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ABSTRACT 

Embedded hardware security has been an increasingly 
important need for many modern general and specific 
purposes electronic systems. Minute security 
algorithms with their expected low-cost and high-speed 
corresponding hardware realizations are of particular 
interest to fields such as mobile telecommunications, 
handheld computing devices, etc. In this paper, we 
analyze and evaluate the development of a cheap and 
relatively fast hardware implementation of the 
extended tiny encryption algorithm (XTEA). The 
development will start by modeling the system using 
finite state machines (FSMs) and will use Verilog 
hardware description language to describe the design. 
Minimizing the chip area will be our primary target 
rather than the construction of a multi-way massively 
parallel implementation with its expected high-speed 
and large silicon area. Many hardware design tools are 
used to try reaching the best possible optimized 
syntheses. The targeted hardware systems are the 
reconfigurable Altera’s Stratix II and Xilinx Virtex II 
Pro modern field programmable gate arrays (FPGAs). 
 
INTRODUCTION 

Security of information has become a main issue in the 
ever evolving world of small mobile devices such as 
personal digital assistants (PDAs) and cell phones. In 
such minute devices, the fight over high performance 
and low power consumption, besides security, are 
primary targets. However, a great deal of assistance in 
creating low-power and high-speed cores, comes from 
the simplicity of the selected algorithm for embedding 
as a hardware component.  

 
Many encryption algorithms are now available in the 
market (Kelsey et al. 1996), and the selection of a 
specific one is dependent on the relatively tight 
constraints in small devices. The selected algorithm 
should be small, relatively secure, with a proven 
history of overcoming possible well known attacks on 
it. The Tiny Encryption Algorithm (TEA) (Wheeler and 
Needham 1994), and hence its successor the Extended-
TEAs (XTEAs) (Needham and Wheeler 1997; Russell 

2004; Kelsey et al. 1997; Moon et al. 2002) are among the 
best choices available for the above taut requirements 
and to be implemented in the research in hand. 
 
Other requirements are still of no less important than 
the issues of performance and power consumption; 
these include the ease of modifiability, upgradeability 
and reuse of the designed security components. The 
type of hardware circuits to be used for implementing 
the developed cores, largely affects the above 
modifiability properties. Here we propose 
reconfigurable computers; more specifically field 
programmable gate arrays (FPGAs), as a possible 
solution with their famous property of programmability 
to satisfy the addressed need for modifiability. 

 
FPGAs, nowadays are important components of 
reconfigurable systems; they have shown a dramatic 
increase in their density over the last few years. For 
example, companies like Xilinx and Altera have 
enabled the production of FPGAs with several millions 
of gates, such as in Virtex-II Pro and Stratix-II FPGAs. 
The versatility of FPGAs, opened up completely new 
avenues in high-performance computing. These 
programmable hardware circuits are aided with various 
co-design tools and flexible design methodologies to 
form a powerful paradigm for computing. 

 
The traditional implementation of a function on an 
FPGA is done using logic synthesis based on VHDL, 
Verilog or a similar HDL (hardware description 
language). These discrete event simulation languages 
are rather different from languages, such as C, C++ or 
JAVA. Many FPGA implementation tools are primarily 
HDL-based and not well integrated with high-level 
software tools. Furthermore, these HDL-based IP 
(intellectual property) cores are expensive and they 
have complex licensing schemes. In the presented 
designs, the hardware implementations are carried out 
under Verilog, employing different co-design tools. 
The targeted FPGA systems are Altera Startix II and 
Xilinx Vertix II Pro. The hardware design tools 
involved in this project are Altera’s Quartus, Xilinx 
ISE, Mentor Graphics HDL Designer, Leonardo 
Spectrum, Precision Synthesis , and ModelSim. 
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THE TINY ENCRYPTION ALGORITHM 

In cryptography, the Tiny Encryption Algorithm (TEA) 
is a block cipher notable for its simplicity of 
description and implementation (typically a few lines 
of code). The cipher was initially presented by 
(Wheeler and Needham 1994).  TEA operates on 64-bit 
blocks and uses a 128-bit key. It has a Feistel structure 
with a suggested 64 rounds, typically implemented in 
pairs termed cycles. It has an extremely simple key 
schedule, mixing all of the key material in exactly the 
same way for each cycle.  

 

 
 

Figure 1. A single XTEA round with its internal 
computational constructs. The crossed square for the 

sum, crossed circle for an XOR, >> for a right shift, << 
for a left shift. 

 
XTEA is a symmetric block cipher designed to correct 
weaknesses in TEA. Like TEA, XTEA is a 64-bit block 
Feistel network with a 128-bit key and a suggested 64 
rounds. Several differences from TEA are apparent, 
including a somewhat more complex key-schedule and 
a rearrangement of the shifts, XORs and additions 
(Hong et al. 2003; Ko et al. 2004). Figure 1 show the 
block diagram of an XTEA single round. 

 

 
 

Figure 2. Block Diagram generated from the 
top model by Leonardo spectrum 

 
High-speed hardware implementations of the XTEA 
under VHDL were suggested in (Ghazzawi et al. 2006). 
The power consumption of the XTEA were studied in 
(Kelsey et al. 1996) and compared with results for the 
RC5 algorithm. 
 

XTEA HARDWARE 

In Figure 2, the block diagram of the created chip is 
shown. The 128-bit key is input through the Din pins 
entered 64 bits at a time. The same Din pins are used to 
enter the plaintext (or ciphertext in the case of 
decryption) 64-bits at a time, while Dout pins are used 
for outputting the ciphered (or plaintext in the case of 
decryption). The remaining pins are for clocking (Clk) 
and control signals, moreover, loading the key 
(Loadkey), enabling encryption or decryption (Encrypt 
or Decrypt), and resetting the system (Reset_n).  

 
The development of the XTEA core is started by 

creating a finite state machine (FSM) with four 
possible states. The system will be initially in its IDLE 
state till the control signals are received. The transition 
that takes you from the IDLE state to BUSY_KEY state 
is controlled by the external event Loadkey. The state 
BUSY_KEY is responsible for inputting the key. After 
finishing the key inputting process the system returns 
automatically to its IDLE state. The system will 
undergo a transition to its BUSY_ENC (encryption 
state) or BUSY_DEC (decryption state) according to 
the transitions controlled by the events expected on the 
Encrypt and Decrypt pins. The system continuous 
operation is done by returning to the IDLE state on 
finishing the encryption or the decryption is shown in 
Figure 3. 

 
A single XTEA round is to be repeated 32 times. A 

sequential version on the round level would mean the 
creation of circuit corresponding for a single round, 
then the output is fed-back to the circuit to become the 
input of the following round; this is to happen 32 
times. A different degree of parallelism could be 
reached if the designer decides to unroll the loop to 
construct a fully-pipelined network of rounds. In this 
paper, we show a sequential version avoiding any 
resources replication and accordingly any additional 
expected increased area, cost, and power consumption. 
In Figure 4, a circuit block diagram was obtained using 
HDL Designer from Mentor Graphics. In Figure 4, the 
feedback wires are clearly shown going from the eb1 
block to the eb2 main block. The eb2 block contains all 
the inputs and outputs, and synchronized by a master 
clock. The second block eb1 contains continuous 
assignment statements for the main functions (or core) 
of the encryption (decryption) algorithm. The output 
generated by eb1 is fed-back to eb2 synchronized by 
the master clock. 
 

As shown in Figure 1, an XTEA round 
implementation requires the construction of the 
following computational elements: 

− Addition and Subtraction modulo 32. 
− Bitwise XOR 
− Shift left and right operations 



 
 

Figure 3. Finite State Machine 
 
PERFORMANCE EVALUATION 

For the purpose of analysis we present first the results 
of testing the design using Altera’s Quartus tool, 
where we build the simulation cases graphically. From 
the performed simulation, the number of clock cycles 
needed to complete a single encryption or decryption 
process is 68 cycles (key loading 2 cycles, 
encryption/decryption 32 * 2 cycles, and wait states 2 
cycles). A pipelined version will, with no doubt, 
enhance the performance by decreasing the process 
total time, but as a quid pro quo for silicon area. 

 
 In Figure 5, we show the waveforms of testing the 
encryption process. The reset signal was activated at 
first to insure that all the registers are cleared before 
starting any operation, note that the asynchronous reset 
is active low once. After that the Loadkey control was 
activated for two clock cycles to store the selected key 
that will be used in the next process. 

 
Now, the module is ready to either encrypt or decrypt. 
One can distinguish between these two by the control 
signals provided as an input to the system. After 
engaging the Encrypt signal, the system will enter the 
BUSY_ENC state, and will finish the encryption after 
64 clock cycles. You can notice that the output is 
available at that time and that the system is returned to 
the IDLE state waiting to the next control signal to 
operate. 
 
In Figure 6, we depict the waveforms of decryption 
state transition testing. The encryption and the 
decryption processes are quite the same in architecture, 
but the decryption operates in a reverse manner on the 
data, and uses a subtractor rather than an adder. This 
test shows the transition of the state from the IDLE to 
the BUSY_DEC, the output will be available after 64 
clock cycles. 
 
In Figure 7, we show the simulation for testing the key 
loading process. In order to reduce the number of IOs 
used, the key was distributed over the Din input pins. 
Knowing the fact that the key length is 128 bits while 
the Din is only 64 bits, we need two clock cycles to 

load the key to its internal register inside the FPGA. 
This will cost using the Loadkey control driving the 
system to the BUSY_KEY state. The BUSY_KEY state 
will need two clock cycles to exit and return to the 
IDLE state again. 

 
The number of IOs needed in this project is fixed and 
can easily be calculated from the module's event list, 
this number is equal to 133 IOs. The next step of 
assessment is to map the developed design onto 
different FPGA systems comparing the use of 
resources in each case. The synthesis tools used in this 
comparison are Xilinx XST, Mentor Graphics Precision 
Synthesis RTL and physical 2004, Altera’s Quartus, 
and Leonardo Spectrum 2004. Both, Precision 
Synthesis and Leonardo Spectrum are vendor free third 
party tools developed to synthesize popular FPGAs. In 
Table 1, we show the different findings of compiling 
the developed XTEA design to Altera’s Stratix II 
FPGAs with three different sizes. In Table 2, we show 
the findings after compiling the design to Xilinx Virtix 
II Pro FPGA. The chart in Figure 8 shows clearly the 
maximum speed of 134 Mbps achieved by mapping 
our sequential small-sized design onto the Virtix II Pro 
FPGA. 

  
It is clear from the results shown in this section that the 
aim of obtaining a relatively small area has been 
achieved. The advantage of having a small design with 
a small occupied area had its impact on speed, where a 
maximum speed of 134 Mbps was achieved with the 
suggested sequential design. A similar design achieved 
only a speed of 16.8 Mbps in (Ghazzawi et al. 2006), 
but was enhanced by eliminating the large area 
occupied by the controller part and accordingly 
reducing the propagation delay and the number of 
clock cycles. The enhanced design in (Ghazzawi et al. 
2006) reached a speed of 800 Mbps; more manual 
designs where offered expecting speeds above 1 Gbps. 

 
The tiny XTEA for sure is not comparable to any of the 
powerful ciphers like the AES finalists, but it had the 
following summarized advantages: 

− Small expected hardware silicon area. 
− It is relatively secure enough with a number 

of rounds above 16. 
− Fast enough to accompany other projects. 
− Low power consumption. 

 
Based on the comparison done between various 
synthesis tools, the following is concluded: 
 

− For a small application like the development 
of the XTEA, no big improvement is gained by 
selecting one synthesis tool over the others. 

− Choosing different FPGA device from the 
same family will not affect largely the amount 
of occupied area. 

 



 
 

Figure 4. Block Diagram of the Implemented 
Sequential System 

 
Increasing the depth of investigation concerning 
accelerating the XTEA would lead us, however, to 
parallel processing including pipelining. Thus, generic 
reasoning about the parallelization of the algorithm in 
hand is a possible extension for the proposed work, 
besides investigating the correctness of various parallel 
hardware implementations. Developing correct 
hardware leads to the adoption of a formalization 
framework. Through this formal mathematical 
framework, different parallel designs could be 
generated systematically, using provably correct rules 
of refinement. An example of such a framework is the 
Bird-Meertens Formalism (BMF) by which one 
generates data parallel programs from abstract 
specifications using the skeleton approach. The 
essence of this approach is to design a generic solution 
once, and to use instances of the design many times for 
various parallel architectures. Another frame work 
starts by formulating an algorithm by a generic formal 
functional specification step and generates parallel 
programs described in a concurrency framework - CSP 
(Communicating Sequential Processes). Through such 
developments, our implementations will benefit from 
the advances in the area of hardware/software co-
design to generate efficient hardware XTEA circuits. 
 
The generation of an efficient hardware solution for 
the XTEA would with no doubt satisfy the need for 
speed and efficiency. The parallelized designs could 
easily be mapped to various parallel architectures such 
as clusters, grids, FPGAs, complex programmable 
logic devices (CPLDs), dynamically reconfigurable 
systems (the MorphoSys (Bagherzadeh et al. 1999), etc. 
The availability of such systems with different sizes 
and speeds obliges us to study the parallelization of our 
algorithm not only in its sequential or pleasantly data-
parallel version, but also with different degrees of 
parallelism. This will include reasoning about the use 
of pipelined blocks, partially sequential blocks, etc. 
Again, the parallelization is to be n a systematic 
parallelization framework which is done in a 
straightforward manner. 
 
CONCLUSION 

The research presented in this paper is motivated by 
the need for low-power, fast, tiny, and cheap hardware 
security cores. We have presented a sequential, small-

sized, relatively fast implementation of the extended 
tiny encryption algorithm (XTEA). The best achieved 
synthesis was by mapping the design onto a Virtex Pro 
II FPGA with a tiny area and a speed of 134 Mbps. 
The mapped design employed 32 rounds, although 16 
rounds are assumed to be secure enough. Many 
extensions of the work in hand are present. The 
extensions could include the formal development, for 
the sake of correctness, of the XTEA and its successors 
the XXTEA and block XTEA. Multi-way massively 
parallel implementations are expected to increase the 
throughput at the expense of silicon area. 
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Figure 5. Test Case: Encryption Testing, Input Key: 0x0, Plaintext: 0x0,  
Ciphertext: 0XCB929ADACD7E9C4C 

 

 
 

Figure 6. Test Case: Decryption State Transition 
 

Table 2. Results of Mapping the Developed Design to Xilinx Vertix II Pro FPGA 
 

Devices Leonardo Spectrum  Xilinx XST Precision Synthesis  
Device Number:  2VP2fg256 
Number of IO: 133 out of 140 ( utilization = 94.3% ) 
CLBs Slices (408 available) 294  393  539  
Maximum Frequency  in MHz 91.2 120.3 142.4 
Speed in Mbps 85.83 113.22 134 
LUTs (2816 available) 588  634  624  
Slice Flip Flops (2816 available ) 298  307  305  



 
 

Figure 7. Test Case: Key Loading. 
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Figure 8. Speeds in Mbps of the Developed Implementations. 
 

Table 1. Results of Mapping the Developed Design to Altera’s Stratix II FPGAs with Three Different FPGA Sizes. 
 

Devices Leonardo Spectrum Altera Quartus Precision Synthesis  
Device Number:  EP2S15F484C 
Number of IO: 133 out of 343 (utilization = 38.78% ) 
LUTs used (12480 available) 526 573 539 
Maximum Frequency  in MHz 127.5 120.95 130.5 
Speed in Mbps 120 113.83 122.82 
Registers used (14410 available) 297 297 305 
Device Number: EP2S60F672C 
Number of IO: 133 out of 493 (utilization = 26.98%) 
ALUTs used (48352 available) 526  573  539  
Maximum Frequency in MHz 118.1 99.23 120.3 
Speed in Mbps 111.15 93.39 113.22 
Registers used (51182 available) 297  297  305  
Device Number: EP2S90F1508C 
Number of IO: 133 out of 903 (utilization = 14.73%) 
ALUTs used (48352 available) 526  NA 539  
Maximum Frequency in MHz 138.5 MHz  NA 130.5 MHz  
Speed in Mbps 130.35 NA 122.82 
Registers used (51182 available) 297  NA 305 

 

Stratix II Virtix II Pro


