
Efficient Tiny Hardware Cipher under Verilog

Issam Damaj
Dept. of Electrical and Computer Engineering

Dhofar University
P.O. Box 2509, Salalah 211, Oman

i_damaj@du.edu.om

Samer Hamade, and Hassan Diab
Dept. of Electrical and Computer Engineering

American University of Beirut
P.O. Box 11-0236, Beirut, Lebanon

smh22@aub.edu.lb, diab@aub.edu.lb

KEYWORDS
Gate Arrays, Cryptography, Algorithms, Hardware
Design

ABSTRACT

Embedded hardware security has been an increasingly
important need for many modern general and specific
purposes electronic systems. Minute security
algorithms with their expected low-cost and high-speed
corresponding hardware realizations are of particular
interest to fields such as mobile telecommunications,
handheld computing devices, etc. In this paper, we
analyze and evaluate the development of a cheap and
relatively fast hardware implementation of the
extended tiny encryption algorithm (XTEA). The
development will start by modeling the system using
finite state machines (FSMs) and will use Verilog
hardware description language to describe the design.
Minimizing the chip area will be our primary target
rather than the construction of a multi-way massively
parallel implementation with its expected high-speed
and large silicon area. Many hardware design tools are
used to try reaching the best possible optimized
syntheses. The targeted hardware systems are the
reconfigurable Altera’s Stratix II and Xilinx Virtex II
Pro modern field programmable gate arrays (FPGAs).

INTRODUCTION

Security of information has become a main issue in the
ever evolving world of small mobile devices such as
personal digital assistants (PDAs) and cell phones. In
such minute devices, the fight over high performance
and low power consumption, besides security, are
primary targets. However, a great deal of assistance in
creating low-power and high-speed cores, comes from
the simplicity of the selected algorithm for embedding
as a hardware component.

Many encryption algorithms are now available in the
market (Kelsey et al. 1996), and the selection of a
specific one is dependent on the relatively tight
constraints in small devices. The selected algorithm
should be small, relatively secure, with a proven
history of overcoming possible well known attacks on
it. The Tiny Encryption Algorithm (TEA) (Wheeler and
Needham 1994), and hence its successor the Extended-
TEAs (XTEAs) (Needham and Wheeler 1997; Russell

2004; Kelsey et al. 1997; Moon et al. 2002) are among the
best choices available for the above taut requirements
and to be implemented in the research in hand.

Other requirements are still of no less important than
the issues of performance and power consumption;
these include the ease of modifiability, upgradeability
and reuse of the designed security components. The
type of hardware circuits to be used for implementing
the developed cores, largely affects the above
modifiability properties. Here we propose
reconfigurable computers; more specifically field
programmable gate arrays (FPGAs), as a possible
solution with their famous property of programmability
to satisfy the addressed need for modifiability.

FPGAs, nowadays are important components of
reconfigurable systems; they have shown a dramatic
increase in their density over the last few years. For
example, companies like Xilinx and Altera have
enabled the production of FPGAs with several millions
of gates, such as in Virtex-II Pro and Stratix-II FPGAs.
The versatility of FPGAs, opened up completely new
avenues in high-performance computing. These
programmable hardware circuits are aided with various
co-design tools and flexible design methodologies to
form a powerful paradigm for computing.

The traditional implementation of a function on an
FPGA is done using logic synthesis based on VHDL,
Verilog or a similar HDL (hardware description
language). These discrete event simulation languages
are rather different from languages, such as C, C++ or
JAVA. Many FPGA implementation tools are primarily
HDL-based and not well integrated with high-level
software tools. Furthermore, these HDL-based IP
(intellectual property) cores are expensive and they
have complex licensing schemes. In the presented
designs, the hardware implementations are carried out
under Verilog, employing different co-design tools.
The targeted FPGA systems are Altera Startix II and
Xilinx Vertix II Pro. The hardware design tools
involved in this project are Altera’s Quartus, Xilinx
ISE, Mentor Graphics HDL Designer, Leonardo
Spectrum, Precision Synthesis , and ModelSim.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

THE TINY ENCRYPTION ALGORITHM

In cryptography, the Tiny Encryption Algorithm (TEA)
is a block cipher notable for its simplicity of
description and implementation (typically a few lines
of code). The cipher was initially presented by
(Wheeler and Needham 1994). TEA operates on 64-bit
blocks and uses a 128-bit key. It has a Feistel structure
with a suggested 64 rounds, typically implemented in
pairs termed cycles. It has an extremely simple key
schedule, mixing all of the key material in exactly the
same way for each cycle.

Figure 1. A single XTEA round with its internal
computational constructs. The crossed square for the

sum, crossed circle for an XOR, >> for a right shift, <<
for a left shift.

XTEA is a symmetric block cipher designed to correct
weaknesses in TEA. Like TEA, XTEA is a 64-bit block
Feistel network with a 128-bit key and a suggested 64
rounds. Several differences from TEA are apparent,
including a somewhat more complex key-schedule and
a rearrangement of the shifts, XORs and additions
(Hong et al. 2003; Ko et al. 2004). Figure 1 show the
block diagram of an XTEA single round.

Figure 2. Block Diagram generated from the
top model by Leonardo spectrum

High-speed hardware implementations of the XTEA
under VHDL were suggested in (Ghazzawi et al. 2006).
The power consumption of the XTEA were studied in
(Kelsey et al. 1996) and compared with results for the
RC5 algorithm.

XTEA HARDWARE

In Figure 2, the block diagram of the created chip is
shown. The 128-bit key is input through the Din pins
entered 64 bits at a time. The same Din pins are used to
enter the plaintext (or ciphertext in the case of
decryption) 64-bits at a time, while Dout pins are used
for outputting the ciphered (or plaintext in the case of
decryption). The remaining pins are for clocking (Clk)
and control signals, moreover, loading the key
(Loadkey), enabling encryption or decryption (Encrypt
or Decrypt), and resetting the system (Reset_n).

The development of the XTEA core is started by

creating a finite state machine (FSM) with four
possible states. The system will be initially in its IDLE
state till the control signals are received. The transition
that takes you from the IDLE state to BUSY_KEY state
is controlled by the external event Loadkey. The state
BUSY_KEY is responsible for inputting the key. After
finishing the key inputting process the system returns
automatically to its IDLE state. The system will
undergo a transition to its BUSY_ENC (encryption
state) or BUSY_DEC (decryption state) according to
the transitions controlled by the events expected on the
Encrypt and Decrypt pins. The system continuous
operation is done by returning to the IDLE state on
finishing the encryption or the decryption is shown in
Figure 3.

A single XTEA round is to be repeated 32 times. A

sequential version on the round level would mean the
creation of circuit corresponding for a single round,
then the output is fed-back to the circuit to become the
input of the following round; this is to happen 32
times. A different degree of parallelism could be
reached if the designer decides to unroll the loop to
construct a fully-pipelined network of rounds. In this
paper, we show a sequential version avoiding any
resources replication and accordingly any additional
expected increased area, cost, and power consumption.
In Figure 4, a circuit block diagram was obtained using
HDL Designer from Mentor Graphics. In Figure 4, the
feedback wires are clearly shown going from the eb1
block to the eb2 main block. The eb2 block contains all
the inputs and outputs, and synchronized by a master
clock. The second block eb1 contains continuous
assignment statements for the main functions (or core)
of the encryption (decryption) algorithm. The output
generated by eb1 is fed-back to eb2 synchronized by
the master clock.

As shown in Figure 1, an XTEA round
implementation requires the construction of the
following computational elements:

− Addition and Subtraction modulo 32.
− Bitwise XOR
− Shift left and right operations

Figure 3. Finite State Machine

PERFORMANCE EVALUATION

For the purpose of analysis we present first the results
of testing the design using Altera’s Quartus tool,
where we build the simulation cases graphically. From
the performed simulation, the number of clock cycles
needed to complete a single encryption or decryption
process is 68 cycles (key loading 2 cycles,
encryption/decryption 32 * 2 cycles, and wait states 2
cycles). A pipelined version will, with no doubt,
enhance the performance by decreasing the process
total time, but as a quid pro quo for silicon area.

 In Figure 5, we show the waveforms of testing the
encryption process. The reset signal was activated at
first to insure that all the registers are cleared before
starting any operation, note that the asynchronous reset
is active low once. After that the Loadkey control was
activated for two clock cycles to store the selected key
that will be used in the next process.

Now, the module is ready to either encrypt or decrypt.
One can distinguish between these two by the control
signals provided as an input to the system. After
engaging the Encrypt signal, the system will enter the
BUSY_ENC state, and will finish the encryption after
64 clock cycles. You can notice that the output is
available at that time and that the system is returned to
the IDLE state waiting to the next control signal to
operate.

In Figure 6, we depict the waveforms of decryption
state transition testing. The encryption and the
decryption processes are quite the same in architecture,
but the decryption operates in a reverse manner on the
data, and uses a subtractor rather than an adder. This
test shows the transition of the state from the IDLE to
the BUSY_DEC, the output will be available after 64
clock cycles.

In Figure 7, we show the simulation for testing the key
loading process. In order to reduce the number of IOs
used, the key was distributed over the Din input pins.
Knowing the fact that the key length is 128 bits while
the Din is only 64 bits, we need two clock cycles to

load the key to its internal register inside the FPGA.
This will cost using the Loadkey control driving the
system to the BUSY_KEY state. The BUSY_KEY state
will need two clock cycles to exit and return to the
IDLE state again.

The number of IOs needed in this project is fixed and
can easily be calculated from the module's event list,
this number is equal to 133 IOs. The next step of
assessment is to map the developed design onto
different FPGA systems comparing the use of
resources in each case. The synthesis tools used in this
comparison are Xilinx XST, Mentor Graphics Precision
Synthesis RTL and physical 2004, Altera’s Quartus,
and Leonardo Spectrum 2004. Both, Precision
Synthesis and Leonardo Spectrum are vendor free third
party tools developed to synthesize popular FPGAs. In
Table 1, we show the different findings of compiling
the developed XTEA design to Altera’s Stratix II
FPGAs with three different sizes. In Table 2, we show
the findings after compiling the design to Xilinx Virtix
II Pro FPGA. The chart in Figure 8 shows clearly the
maximum speed of 134 Mbps achieved by mapping
our sequential small-sized design onto the Virtix II Pro
FPGA.

It is clear from the results shown in this section that the
aim of obtaining a relatively small area has been
achieved. The advantage of having a small design with
a small occupied area had its impact on speed, where a
maximum speed of 134 Mbps was achieved with the
suggested sequential design. A similar design achieved
only a speed of 16.8 Mbps in (Ghazzawi et al. 2006),
but was enhanced by eliminating the large area
occupied by the controller part and accordingly
reducing the propagation delay and the number of
clock cycles. The enhanced design in (Ghazzawi et al.
2006) reached a speed of 800 Mbps; more manual
designs where offered expecting speeds above 1 Gbps.

The tiny XTEA for sure is not comparable to any of the
powerful ciphers like the AES finalists, but it had the
following summarized advantages:

− Small expected hardware silicon area.
− It is relatively secure enough with a number

of rounds above 16.
− Fast enough to accompany other projects.
− Low power consumption.

Based on the comparison done between various
synthesis tools, the following is concluded:

− For a small application like the development
of the XTEA, no big improvement is gained by
selecting one synthesis tool over the others.

− Choosing different FPGA device from the
same family will not affect largely the amount
of occupied area.

Figure 4. Block Diagram of the Implemented
Sequential System

Increasing the depth of investigation concerning
accelerating the XTEA would lead us, however, to
parallel processing including pipelining. Thus, generic
reasoning about the parallelization of the algorithm in
hand is a possible extension for the proposed work,
besides investigating the correctness of various parallel
hardware implementations. Developing correct
hardware leads to the adoption of a formalization
framework. Through this formal mathematical
framework, different parallel designs could be
generated systematically, using provably correct rules
of refinement. An example of such a framework is the
Bird-Meertens Formalism (BMF) by which one
generates data parallel programs from abstract
specifications using the skeleton approach. The
essence of this approach is to design a generic solution
once, and to use instances of the design many times for
various parallel architectures. Another frame work
starts by formulating an algorithm by a generic formal
functional specification step and generates parallel
programs described in a concurrency framework - CSP
(Communicating Sequential Processes). Through such
developments, our implementations will benefit from
the advances in the area of hardware/software co-
design to generate efficient hardware XTEA circuits.

The generation of an efficient hardware solution for
the XTEA would with no doubt satisfy the need for
speed and efficiency. The parallelized designs could
easily be mapped to various parallel architectures such
as clusters, grids, FPGAs, complex programmable
logic devices (CPLDs), dynamically reconfigurable
systems (the MorphoSys (Bagherzadeh et al. 1999), etc.
The availability of such systems with different sizes
and speeds obliges us to study the parallelization of our
algorithm not only in its sequential or pleasantly data-
parallel version, but also with different degrees of
parallelism. This will include reasoning about the use
of pipelined blocks, partially sequential blocks, etc.
Again, the parallelization is to be n a systematic
parallelization framework which is done in a
straightforward manner.

CONCLUSION

The research presented in this paper is motivated by
the need for low-power, fast, tiny, and cheap hardware
security cores. We have presented a sequential, small-

sized, relatively fast implementation of the extended
tiny encryption algorithm (XTEA). The best achieved
synthesis was by mapping the design onto a Virtex Pro
II FPGA with a tiny area and a speed of 134 Mbps.
The mapped design employed 32 rounds, although 16
rounds are assumed to be secure enough. Many
extensions of the work in hand are present. The
extensions could include the formal development, for
the sake of correctness, of the XTEA and its successors
the XXTEA and block XTEA. Multi-way massively
parallel implementations are expected to increase the
throughput at the expense of silicon area.

REFERENCES

Bagherzadeh N. Kurdahi F. Singh H. Lu G. Lee M. and Filho
E.1999. “MorphoSys: An integrated reconfigurable
system for data-parallel computation-intensive
applications.” IEEE Transactions on Computers.

Ghazzawi W., R. Saraeb, and I. Damaj. 2006. “Hardware

Development of the Extended Tiny Encryption
Algorithm,” in the ACS/IEEE International Conference
on Computer Systems and Applications, Dubai/ Sharjah,
United Arab Emirates (Mar).

Hong S., Deukjo Hong, Youngdai Ko, Donghoon Chang,

Wonil Lee, and Sangjin Lee. 2003, “Differential
cryptanalysis of TEA and XTEA.” In Proceedings of
ICISC 2003, 2003b.

Ko Y., Seokhie Hong, and Wonil Lee. 2004. “Related key

differential attacks on 26 rounds of XTEA and full
rounds of GOST.”In Proceedings of FSE '04, Lecture
Notes in Computer Science, Springer-Verlag,

Kelsey J., Bruce Schneier, and David Wagner.1997.

“Related-key cryptanalysis of-WAY, Biham-DES,
CAST, DES-X NewDES, RC2, and TEA.” Lecture Notes
in Computer Science, 1334: 233-246.

Kelsey J., Bruce Schneier, and David Wagner. 1996. “Key-

schedule cryptanalysis of IDEA, G-DES, GOST,
SAFER, and Triple-DES.” Lecture Notes in Computer
Science, 1109: 237-251.

Moon D., Kyungdeok Hwang, Wonil Lee, Sangjin Lee, and

Jongin Lim. 2002. “Impossible differential cryptanalysis
of reduced round XTEA and TEA.”Lecture Notes in
Computer Science, 2365: 49-60.

Needham R. M. and David J. Wheeler.1997. "Tea

extensions." Technical report, Computer Laboratory,
University of Cambridge(Oct).

Russell M. D. 2004. “Tinyness: An Overview of TEA and

Related Ciphers.”
http://www.users.cs.york.ac.uk/~matthew/TEA/TEA.htm
l

Wheeler D. J. and R. M. Needham.1994. “TEA, a tiny

encryption algorithm.” Fast Software Encryption,
Leuven, LNCS 1008, , pp. 363-366.

Issam W. Damaj received his Bachelor of
Engineering (B.Eng.) in Computer Engineering from
Beirut Arab University in 1999 (with high distinction),
and his Master of Engineering (M.Eng.) in Computer
and Communications Engineering from the American
University of Beirut in 2001. He was awarded his
Ph.D. degree in Computer Science from London South
Bank University, London, United Kingdom in 2004.
Currently, he is an Assistant Professor of Electrical and
Computer Engineering and the chairperson of the
Department of Electrical and Computer Engineering,
Dhofar University, Oman. His research interests
include hardware/software co-design, embedded
systems design, reconfigurable computing, parallel
processing, and software engineering.

Samer Hamade is a graduate student at the American
University of Beirut. He is a student in the Faculty of
Engineering and Architecture, Department of Electrical
and Computer Engineering. His major is Computer and
Communications Engineering.

Hassan B. Diab received his B.Sc. (with Honors) in
Communications Engineering from Leeds
Metropolitan University, U.K. in 1981, his M.Sc. (with
Distinction) in Systems Engineering from the
University of Surrey, U.K. in 1982, and his Ph.D. in
Computer Engineering from the University of Bath,
U.K. in 1985. Dr. Diab is a Professor of Electrical and
Computer Engineering at the Faculty of Engineering
and Architecture, American University of Beirut
(AUB), Lebanon and has over 22 years of experience.
He has 116 publications in internationally refereed
journals and conferences. His research interests include
cryptography on high performance computer systems,
modeling and simulation of parallel processing
systems, embedded systems, reconfigurable
computing, simulation of parallel applications, system
simulation using fuzzy logic control, and the
application of simulation for engineering education.

Figure 5. Test Case: Encryption Testing, Input Key: 0x0, Plaintext: 0x0,
Ciphertext: 0XCB929ADACD7E9C4C

Figure 6. Test Case: Decryption State Transition

Table 2. Results of Mapping the Developed Design to Xilinx Vertix II Pro FPGA

Devices Leonardo Spectrum Xilinx XST Precision Synthesis
Device Number: 2VP2fg256
Number of IO: 133 out of 140 (utilization = 94.3%)
CLBs Slices (408 available) 294 393 539
Maximum Frequency in MHz 91.2 120.3 142.4
Speed in Mbps 85.83 113.22 134
LUTs (2816 available) 588 634 624
Slice Flip Flops (2816 available) 298 307 305

Figure 7. Test Case: Key Loading.

120
113.8

122.8

111.15
99.23

120.3

130.35

122.82

85.83
113.22

134

0

20

40

60

80

100

120

140

EP2S15F484C EP2S60F672C EP2S90F1508C 2VP2fg256

Leonardo Altera Precision

Figure 8. Speeds in Mbps of the Developed Implementations.

Table 1. Results of Mapping the Developed Design to Altera’s Stratix II FPGAs with Three Different FPGA Sizes.

Devices Leonardo Spectrum Altera Quartus Precision Synthesis
Device Number: EP2S15F484C
Number of IO: 133 out of 343 (utilization = 38.78%)
LUTs used (12480 available) 526 573 539
Maximum Frequency in MHz 127.5 120.95 130.5
Speed in Mbps 120 113.83 122.82
Registers used (14410 available) 297 297 305
Device Number: EP2S60F672C
Number of IO: 133 out of 493 (utilization = 26.98%)
ALUTs used (48352 available) 526 573 539
Maximum Frequency in MHz 118.1 99.23 120.3
Speed in Mbps 111.15 93.39 113.22
Registers used (51182 available) 297 297 305
Device Number: EP2S90F1508C
Number of IO: 133 out of 903 (utilization = 14.73%)
ALUTs used (48352 available) 526 NA 539
Maximum Frequency in MHz 138.5 MHz NA 130.5 MHz
Speed in Mbps 130.35 NA 122.82
Registers used (51182 available) 297 NA 305

Stratix II Virtix II Pro

