is obtained. Whereas,
non-zero values denote load imbalance, values closed to
1 − 1/p denote highly imbalanced workload decompo-
sition, and no significant speedup from parallelization
can be expected. Thus, in order to increase the gains
from parallelization, the workload requires distribution
of the workload as evenly as possible. Therefore, we
must search for a strategy for mapping the workload such
that the relative load imbalance will be close to zero, and
the load balance β will be close to one.

In order to achieve static workload balance in a ho-
mogenous architecture, several approaches were intro-
duced in the literature. The most common approaches
for static loop partitioning on homogenous systems are:

• Block Partitioning (BP) (Kruskal and Weiss, 1985):
A simple way to distribute the iteration space (work-
load) of a single loop or a rectangular loop nest is
block partitioning BP. Assume that P is the number
of processors and N is the iteration determined by
the outer loop, where (P |N ), one can gain perfect
workload partitioning using this technique. Block
partitioning distributes contiguous equal iterations
onto processors in a consecutive manner, which in
turn preserve data locality. Thus, Processor 1 exe-
cutes iterations 1 through N/P . Process 2 executes
iterations N/P + 1 through 2N/P . In general the
k-th processor, for all k, 1 ≤ k ≤ P executes itera-
tions ((k − 1)N/P + 1) through (kN/P ).

• Cyclic Partitioning (CP): The second common dis-
tribution approach that can be used to distribute loop
workload is called cyclic partitioning CP or stride
mapping. Stride technique is a widely used tech-
nique, to decompose the loop iterations as evenly as
possible with each process being assigned a fixed
number of iterations of the outer loop in a round
robin fashion; process 1 executes iterations 1, P +1,
2P + 1,.., process 2 executes iterations 2, P+2,
2P+2, . . . . In general, the k-th processor, for all
k, 1 ≤ k ≤ P executes iterations k + iP , i =
0, 1, 2, . . . , (N/P − 1). Similar to BP approach,
the partitions of a rectangular iteration space thus
obtained consist of equal workload. However, CP
generates a fragmented partition (i.e. each individ-
ual set is a collection of non-contiguous subsets).
Consequently, this approach may exhibit poor per-
formance in many applications due to false sharing

(a well known phenomenon in computer architec-
ture).

With triangular loop nest partitioning, (BP) and
(CP) approaches are no longer sufficient; These ap-
proaches may generate unequal parts. More effi-
cient approaches for partitioning triangular iteration
space consisting of independent loops are:

• Balanced Chunk Scheduling (BCS) (Haghighat and
Polychronopoulos, 1993): Unlike block and cyclic
partitioning which distribute only the iterations of
the outer loop, BCS attempts to partition the total
number of iterations of the loop nest body among
processors as evenly as possible. An example of
the latter is shown in Appendix B of (Sakellariou,
1996). However, Haghighat and Polychronopolous
restrict their discussion to double loop. Moreover,
requires predetermination of the total number of in-
dex points in the iteration space.

• Canonical Loop Partitioning (CLP) (Sakellariou,
1996): Sakellariou introduces a notion of canonical
loop nest for loop mapping. CLP assumes that the
outermost loop can be partitioned into 2Pm−1 equal
parts, where P is the number of processors, and m is
the depth of a loop nest. However, this may gener-
ate empty subsets which lead to a load imbalance.
Moreover, CLP generates a non-contiguous parti-
tion. CLP employs an enumeration-based approach
to determine the total number of index points in an
iteration space. It relies on loop normalization in
the presence of non-unit strides. However, the intro-
duction of floors and ceilings renders this approach
nonviable in practice. Furthermore, determination
of the set boundaries in CLP is very cumbersome.

• Weight-Based Partitioning WBP (Kejariwal et al.,
2005): This approach discusses the partitioning of
loop nest with N-dimensional non rectangular itera-
tion space, with variable densities following a geo-
metric approach. Based on the assumption that there
do not exists any invariant iterator, it introduces a
procedure for partitioning an iteration space. The
procedure consists of three major steps. First, it
computes a partial weight of the convex polytope
as a function of the outermost index variable. They
follow a weight-based approach for estimating the
number of index points in a polytope. Next, the
algorithm computes the total weight of the convex
polytope corresponding to loop nest. Finally, it de-
termines the breakpoints along an axis correspond-
ing to the outermost index. WBP algorithm achieves
near-optimal and contiguous partitions of an itera-
tion space.

APPROXIMATION–BASED PARTITIONING

This work focuses on a perfect loop nest of depth 2 as
shown in Figure 1(b), where the bound of the inner loop



depends on the index of the outer loop. We attempt to dis-
cover an efficient, intuitive, and simple approach to dis-
tribute total iteration space among P processors as evenly
as possible (i.e., optimizing the load balance), so that the
load balance β is maximized, and the load imbalance D
as well as the relative load imbalance DR are minimized
as a result.

For simplicity, assume that the constant c = 1 (in
Equation 3), our goal becomes equivalent to finding the
optimal workload (Equation 5) for all k, 1 ≤ k ≤ P such
that

Wk = Wopt =
W

P
=

N(N + 1)
2P

Now, Consider Figure 1(b) and the corresponding
workload in Equation (3). Partitioning such loop nest
(along the axis corresponding to the outermost loop,
where the lower bound l = 1 and the upper bound u = N
into equi-workload (Ek) across P processors, is equiva-
lent to discovering the perfect lower bound lk and the
upper bound uk of the outer loop assigned to the k-th
processor (i.e., the k-th partition), for all k, 1 ≤ k ≤ P ,
such that

|Ek − W

P
|

is minimized (Sakellariou, 1996), where

u=N∑

i=l=1

i∑

j=1

1 =
P∑

k=1

uk∑

i=lk

i∑

j=1

1 =
P∑

k=1

Wk

l1 = l = 1, up = u = N

E1 =
u1∑

i=l1

i =
u1(u1 + 1)

2
(8)

and, for all 2 ≤ k ≤ P , lk = uk−1 + 1

Ek =
uk∑

i=lk

i∑

j=1

1 =
uk(uk + 1)

2
− uk−1(uk−1 + 1)

2
(9)

Recalling that l1 = l = 1 and lk = uk−1 + 1, for all
2 ≤ k ≤ P , we can express the problem of finding the
perfect load balance as that of finding integer uk, 1 ≤
k ≤ P , such that

Ek =
uk∑

i=lk

i∑

j=1

1 ≈ W

P

Based on Equation (9), it is clear that

k∑

j=1

Ej =
uk∑

i=l1

i =
uk(uk + 1)

2

and

k

P
W =

k

P

N(N + 1)
2

,

we can formulate the following approximation equa-
tion:

k∑

j=1

Ej =
uk∑

i=l1

i =
uk(uk + 1)

2
≈ k

P
W =

k

P

N(N + 1)
2

Consequently, we obtain

u2
k + uk =

k

p
N2 +

k

p
N (10)

Assuming that the difference between the terms uk and
k
pN in Equation (10) is very small (i.e., uk ≈ k

pN ), it
has no significant impact on the equation in front of the
exponent terms (u2

k and k
pN2). Therefore, they can be

omitted from the equation, for the purpose of simplicity.
Thus, the direct solution for the k-th upper bound uk is

uk = N

√
k

p

Clearly, it appears that integer solutions for uk are not
common; thus rounding uk to nearest integer, the formula
becomes:

uk = round(N

√
k

p
) (11)

In the following section, we introduce an example us-
ing this approach with the gained analytical and experi-
mental results.

EVALUATION AND EXPERIMENTAL RESULTS

To illustrate and evaluate the proposed partitioning ap-
proach, consider the code segment shown in Figure 1(b)
for N = 800, which adds two upper triangular matri-
ces (800x800 matrices). A similar example was pro-
vided in (Sakellariou, 1996)(sec. 2.3.1.1), to illus-
trate Balanced Chunk Scheduling originally approached
in (Haghighat and Polychronopoulos, 1996). In order to
partition the iteration space along the outer loop (i loop)
across 8 processors, the iterations are distributed us-
ing the proposed approach following Equation (11). As
shown in Table 1, processor 1 executes iteration l1 = 1
through u1 = 283 , processor 2 executes iterations 284
through 400, and so on. Also, the table shows the corre-
sponding workload Ek using Equations 8 and 9, the load
deviation assigned to the k-th processor (Dk = Ek−W

P ),



Table 1: Partitioning Loop Nest (for N = 800) Across 8
Processors, Corresponding Workload Ek, Workload De-
viation Dk, and Dk/Emax

Iteration Distribution
Pk lk − uk Ek Dk D′

k

1 1-283 40186 136 0.0034
2 284-400 40014 -36 -0.0009
3 401-490 40095 45 0.0011
4 491-566 40166 116 0.0029
5 567-632 39567 -483 -0.0119
6 633-693 40443 393 0.0097
7 694-748 39655 -395 -0.0098
8 749-800 40274 224 0.0055

and the ratio of the k-th workload deviation to the maxi-
mum workload D′

k (where D′
k = Dk

Emax
).

As a result of this distribution, the achieved average
workload is equal to the perfect workload W

P = 40050,
and the maximum assigned workload Wmax = W6 =
40443. Consequently, the exhibited load balance β =
0.994438 (equation 4) is close to 1, which indicates
that the near-optimal partitioning of the workload W
amongst P processors is achieved.

Similarly, it is clear that the resulting load imbalance
is equal to (D = 393), according to Equation 6 and the
relative load imbalance DR using Equation 7 is equal to
(0.0097), which can be considered close to zero.

It should be noted that when implementing our ap-
proach in the provided example in (Haghighat and Poly-
chronopoulos, 1993) (for Balanced Chunk Scheduling
BCS approach), as well as in the provided case study
in (Kejariwal et al., 2005) for Weight-Based Partitioning
WBP approach, it obtains same results.

In order to illustrate the Weight-Based Partitioning
WBP technique for a triangular non-uniform iteration
space (Kejariwal et al., 2005), they consider the well
known Sieve of Eratosthenes (TSoE) algorithm that iden-
tifies all prime numbers up to a given number M . The
following shows the kernel (loop nest ) of the (TSoE) for
N =

√
M :

doall i = 3, N, 2
doall j = i, M, 2*i

LOOP BODY
end doall

end doall

To distribute the workload amongst P processors ac-
cording to the WBP, we have to follow several steps:
begin with checking the existence of an invariant itera-
tor. If exists, then determine a partial weight of the con-
vex polytope corresponding to the iteration space using
a geometric approach. Next, determine the total weight
of the convex polytope. Finally, the breakpoints (i.e.,

bounds) for the partitions can be determined. Table 2,
shows a comparison of the determined upper bounds (uk,
for 1 ≤ k ≤ P ) (before rounding the results into integer
numbers for comparison purpose) using WBP and our
proposed (ANOP) mapping approaches for M = 10000
and N = 32 on different number of processors P .

Table 2: The Determined Upper Bounds (uk) for Parti-
tioning Loop Nest (of N = 32) Across 2 Processors, 3
Processors, and 4 Processors

Determined Upper Bounds (uk)
P = 2

k ANOP WBP
1 22.63 22.66
2 32.00 32.00

P = 3
k ANOP WBP
1 18.48 18.57
2 26.13 26.14
3 32.00 32.00

P = 4
k ANOP WBP
1 16.00 16.13
2 22.63 22.67
3 27.71 27.72
4 32.00 32.00

The results of the provided examples show that the
obtained partitions using our ANOP, the BCS, and the
WBP mapping approaches are almost the same. Thus,
we can expect equivalent performance of these mapping
approaches and better performance than the BP and the
CP techniques.

To analyze and evaluate the complexity of parallel
computing, a number of performance metrics have been
used over the years. The most common being elapsed
time, speedup, and efficiency. The elapsed time (parallel
runtime), TP , is the time elapsed from the start of par-
allel computation to the moment when the last processor
finishes execution. Beside workload W (problem size),
it depends on the number of processors, P , the archi-
tecture of the parallel computing platform, and the al-
gorithm. Therefore, the parallel runtime is measured by
counting computational time and various classes of over-
heads: unparallelised code, parallel start-up, synchro-
nization, load imbalance, and communication (routing)
overheads (Sakellariou, 1996). The speedup, S, is de-
fined as the ratio of the time taken to solve a problem on
a single processor, TS , using the best known version of a
program to the time required to solve the same problem
on a set of P parallel processors TS/TP . Finally, effi-
ciency is defined as the ratio of of speedup to the number
of processors S/P .

In order to evaluate the performance gains of the parti-
tioning approach introduced in this work, several experi-



ments have been conducted. Our goal has been to justify
and assess the effectiveness of the load balance achieved
by the proposed approach, and to justify the theoretical
results.

In essence, three mapping techniques have been eval-
uated; namely Cyclic Partitioning CP, Block Partition-
ing, and our ANOP technique. The benchmark used
in our experiments contains a loop nest shown in Fig-
ure 1(b) (for N = 300000). These experiments were
implemented using the Java Parallel Virtual Machine
(JPVM) (Ferrari, 1997), which is an explicit message–
passing based parallel programming interface library and
similar to the well known (PVM) library. Furthermore,
the experiments were carried out on a platform that con-
sists of 8 personal computers (PC’s). These computers
were of 3000 Mhz Pentium 4 processors with 512 MB
of DDR2-RAM and each runs its own Windows XP op-
erating system. The nodes were interconnected using
100Mbps Ethernet local area network (LAN).

The experiments were run several times on different
number of computers. Figure 2 shows the average to-
tal parallel computational time (elapsed time) of the loop
nest (for N = 300000) on single, 2, 4, 6, and 8 com-
puters. The figure depicts the performance of the three
tested mapping approaches. It is clear that the proposed
approach ANOP performs better than the BP and CP ap-
proaches.
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Figure 2: Execution Time by Different Partitioning Ap-
proaches and Number of Processors

Furthermore, Figure 3 reveals the speedup obtained by
increasing number of processors by different approaches.
It is clear that the ANOP achieves linear speedup and per-
forms better than the other techniques. Though there is
no interprocess communication and synchronization dur-
ing runtime of the used benchmark program, the speedup
is significantly lower than the number of processors,
which is obvious. This can be related to the communica-
tion overhead caused by the used network platform. On
the other hand, these figures show the impact of the load
imbalance overhead, when using the BP and the CP tech-
niques, on the elapsed time and speedup.
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Figure 3: Speedup by Different Partitioning Approaches
and Number of Processors

CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel static simple intu-
itive approach for partitioning the iteration space of a per-
fect triangular loop nest (double loop nest) for homoge-
nous environment of processors. We partition an iteration
space along an axis corresponding to the outermost loop
among processors and achieve a near–optimal partition-
ing. The partition thus obtained consists of contiguous
and disjoint subsets, which facilitates exploitation of data
locality. Moreover, the proposed approach can be easily
implemented: unlike the other near optimal studied tech-
niques, it does not need precomputation of the workload;
a near optimal partitioning can be achieved by determin-
ing the lower and upper bounds (of the outermost loop
index for each processor to carry out) as a function of the
processor’s number, total number of involved processors,
and the upper bound of the original outermost loop.

The analytical results show that, using the proposed
approach, we can achieve near optimal load balance and
can minimize the load imbalance in parallel processing
of a perfect triangular loop nest. Furthermore, the con-
ducted experiments assess and justify the analytical re-
sults. The experimental results show the impact of the
load imbalance on the elapsed time and the speedup
achieved by different approaches.

As a future work, we would like to extend our ap-
proach to partition iteration space dynamically in a het-
erogenous environment.
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