

VIRCONEL: A NEW EMULATION ENVIRONMENT FOR EXPERIMENTS
WITH NETWORKED IT SYSTEMS

Yacine Benchaïb and Artur Hecker

Department of Computer Science and Networking
TELECOM ParisTech (ENST)

37-39, rue Dareau, 75014 Paris, France
E-mail: {benchaib, hecker}@enst.fr

KEYWORDS
Modeling, Simulation and Evaluation Techniques ; Grid
and Cluster Computing.

ABSTRACT

In this paper we present VIRCONEL, a new, open-
source emulation environment for experiments with and
evaluation of networked IT systems. Based on previous
open-source projects, VIRCONEL proposes a graphical
modeling interface with node template support, entity
cloning, IP configuration auto-completion and an easy
scenario definition with label-based multiple role
assignment and local script execution on virtual
machines. Moreover, VIRCONEL has a graphical
interface for the control of the deployed virtual network,
allowing in particular one click logins, monitoring and
value recording, as well as link and node fault injection.
Most importantly, VIRCONEL easily installs on typical
PC hardware and features explicit support for multiple
physical hosts, thus providing a better scaling. Multiple
physical hosts are seamlessly supported both in the
virtual network design and operation phases.

INTRODUCTION

The evaluation of large, networked IT systems often
raises questions with regard to the best evaluation
environment. This is a known issue in the evaluation of
performance, robustness and assurance properties of
distributed systems and applications, new distributed
maintenance algorithms, middleware architectures, P2P
proposals, etc. (Jiang and Xu 2003). The problem is that
formal approaches are either very difficult to apply or
need certain assumptions that are difficult to verify in
practice. The alternative is the experimental evaluation.
Real testbeds are attractive because they are often more
representative than other experimental evaluations.
However, they inflict a high administrative burden
(deployment, maintenance, operational effort). In
practice, this results in prohibitive limitations of
evaluable system sizes. On the other hand, classic
simulation techniques can easily deal with thousands of
nodes. Yet, they impose a controversial tradeoff
between precision, complexity and control (Bavier et
al., 2006). When left at the consideration of the author
alone, this deserves doubts with respect to the
trustworthiness of the results (Pawlikowski, 2002).

Emulation using virtual networks and virtual machines
represents an interesting alternative to the experimental
evaluation techniques (Ruth et al. 2005). Note that in
this paper, we do not distinguish between different
virtualization technologies and use the terms
virtualization and emulation in their broad sense. See
(Nanda and Chiueh, 2005) for background details.
Essentially using the same software as real testbeds but
in virtual execution environments, emulation is very
close to real, at least regarding local node behavior.
Differences are in the performance and capacities of
virtual nodes, especially when several virtual machines
share one physical host. More importantly, there can be
substantial differences in the link behavior. This is
essentially comparable to simulation issues: e.g.
accepted models are necessary to simulate a wireless
link. Still, emulation can represent an attractive
alternative to real testbeds and simulations. First,
emulation by virtualization features binary compatibility
with the real testbed and therefore, unlike simulations,
does not need an additional model programming. This
also permits for closed-code execution as emulated
instances, thus allowing evaluation of commercial
software whose behavior might be not completely
known. Besides, since model programming is not
necessary, and the software to be evaluated can be used
directly, this avoids a potential error or imprecision
source, thus yielding results closer to real than the
simulation. Second, emulation can be used to evaluate
networked IT environments composed of several
hundreds of nodes with a relatively low deployment and
operations effort in comparison to a full testbed, and this
in a fully controlled environment. However, to do this,
we need to supply the evaluator with a toolbox
permitting to easily set up and control different virtual
environments spanning over several real hosts.
In this paper, we present the design and implementation
of Virtual Computer Network Lab (VIRCONEL), an
open-source, easy-to-use, multi-host, networked
emulation environment for the evaluation of large,
networked IT systems with the help of several off-the-
shelf PCs. VIRCONEL features a very easy installation
method and explicitly supports several physical hosts
for better scalability. VIRCONEL features graphical
interfaces for the design of the system, emulated service
deployment, scenario definition and emulation control.
In operation, VIRCONEL can record typical parameters
and the data as requested from the emulated network.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

The rest of the paper is organized as follows. In the next
section, we present our rationale and the resulting
requirements. We then present previous work in this
area and explain the motivation for the design and
development of VIRCONEL. Then, we explain its
architecture and justify some of our decisions by
providing insights on the related development effort.
Next, we present the possibilities already provided for
emulated system design, control and measurement.
After that, we demonstrate the resource usage of
VIRCONEL when running typical scenarii on our
hardware and try to estimate its limits. Finally, we give
an outlook to our future work.

RATIONALE AND REQUIREMENTS

The main drive for this work comes from the need for
the setup and evaluation of large, distributed IT systems
within the scope of the ICT FP6 DESEREC project. The
DESEREC testbed needs to be capable of hosting
different types of networked enterprise IT systems,
often running complex, commercial closed-source
software. Typical services within such systems include
VoIP sessions between different locations, Web-based
access to SQL/LDAP databases etc., provided over
several LANs connected by routers over VPNs and the
Internet and completed by obligatory security, reliability
and management subsystems.
In practice, this translates to very close to real testbed of
potentially several hundreds of nodes and a strong
accent on the local applications and node behavior, i.e.
being capable of running common open and commercial
software under close-to-real constraints (Unix-like OS,
TCP/IP plus NAT+DHCP, firewalls, NAS and AAA,
etc.). Besides, to evaluate system behavior and
resilience faced with node and communication
breakdowns, we needed a possibility for a scenario
generation, including failure scenarios. Finally, to allow
collaborative partner work, the ease of installation of the
emulation environment per se and the support for the
interconnection of several local environments are
considered important.
In summary, we distilled our wish list for an emulation
package for large IT system evaluation to the following
concrete MUST requirements:
-- Open-source emulation software: the emulation
toolbox itself should not involve complicated licensing
issues and be based on open-source software;
-- Relative ease of installation: complex installations on
real hosts would be unattractive since the goal is to
install the testbed and not to maintain the physical host;
-- Support of several physical hosts: one physical host
usually cannot run more than several dozens of virtual
machines. To support scaling to several hundreds of
emulated nodes, we therefore need a possibility to easily
support multiple, networked physical hosts. This
support also needs to be integrated with the modeling of
the network, i.e. it should be possible to assign virtual
nodes to physical hosts;
-- Ease of scenario definition: the modeling of the
emulated system and services upon it should be easy,

preferably supported by an easy-to-use graphical tool. It
should be possible to start the defined emulated network
upon the available physical hosts;
-- Binary compatibility with the existing software: it
should be possible to evaluate the existing software
without understanding how it works (Ruth et al., 2005).
As explained before, this has a double advantage of
permitting direct usage of the existing software, e.g.
closed source. What is more, it significantly reduces the
modeling time, since one does not need to model local
node behavior. This removes a potential error source.
-- Running emulation monitoring and control: it should
be possible to influence a running emulation by
provoking node and communication breakdowns,
starting and stopping software on virtual machines,
reconfiguring interfaces, etc. On the other hand, it
should be possible to see what is happening within the
emulation and, in particular, capture and record values
of different interesting variables, limiting the
perturbation of the emulated virtual reality.
In principle, our list corresponds to the requirements
stated in (Bavier et al., 2006), which mainly underlines
realism (real software, realistic conditions, real traffic)
and controllability.

RELATED WORK

Network experiments are conducted today mainly
through simulations with NS-2, OMNET++, Glomosim
or commercial tools like Opnet. As discussed above,
without a substantial additional effort, the simulation
tools do not allow direct execution of closed-source,
(e.g. commercial) software.
PL-VINI (Bavier, 2006) running over PlanetLab has
been proposed for similar purposes, but access to
PlanetLab is not always suitable.
Different “local” virtualization environments with
networking support have been proposed, including
commercial environments like VMWare and Parallels,
and open-source projects like Qemu (Bellard, 2005),
openVZ (http://openvz.org/), Xen (Barham, 2003) and
User-Mode Linux (UML) (Dike, 2006) . Besides the
previously cited survey (Nanda and Chiueh, 2005), an
up-to-date comparison of these can be found in
Wikipedia under “Comparison_of_virtual_machines”.
A substantial work has been done on server
virtualization and containment (see e.g. Padala, 2007).
However, the aim of this work is on the one hand on the
performance and high availability of any single server,
and on the hand, on the management of such servers.
We would like to place as many virtual or paravirtual
instances on any single physical host so as to make our
network emulation scale. We also need the control, but
focus on scenario control and monitoring, rather than on
the service management (patches, security updates,
user/account management, etc.), typical for real servers.
Besides, we need a tool to graphically define virtual
topologies.
Several open-source projects add virtual networking
support to virtual machines. For instance, Netkit
(http://www.netkit.org/) is a collection of shell scripts

for instantiating a virtual network of UML-based virtual
machines. VN-UML (Galan, 2004) and MLN
(http://mln.sourceforge.net/) support structured
descriptions of the network to be set up on one machine,
with MLN also supporting Xen and UML combinations.
Graphical editors emerged for such structured
descriptions, like NetGUI (Nemesio, 2006), vnumlgui
(http://pagesperso.erasme.org/michel/vnumlgui/)
producing VN-UML’s XML. Marionnet (Loddo, Saiu
2007), principally accentuating on didactics and
dedicated to teaching, adds dynamic network
reconfiguration support.
Having studied the related work, we concluded that very
interesting building blocks exist in the open-source
community. On the other hand, no proposal permitted to
fulfill all of our requirements. Especially the graphical
editors building upon VN-UML generally come close to
our requirements. However, all of them are limited to
one physical host, both in the modeling and in the
emulation execution phases. Second important point
(Bavier et al., 2006): they generally do not integrate
monitoring and control utilities. Marionnet features
support for topology changes in operation. However, it
targets education purposes and is rather committed to
realism when working with small networks, while we
would like to simplify modeling work.

DESIGN AND IMPLEMENTATION OF
VIRCONEL

Profiting from previous experiences and trying to
reduce precious development time, VIRCONEL relies
upon and extends VN-UML (Galan, 2004).
VN-UML uses UML as virtual machines. UML is in
principle a Linux kernel started in the user-space, as any
other process. It can thus be stopped and interrupted at
any time. For networking support, the VMs make use of
the Linux kernel’s ability to provide virtual network
interfaces (tun and tap devices). The interface of the
UML VM (eth0) connects to such a virtual interface of
the host Linux. By defining proper IP forwarding and/or
bridging rules, any VM can get customized network
access. To simplify the necessary configuration, VN-
UML introduces a virtual switch and a structured
definition language, which defines the interconnects of
VMs with each other and the physical host. Isolation is
possible through the use of VLANs (see Figure 1, PC1).

Figure 1: System architecture of VIRCONEL

In VIRCONEL, the VN-UML virtual switch is currently
bridged to the real network device of the host Linux in a
VLAN. If available physical hosts are interconnected by
a real network (e.g. switch, router, VPN gateway, the
Internet), the virtual network can span over these hosts,
as shown in Figure 1. Currently this is done with
limitations on topology but in principle, different
isolated virtual networks can be set up with known real
network separation measures (e.g. VLAN or VPN).
However, this is not an urgent requirement for us.
Besides, any VM can be configured with several
interfaces. An interesting point in VN-UML is the
explicit presence of an additional interface, used for
direct communications with the hosting physical
machine. We call this interface “management interface”.
In VIRCONEL, we use it for operational control,
scenario deployment, measurement traffic, etc.
The emulated machines are Linux kernels working over
a specific file on a host PC as a shared partition. By
installing software in this “partition” and preparing
different partition files, we provide VM templates. The
software installed within the latter can also be started
and controlled over the management interface.
In principle, to run an emulation, four phases are
necessary in VIRCONEL after it has been installed:
-- virtual network modeling,
-- virtual scenario definition and setup,
-- deployment of virtual entities to physical hosts, and
-- virtual network operations.
For modeling, we use a popular open-source graphical
editor called Dia that produces XML output
(http://www.gnome.org/projects/dia/). We integrated
Dia by adding a VIRCONEL-specific workbench,
permitting the choice of different typical entities
(switches, routers, hosts). VIRCONEL’s parser
processes Dia’s XML output and translates it into a VN-
UML XML input file, producing one XML file per
specified physical host as mentioned in the graphical
model. Scenario setup is described in the next section.
In the deployment phase, these files are then distributed
to and executed on the available physical hosts, as
specified in the model file. We use SSH for that.
In the operational phase, VIRCONEL starts a control
panel that displays the emulated network within one
graphical interface (developed in Tcl/Tk), permitting
scenario start, local login to every virtual machine,
activating/deacting links, etc.
This design and the reuse of the previous work have
permitted us to accomplish a first working version of
VIRCONEL in about five men-months of integration
work. In the following, we describe the usage and
features of VIRCONEL.

USAGE AND FEATURES OF VIRCONEL

Local Installation

Similarly to VN-UML, we use the Live-DVD concept
permitting a very easy local deployment on a spare
physical host. This allows concentrating on the
essential, emulation-related things.

However, since UML, unlike other virtualization
technologies, does not necessarily require host machine
changes, VIRCONEL can also be installed and executed
on an available Linux host used for other tasks.

Modeling: Virtual Topology Definition

Modeling is done within the integrated graphical editor
(Dia, slightly modified). Currently, VIRCONEL comes
with switch, router and host templates. The existing
templates, available as icons in Dia, can be positioned
on the screen and interconnected by links as necessary.
Graphical links represent emulated network links.
The provided host template comes with a variety of
typical applications, including Web server, client, SIP
instances, etc. It is possible to change the existing/to add
new VM templates at any time (and to integrate them
into the graphical tool).
To further simplify things, we explicitly support starting
and stopping processes on any operational VM from the
modeling phase on. This is used for assigning roles for
the scenario definition (see below), but also renders any
usage of the existing templates more flexible, since the
same template can be used to instantiate semantically
different VMs (e.g. a server and a client).

Setup: Scenario Definition

To assign such roles and/or configuration parameters,
we use a simple labeling technique. Designer can attach
a number of text labels to any existing basic entity.
When all labels are assigned, the designer simply
groups all labels with the original entity using Dia’s
grouping function. This attaches the labels to this
specific entity. Therefore, designer can define IP
addresses, specify which processes should be started,
etc. We also provide some support for rapid modeling,
namely IP-configuration auto-completion and simple
entity cloning. The auto-completion function can
automatically find the responsible router from the XML
topology file. Hence, attaching an IPv4 address in CIDR
to each host is sufficient. Cloning is very useful to
produce high numbers of identical hosts. Currently, it is
possible to attach a <clone=N> label to a well-defined
host in order to clone the latter N times (thus resulting
in N+1 identical entities with the same behavior). The
IP addresses of the emulated interfaces are
automatically renumbered within the subnetwork space.
The scenario per se is defined through labels, which
identify scripts to be executed on each concerned
modeled entity. More precisely, the <*-Client> and <*-
Server> labels are interpreted as parameters to a
launcher script. The latter searches and executes the
script with the same name within the targeted VM.
Thus, the scenario definition needs a machine pre-
provisioning with all required executables (template, or
copying by hand in the operational machine), various
script placements on the machine (with names
corresponding to the labels) and the definitions of

resource consumption models (e.g. period, number of
bytes to send, etc.) within the scripts.
Such scripts can be developed by the designer and are
very flexible (basically, shell script, perl, python etc.).
They permit to define any typical scenario, for instance
a number of Web clients accessing a multi-tiered Web
server with certain distributions, etc. (Padala, 2007).
Since any script and binary execution is supported on
virtual machines, this approach does not constrain the
possibilities. A list of currently supported labels with
their semantical meaning is given in Table 1 but is being
constantly worked on.

Table 1 Currently supported VIRCONEL labels
Label
*-Client Used to start a client script on the VM
*-Server Used to start a server script on the VM
Clone Clone a specified virtual machine.
IP address Define the VM’s IP address (IP/mask)

Deployment

We support multiple physical hosts in modeling, setup
and execution phases. The designer needs to assign
virtual machines to physical servers. In VIRCONEL,
this can be done by enclosing a required number of
subnets/hosts and a router into a graphical rectangle in
Dia. The designer then specifies the IP address of the
physical host as shown in Figure 2. Once these phases
are accomplished, the emulation can be started by
parsing the produced output file. This locally starts the
operational GUI, which exactly represents the whole
modeled topology hiding the physical hosts as can be
seen in Figure 3. It permits to start/stop both the
virtualization and the defined scenario and has some
other features to be described in the next phase.
Driven over this GUI, which uses SSH from the
designer host to physical hosts, VIRCONEL first
distributes the designed virtual topology within the
specified testbed and then initiates the virtual network
entities necessary to combine the subnetworks hosted on
different physical machines. The testbed is composed of
PCs, each of which is running VIRCONEL. The virtual
machines are started on the physical hosts of the
emulation platform as identified by their IP addresses.

Operation

Furthermore, the same GUI also permits to control the
operation of the emulation. It is possible to launch and
stop the defined scenario. Commands are sent over SSH
from the designer host to each VM as specified.
Second, the operation GUI features a one-click-login to
any virtual machine, which opens an SSH session from
the designer host to the virtual machine’s management
interface. This is very practical for manual error
introduction or for tests/measures and slight changes
within the operational virtual environment.

Figure 2: VIRCONEL modeling interface

Figure 3: Control of the emulated network

The management interface permits to collect various
measurements without perturbing the emulated network
traffic. Per default, VIRCONEL assesses typical data,
like overall CPU consumption and overall network
traffic on every emulated interface, and represent these
with gnuplot. Yet, more complicated measurements can
be defined in the setup phase. In principle, whatever can
be measured in the real network can be measured in
VIRCONEL. The assessed data is either sent over the
management interface to the operational GUI, or it is
stored in the virtual or physical host partition. Resource
usage measurements are also possible from the host PC.

EVALUATION RESULTS

Evaluation Testbed

The testbed on which we install VIRCONEL and run
our evalution is composed of three servers (PC), each
equipped with 4GB of RAM and a 2.6GHz QuadCore
Intel CPU. The servers are running Ubuntu Linux 7.04
Feisty Fawn, kernel version 2.6.20 patched with the
SKAS3 patch for better UML performance.

Evaluated Scenarios

We use three scenarios to evaluate VIRCONEL. The
first scenario evaluates the computational penalty
experienced by a process within the virtual machine.
We want to find answers as to how much performance
we lose per VM when running several VMs on the same
host. This gives an estimate on how many concurrent
VMs we can put on one Linux host.
We use openssl to symmetrically encrypt a 20MB
binary file. We first sample the host Linux performance
and then repeat the exact same command within the VM
with concurrent 6, 11 and 16 VMs on the same host
Linux. On our hardware, the host Linux performs this
task (measured with time) in an average time of 1.048s
with a standard deviation of 0.114 s. The VMs take an
average of 2.5s (0.447) for 6, 3.265s (0.432) for 11 and
6.702s (1.381) for 16 concurrent VMs on one physical
host respectively (standard deviation in brackets). The
results of these measurements as percentage, normalized
to fixed host performance, are shown in Figure 4.

Figure 4: Computation performance penalty per VM on

one host PC with the increasing number of VMs

We can see that at least up to 11 VMs can be used for
this computationally intense task with a reasonable and
stable penalty. For 16 VMs the results start varying too
much because of complex interactions of concurrent
processes with the task scheduling. Note that while the
performance per VM decreases, the overall performance
for at least up to 16 VMs is better than for the single
process at the host Linux: while the host Linux takes
1.0457s per file encryption, 6 VMs take only 0.42s per
file, 11 VMs take 0.296s per file and 16 VMs take 0.42s
per file. We can see that 11 concurrent VMs have the
best performance in that scenario.
In the second scenario, we use three physical hosts
connected by a real switch (100BaseT). We emulate
HTTP traffic from virtual clients (wget) to one virtual
webserver (Apache). This roughly represents a mixed
resource usage typical for a modern distributed
application. Using Unix at, HTTP client starts on all
client VMs simultaneously, sends an HTTP request to
the webserver for a hosted file of 50kB and exits
immediately. We use the topology as illustrated in
Figure 2: we use 3 host Linux PCs, with the webserver
and router being the only VMs on the host deserec2.
There are 11 concurrent HTTP clients on deserec1 (plus
router VM) and 16 HTTP clients on deserec4 (idem).
We measure the delay for a succcesfull transaction from
within the VM, i.e. the time from the start to the exit of
wget. The averaged results for physically identitical
hosts deserec1 (11 clients) and deserec4 (16 clients) in
20 experiments are illustrated in Figure 5.

Figure 5: Time for a complete execution of an emulated

HTTP transaction with 11 and 16 concurrent VMs

Third scenario is similar to the second one. We use
HTTP traffic from virtual clients to one virtual server in
the same topology (Figure 2). However, we start the
clients periodically, with the inter-process invocation
time from a uniform distribution in the interval [1s..2s],
independent for every VM. The client starts, sends an
HTTP request to the Web server for a hosted file of
50kB and exits. The concurrent process start/end
produces a considerable I/O activity.
Under these conditions, we vary the overall number of
client VMs on deserec1 and deserec4 host PCs and
measure the CPU consumption on the physical host.
The limit is reached for 27 VMs due to the frequent

process starts and stops on the concurrent VMs. In
Figure 6, we show CPU utilization on the host Linux
under the number of concurrent VMs. For scenario 3 the
increase is linear. Hence, in similar scenarios, it is
possible to maintain a ratio of about 20 VMs per
physical host.

Figure 6: CPU usage on one physical host (Y axis) with

different number of UML virtual machines (X axis)

Current VIRCONEL Limits

The usage of VN-UML and of UML technology imply
several limits. First, VIRCONEL is a Linux-only
environment, both for physical and virtual machines.
Second, if with VIRCONEL it is possible to use several
physical hosts, in practice this will reach management
limits. Also, the assignment of VMs to physical hosts is
done manually. However, the main limitation is within
the topological constraints: it is currently necessary to
specify a virtual router per physical host. For our work
in DESEREC, this is not a serious problem. But we may
consider this point in our further work.

CONCLUSION

VIRCONEL is a very easy to install and rather simple to
use emulation environment for experiments with IT
systems. Compared to the existing work, our main
contributions are the intrinsic support for multiple
physical hosts and integrated monitoring and control.
With VIRCONEL, it is interesting to combine real and
emulated entities. In that manner, resource-demanding
entities can be treated separately, while numerous small
entities can be easily cloned in the emulation.
In future we plan to improve the functionalities of
VIRCONEL, namely its monitoring capabilities, tying
these to the modeling. VIRCONEL can be freely (GPL)
downloaded from http://www.infres.enst.fr/~deserec.

ACKNOWLEDGMENTS

This work is supported in part by the EC ICT FP6
DESEREC (CN 026600, www.deserec.eu) project. The
authors are thankful to the anonymous reviewers whose
valuable remarks helped to improve this work.

REFERENCES

Barham P.; Dragovic, B.; Fraser, K.;, Hand, S.; Harris, T.; Ho,
A.; Neugebauer, R.; Pratt, I.; Warfield A. “Xen and the

Art of Virtualization”, in proc. ACM HotNets-I, ACM
Press, 2003, pp. 59-64.

Bavier, A; Feamster, N.; Huang, M.; Peterson, L.; and
Rexford, J. “In VINI Veritas: Realistic and Controlled
Network Experimentation”, in proc. ACM SIGCOMM
2006, Pisa, Italy.

Bellard, F. “Qemu, a Fast and Portable Dynamic Translator”,
in proc. FREENIX Track of USENIX 2005 Annual
Technical Conference, pp. 41-46.

Dike, J. “User Mode Linux”, Prentice-Hall, April 2006.
Galan, F.; Fernandez, D.; Ruiz, J.; Walid, O.; de Miguel, T.

“Use of Virtualization Tools in Computer Network
Laboratories”, in proc. 5th IEEE ITHET, June 2004.

Jiang, X.; Xu, D.. “vBET: a VM-Based Emulation Testbed”,
in proc. ACM SIGCOMM 2003, Karlsruhe, Germany.

Loddo, J.-V.; Saiu, L. “Status Report: Marionnet. How to
implement a Virtual Network Laboratory in Six Months
and Be Happy”, in proc. ACM ML’07, Freiburg,
Germany, October, 2007.

Nanda, S.; Chiueh, T.. “A Survey on Virtualization
Technologies,” the Research Proficiency Report, Stony
Brook, ECSL-TR-179, February 2005.

Nemesio, S. C.; de las Heras Quiros, P.; Barbero, E. M. C.;
Gonzalez, J. C. “Early Experiences with NetGUI
Laboratories”, SIIE’06, Leon, Spain, October 2006.

Padala, P.; Zhu, X.; Wang, Z.; Singhal S.; Shin, K. G.
“Performance Evaluation of Virtualization Technologies
for Server Consolidation”, HP Laboratories Technical
Report, April 2007 (available online).

Pawlikowski K.; Jeong, H.-D. J. and Lee, J-S. R. “On
Credibility of Simulation Studies Of Telecommunication
Networks”, IEEE Communications Magazine, January
2002, pp. 132-139.

Ruth, Paul; Jiang, Xuxian; Xu, Dongyan; Goasguen,
Sebastien. “Virtual Distributed Environments in a Shared
Infrastructure”, IEEE Computer, May 2005, pp. 63-69.

AUTHOR BIOGRAPHIES

YACINE BENCHAÏB holds a Master in Computer
Science from the Université d’Amiens,
France. In 2007, he joined the
networking and computer science
department of TELECOM ParisTech
(ENST), where he currently works as
research engineer. His research work
includes virtualization and network

security. Contact him under benchaib@enst.fr.

ARTUR HECKER holds a diploma in Computer

Science (Dipl.inform.) from the
University of Karlsruhe (TH),
Germany and a PhD degree in
Computer Science and Networking
from the ENST, France. He worked
as CTO of Wavestorm SAS, which he

co-founded in 2003. Since 2006, he is Associate
Professor at the INFRES department at the ENST. His
present research interests are wireless access security,
autonomous networking and security assurance of
complex systems. Dr. Hecker is actively involved in
several IST FP6 and EUREKA CELTIC research
activities. Contact him under hecker@enst.fr.

