
ANALYTICAL MATRIX INVERSION AND CODE GENERATION FOR

LABELING FLOW NETWORK PROBLEMS

Michael Weitzel and Wolfgang Wiechert
Institute of Systems Engineering / Simulation Group

Mechanical / Electrical Engineering & Computer Science
University of Siegen, 57068 Siegen, Germany

E-mail: michael.weitzel@uni-siegen.de

KEYWORDS
Analytical Matrix Inversion, Sparse Systems of Linear
Equations, Code Generation.

ABSTRACT

Symbolic simplification and algebraic differentiation are
only some of the advantages symbolic computations offer
over their numerical counterparts. With a focus on sparse
systems of linear equations, this contribution presents an
analytical approach to a matrix inversion problem occur-
ring in the field of Metabolic Flux Analysis. It is illus-
trated how the inherent complexity of the approach can be
handled and how symbolic solutions can be compiled into
highly performant machine code. Finally, benchmark re-
sults demonstrate that compiled analytical solutions offer
comparable or even better performance than state-of-the-
art sparse matrix algorithms.

INTRODUCTION

The research context of this contribution is given by
Metabolic Flux Analysis (MFA), a class of network flow
problems found in Systems Biology. One especially suc-
cessful approach to MFA is based on isotopic labeling
where a specifically labeled substrate, e.g. 13C labeled
glucose, is fed to the cells of an (typically unicellular)
organism. According to the intra-cellular reaction rates
(flux values) the isotopic labeling distributes among the
cell’s metabolites (Wiechert 2001). In the following, only
those details are introduced which are necessary to un-
derstand the underlying mathematical structures and the
described algorithms.

The computational heart of MFA is the simulation of
isotopic labeling enrichment by the solution of a cascaded
system of linear equations (Wiechert and Wurzel 2001):

0x = 1
0 = kA(v) kx + kb

(
v, 1x, . . . , k−1x, kxinp

)
for k = 1, 2, . . .

(1)

These systems are obtained by serializing cascaded flow
network graphs into balance equations. The unknowns
kx represent the labeling state of metabolites; the so
called cumulative isotopomer fractions. The reaction
rates v connecting the metabolites as well as the labeled

Figure 1: Cascaded flow network graphs

input substrate kxinp are variables of the system. More-
over, vectors 1x, . . . , k−1x serve as additional input for
the system on level k and go into vector kb in a nonlinear
way. The described scheme is illustrated by the tiny ex-
ample network in Fig. 1. The number of cascade levels
corresponds to the maximum number of atoms (labeling
positions) in a metabolite. The two connected flow net-
work graphs are serialized into a cascaded system of bal-
ance equations. More details can be found in (Weitzel,
Wiechert, and Nöh 2007).
Cascade level 1:

1A(v) =

−v0 − v3 0 0 0 0 v3

0 −v0 − v3 0 0 v3 0
0 v1 −v1 0 0 0
v1 0 0 −v1 0 0
0 0 v2 0 −v2 0
0 0 0 v2 0 −v2

1x =

(
AH# A H# BH# B H# C D

)T
1b(v, 1xinp) =

(
v0 · (EH#) v0 · (E H#) 0 0 0 0

)T
Cascade level 2:

2A(v) =
(
−v0 − v3 0

v1 −v1

)
2x =

(
A B

)T
2b(v, 1x, 2xinp) =

(
v0 · (E) + v3 · (C) · (D)

0

)
In practice, each level of these cascaded compartmen-

tal systems typically contains balance equations for a few
dozens to several thousands of unknowns and possesses
certain structural properties (Weitzel, Wiechert, and Nöh
2007):

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

1. Each edge of the flow network graph labeled with a
flux value vi subtracts vi from the diagonal of kA
and adds the same vi to an off-diagonal element.
This property results in weak diagonal dominance
of kA since the diagonal elements sum-up a node’s
total influx with negative sign.

2. Metabolic networks are usually sparse graphs
(Weitzel et al. 2007). The ratio of the number of
edges to the number of nodes (i.e. the connectivity)
ranges from 2 to 2.5. This means that the number of
edges is in the order of the number of nodes. This
property results in sparse matrices kA.

3. It can be shown that the connectivity of graphs de-
creases monotonously with increasing cascade level,
thus matrices kA are increasingly sparse.

4. Except for the diagonal, matrices kA have the same
non-zero pattern as the transposed adjacency matrix
of the flow network graph. This property is invariant
with respect to flux values v as long as vi 6= 0.

5. The flow network graphs associated with kA typi-
cally contain a wide range of isomorphic subgraphs
(Weitzel et al. 2007).

6. Only a few variables v determine matrices kA(v).
Moreover, with increasing k, the variety of flux vari-
ables is cut back.

7. By using a certain permutation Pk, matrices kA can
be permuted into a upper (lower) block-triangular
form PT

k (kA)Pk where the blocks on the diagonal
are compartmental matrices, again.

Strategies for Solving the Cascaded System

The straightforward approach for the solution of Eq. (1)
would be to choose an efficient implementation of a
standard LU algorithm, such as LAPACK’s DGETRF /
DGESV (Anderson et al. 1999). These standard imple-
mentations use partial pivoting in order to provide numer-
ical robustness. For a reasonably large network, where
k = 1, . . . , 11 and maxk{dim(kA)} ≈ 1200, this results
in about 20 sec. for a single simulation run. However, by
taking advantage of the special structure of Eq. (1), the
running time can be reduced to about 20 · 10−3 sec. for
the same system (Weitzel, Wiechert, and Nöh 2007).

Diagonal dominance (property 1) can be used to
speedup the classical LU algorithm by skipping the par-
tial pivoting phase completely without risking numerical
stability (Golub and van Loan 1996).

Sparsity of matrices kA (property 2.) suggests to use a
specialized sparse matrix algorithm. One possibly sense-
ful way to use this property is to solve the bandwidth-
reduced system (QTAQ)(QTx) + QT b = 0 by us-
ing a banded-LU algorithm. Property 4 ensures that the
bandwidth-reducing permutation Q can be computed in

advance, since kA(v) does not change its non-zero pat-
tern if v is varied. Because the algorithm for determin-
ing Q is a heuristic (George and Liu 1981) and signifi-
cant bandwidth reduction is not always possible this re-
duces the computation time for the above example net-
work from 20 sec. to about four sec.

The basis for more successful algorithms is the upper
block-triangular form PT

k (kA)Pk . In case only the di-
agonal blocks contain non-zero values each block corre-
sponds to an independent subsystem. These subsystems
do not influence each other and can be solved in any or-
der. In the more general case, where diagonal blocks are
connected by coefficients above the block diagonal, the
subsystems given by the diagonal blocks are unilaterally
dependent and thus, have to be solved in a specific or-
der during a single back-substitution run (Davis 2006).
The described algorithm greatly benefits from decreas-
ing connectivity (property 3) which leads to a large num-
ber of small subsystems and highly sparse matrices kA.
The use of this algorithm results in the above mentioned
speedup of about factor 1000.

By property 5, subgraph isomorphism is an important
feature of graphs kG and thus, classes of equivalent sub-
systems (equivalent except for permutation) can be found
in kA. Even though all subsystems of such an equivalence
class share the same LU decomposition, the beneficial
use of subgraph isomorphism is difficult in practice and
involves costly management which usually foils the addi-
tional theoretic speedup at least for smaller subsystems.
Since, on the other hand, larger subsystems are sparse as
well it might seem beneficial to switch to a banded-LU
in order to solve them. In practice, the obtained speedup
is minimal: the number of large subsystems is small and
due to their origin, the subsystems are ill-suited for band-
width reduction.

Property 6 is of no use for all direct numerical meth-
ods. This changes for the analytical solutions presented
in the next section.

ANALYTICAL SOLUTIONS

The Idea behind Analytical Solutions

Although there exist fast solution algorithms for positive
definite, banded, sparse, or other special systems the run-
ning time is always governed by the structure of the solu-
tion algorithm, but at most roughly by the structure of the
underlying problem (matrix). In case of systems where
the coefficients in A may change their value, but the
sparsity pattern remains the same, e.g. during a parame-
ter variation study, common algorithms suffer from their
static setup and specialized algorithms obtained from an-
alytical solutions might do a better job.

Even though sparsity and isomorphism give the clue
that additional speedup might be within reach, the classi-
cal direct numerical sparse matrix algorithms do not ac-
complish to capitalize these properties exhaustively. Fur-
thermore, the presorting and graph analysis steps found in
these algorithms do not care about how a certain non-zero

element is composed (i.e. the mathematical expression
that lead to the non-zero value) since this information
is usually out of reach and of no use for the algorithms
found in conventional sparse matrix libraries.

The idea behind an analytical solution is simple. In
general, analytical solutions can be obtained by carrying
out an algorithm’s operations symbolically: instead of ex-
ecuting arithmetic operators they are recorded symboli-
cally in form of an expression tree. This works especially
well if the underlying algorithm is branch-free, like the
LU algorithm if partial pivoting is omitted.

Analytical solutions facilitate any type of a posteriori
analysis. An interesting example is the ability to perform
algebraic differentiation of Eq. (1) in order to provide
highly accurate partial derivatives (sensitivities)

∂x(v)
∂v

= − ∂

∂v

(
kA(v)−1 · kb(v, . . .)

)
used by various optimization algorithms during the pa-
rameter fitting step. Algebraic differentiation of explicit
solutions is implemented as a set of simple expression
tree transformation rules. Another example is the esti-
mation of error propagation when a solution formula is
actually evaluated using floating point arithmetic.

Analytical Matrix Inversion

Matrix inversion is usually not an option when solving
a moderately sized system Ax + b = 0. Once a LU
factorization of A is computed in Θ(n3) FLOPS the so-
lution of Ax + b = 0 requires additional 2n2 FLOPS
(where n = dimx). In contrast, a matrix inversion based
on a LU factorization requires 2n3 FLOPS, i.e. n times
the effort of a solution. However, seen from an asymp-
totic standpoint, both direct numerical approaches require
Θ(n3) FLOPS (Golub and van Loan 1996).

Analytical computations require a change of perspec-
tive: there is no immediate relation between the time
complexity of the algorithm generating the analytical so-
lution and the number of FLOPS required to evaluate
it; i.e. its size. While the underlying algorithm might
not be able to handle sparsity efficiently, structural ze-
ros in the input data cancel-out large parts of the analyti-
cal computations. In this context, it is helpful to adopt a
classical idea from compiler design: high computational
effort during the compilation phase and expensive opti-
mizations are justified as long as the resulting code has
improved efficiency and is executed frequently (Much-
nick 1997).

For the original MFA problem, i.e. the solution of
the cascaded system (1), the computation of an inverse
(kA)−1 becomes an option because only a small subset
of the elements of (kA)−1 is actually required to describe
the MFA experiment:

• Measurements typically describe only a small subset
of kx. A direct numerical approach for solving the
cascade (1) cannot be trimmed to provide only the
relevant subset of the solution vector kx. Clearly,

having an analytical solution for (kA)−1, this can be
accomplished by extracting the relevant rows out of
kx = −(kA)−1(kb).

• Vectors kb are likewise sparse and a multiplication
of type (kA)−1(kb) selects relatively few columns
of (kA)−1 for building the solutions kx.

Moreover, by the application of iterative improvement,
an inverse (A(v))−1 for flux vector v can be reused for
some time as long as the parameter fitting procedure gen-
erates new flux vectors w = v + d by introducing slight
changes d:

x1 ← −(A(v))−1b(w)
xi+1 ← xi + (A(v))−1(A(w)xi − b(w)).

In practice the sequence x1, . . . ,xm ≈ x(w) converges
to an acceptable result after few iterations. However, this
is not applicable for larger d. Furthermore, m � n
should hold, since each iteration requires Θ(n2) FLOPS.
See (Press et al. 2007) for details.

Other applications of the inverse include the implicit
EULER iteration, where a non-stationary variant of Eq.
(1) is considered.

Complexity of Analytical Solutions

Algebraically, the matrix inversion problem is closely re-
lated to the computation of the transitive, reflexive clo-
sure of a graph (Lehmann 1977). Each element of an in-
verse corresponds with a set of paths connecting a pair of
nodes in the associated computational graph. Aiming to
compute only a subset of kx with the greatest possible
efficiency this path tracing approach marked the start-
ing point for our research. It was shown in (Isermann,
Weitzel, and Wiechert 2004) how the approach can be
applied to the solution of Eq. (1) using a generalized
KLEENE algorithm. The resulting branch-free matrix in-
version procedure is extremely simple and shall be used
to illustrate the sketched scheme for building an analyti-
cal solution:

INVERSE (E0 : Rn×n) : Rn×n

1 E← In −E0

2 for k ← 1 to n

3 do E← E +
E(:, k)E(k, :)
1−E(k, k)

4 return E← In + E

The following result can be proven by induction:

Proposition. After executing k times line 3 the contents
of E are

Ek =
[

A−1
k − Ik −A−1

k Bk

−CkA−1
k In−k − (Dk −CkA−1

k Bk)

]
with the partition

E0 =
(k n− k

k Ak Bk

n− k Ck Dk

)
.

Moreover, after executing n times line 3, the contents of
E are A−1

n − In = E−1
0 − In. Hence, the inverse E−1

0 is
returned in line 4.

Discarding the matrix notation, line 3 can be equiva-
lently written as

3 E′ ← E
3 for i, j ← 1 to n
3 do E(i, j)← E′(i, j)

3 +E′(i, k)E′(k, j)
1

1−E′(k, k)
.

The matrix operation in line 1, the three loops, and the ad-
dition of the identity matrix require 5n3 +n2 +n FLOPS
in total, which is about two times slower than a matrix
inversion based on the LU algorithm. Likewise, the re-
quired memory is in Θ(n2). However, if deferred eval-
uation is used, i.e. the above code is used to obtain an
expression tree for a symbolic rational expression, the
memory requirements change dramatically.

The memory requirements s(k) of a single entry of
E0 are assumed to be in Θ(1). In step k of the outer
loop the relaxation step in line 3 incorporates four times
a value from the previous matrix E′, introduces two Θ(1)
nodes for the value “1” and another five Θ(1) nodes for
operators. Hence, the recurrence s(k) = Θ(4s(k−1)+7)
with s(0) = Θ(1) describes the memory consumption of
the symbolic solution of a single element. The solution
to this recurrence is

s(k) = Θ

(
4k+ 7

k−1∑
i=0

4i

)
= Θ((10 · 4k− 7)/3). (2)

For the complete matrix E−1
0 this results in expression

trees having Θ(n24n) nodes in total (not counting the op-
erations in lines 1 and 4). Clearly, this is intractable even
for small problem sizes – for example, when assuming 12
bytes for a single expression tree node and n = 10 this
results in 4000 megabytes for E−1

0 .

Elimination of Common Subexpressions

At this point, analytical solutions for the matrix inversion
problem seem to be completely impractical: even if the
exponential memory requirements were no problem eval-
uation of the symbolic solution for each element of E−1

0

would require exponential time – just because the analyt-
ical solution has exponential size.

Fortunately, this problem can be handled by using the
fact that the generated symbolic expressions share com-
mon subexpressions to great extend. A minimal example
for n = 2 shall illustrate this. Just before the loop in line
2 starts the contents of E are

E = I2 −E0 =
(

a b
c d

)
.

When the loop of line 2 exits the contents of E are

E = E−1
0 − I2 =

(
e f
g h

)
.

For instance, the formula representing element h is

h = d +
cb

1− a
+
(

d +
cb

1− a

)(
d +

cb

1− a

)
S

using the term S := 1 /(1− (d + cb/(1− a))) which is
a common subexpression of all solutions.

All expression trees for the elements of E−1
0 have the

same size, namely 51 nodes (26 leaves, ten nodes for mul-
tiplication and five divisions, additions, and subtractions),
thus 204 nodes in total. This conforms with (2), since
22s(2) = 4 · 51 = 204. Collapsing all common subex-
pressions of the expression trees in E−1

0 − I2 transforms
the forest into a single directed acyclic graph (DAG) with
only 33 nodes (5 leaves, 16 multiplications, two divisions
and subtractions, and eight additions), i.e. only 16% of
the nodes found in the forest.

A Divide & Conquer Matrix Inversion Algorithm

Different matrix inversion algorithms result in com-
pletely different analytical solutions. Although there is
no immediate relation between size of the analytical so-
lution and the running time of the underlying algorithm
there is at least a tendency that a less efficient algorithm
results in larger analytical solutions.

Another branch-free matrix inversion algorithm hav-
ing its roots in the path tracing formalism is based on
a recursive formulation of the matrix inversion problem
(Conway 1971, Zhang 2005, Press et al. 2007):[

P Q
R S

]−1

=
[

T−1 −T−1QS−1

−S−1RT−1 S−1(I + RT−1QS−1)

]
with T def= P−QS−1R (the SCHUR complement of S).

An efficient implementation of this formula results in a
divide & conquer algorithm which requires two recursive
calls for the inversion of T and S and inverts a matrix in
about 2n3 + 2n2 − n/2 FLOPS, which is slightly better
than the LU algorithm without partial pivoting (8n3/3−
n2/2− n/6).

More importantly, the DAGs containing the analytic
solutions are about 20% smaller than those obtained from
the KLEENE algorithm. Compared to the KLEENE algo-
rithm an economical implementation of this algorithm is
challenging and requires in-place matrix operations and
careful handling of memory resources.

Creating DAGs and Handling Sparsity

Clearly, creating the analytical solutions in form of ex-
pression trees, first, and then collapsing them into DAGs
in a second step would be an impractical strategy since
this would require exponential memory. Instead, DAGs
have to be created on-the-fly.

This is an especially elegant way because in each step
of the matrix inversion algorithm a newly created oper-
ator node accesses only previously seen nodes. Using
techniques like common subexpression elimination, value

numbering (Muchnick 1997), as well as algebraic prop-
erties, like commutativity of operators, the DAG genera-
tion algorithm is able to decide whether an operator node
needs to be created, or an existing node can be reused.

Certain applications of operators may lead to the value
zero. In most of these cases the operator is a multiplica-
tion and one of the operands is a zero. This situation can
be handled by replacing the operator node by a reference
to the value zero. The remaining non-zero operand is kept
in memory since it may be used by a later computation.
Finally, when all elements of the inverse have been com-
puted, the DAG is pruned of the unused nodes. This strat-
egy efficiently handles sparsity and identifies matrix ele-
ments which contain a structural zero, i.e. a zero value
which originates in the structure of the actual inversion
problem.

Machine Code Generation

Once the DAG representing the inverse A−1 is in mem-
ory the goal is to evaluate it as fast as possible. Since
the DAG is acyclic this can be established using a sim-
ple depth-first search starting at the individual root nodes
and stopping either at the leaf nodes, or at nodes that have
been visited before. Although this approach is far better
than evaluating the original forest, there is some overhead
for dereferencing pointers, switching the different opera-
tors and managing node labels.

This overhead can be eliminated by compiling the
DAG into byte-code – either for an interpreter, or into
machine code for direct execution on a CPU. Another
option would be to emit a programming language source
code, e.g. C code, which is compiled and optimized us-
ing an existing compiler. The drawback of this option
is that common compilers are designed for small expres-
sions and small basic blocks and compilation may take
too long or require too much memory.

In the ongoing project the DAGs are compiled into ef-
ficient machine-code for the FPUs found in x86 family
CPUs. These FPUs are organized as stack machines.

Clearly, the DAG has to be evaluated in a topologi-
cal order starting at its leaves and stopping at the DAG’s
roots, i.e. result nodes representing the elements of the
inverse matrix. Following (Bruno and Lassagne 1975),
this special topological order, together with some man-
agement instructions, can be described as an abstract
stack machine program. By design, this program forces
an evaluation if either the stack load exceeds the maxi-
mum capacity or a root of the DAG (i.e. a result node)
is reached. Furthermore, the abstract stack machine pro-
gram cares about reusing previously computed interme-
diate results and saving them for later use.

Based on the information contained in the DAG and
the abstract stack machine program x86 machine code is
generated. Since complicated issues, like the allocation
of the stack registers, and the correct handling of common
subexpressions are already treated during the assembly
of the abstract stack machine program a single pass is

sufficient for generating the x86 FPU code.
In a second pass, a peephole optimization performs lo-

cal optimization by sliding over the generated code and
removing suboptimal constructs within a certain window.
Finally, some prolog and epilog are generated, the assem-
bler code is compiled into an object file and linked into a
dynamic library. This library is dynamically loaded once
at runtime and the matrix inversion code can be accessed
via a function pointer.

RESULTS

In this section the numerical accuracy of the presented
KLEENE algorithm and the divide & conquer algorithm
are compared in order to illustrate the appropriateness for
the cascaded systems in Eq. (1). Next, the performance of
the compiled analytical solutions is compared to LAPACK
(Anderson et al. 1999) and CSparse (Davis 2006), a
state-of-the-art sparse matrix library.

Empirical Comparison of Numerical Accuracy

Figures 2 and 3 give empirical results for the numeri-
cal stability of the different matrix inversion algorithms.
Each curve shows the mean, the minimum, and maximum
of the residual ||Â−1A − I||∞ of 100 randomly gener-
ated matrices A and the numerically computed inverses
Â−1. These results demonstrate the growth of numeri-
cal errors for fully populated and sparse matrices when
doubling the matrix dimension and are based on direct
numerical implementations, i.e. do not use analytical so-
lutions. Figure 2 shows the results for matrices fully pop-

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

M
ea

n
O

f
R

es
id

u
a
ls
||
Â
−

1
A

−
I
||
∞

0 1 2 3 4 5 6 7 8 9 10
log2(dimA)

LAPACK+iter.
Kleene Alg.
Div. & Conq.

Figure 2: Numerical stability of different matrix in-
version algorithms on fully populated random matrices.
Shown are mean, min., and max. values of residuals.

ulated with N(0, 1) random numbers. Matrices of this
type are usually well-conditioned. The accuracy of the
KLEENE algorithm is acceptable even for larger matrices.
In contrast, the divide & conquer algorithm performs bad
and the worst-case numerical accuracy is unacceptably

low for larger matrices. The solid line corresponds to a
matrix inversion based on a combination of the LAPACK
routines DGETRF / DGETRI and an additional iterative
improvement and is given for reference.

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

M
ea

n
O

f
R

es
id

u
a
ls
||
Â
−

1
A

−
I
||
∞

0 1 2 3 4 5 6 7 8 9 10

log
2
(dimA)

Figure 3: Numerical accuracy of the different matrix in-
version algorithms on a set of 100 sparse random matrices
obtained from randomly connected flow networks.

In Fig. 3 the same analysis was repeated for com-
partmental matrices obtained from randomly generated
ERDÖS-REYNI flow network graphs (Bolobás 2001) as-
suming dim(A) in- and effluxes and N(0, 1) random flux
values. The performance of all algorithms is very good.
This time, amazingly, the divide & conquer algorithm re-
turns the second best results.

Performance of Analytical Solutions

Figures 4, 5, and Fig. 6 compare the performance of
the analytical solutions with LAPACK’s DGETRF &
DGETRI (Anderson et al. 1999) and the state-of-the-art
sparse matrix library CSparse (Davis 2006). All bench-
marks were prepared on a 2 GHz Pentium M machine
with 2 GB of RAM. All analytical solutions are based on
the presented divide & conquer algorithm.

Figure 4 shows the results for the set of fully populated
random matrices. Because of the memory limitation dur-
ing compile-time it was possible to compose analytical
solutions for inverses of fully-populated matrices up to
dimension 160.

Figure 5 gives the results for the set of random
sparse matrices, again obtained from randomly connected
flow networks. The maximum dimension achievable for
sparse matrices (dim 2000) depends on the degree of
sparsity, which was adjusted to reflect a realistic network.
The size of the machine code generated from sparse and
fully populated matrices hitting the memory limit is com-
parable.

Finally, Fig. 6 shows the results for a realistic cascade
obtained from a metabolic network representing the cen-
tral metabolism of E. Coli. In contrast to the results pre-

0

10

20

30

40

50

60

70

80

90

100

R
u
n
n
in

g
T

im
e

[m
s]

0 50 100 160 200
dimA

0.45M
2M

3.5M

5.5M
8.1M

12M

16M

21M

28M

35M

44M

54M

65MDGETRI
CSparse

Mach.Code

Figure 4: Running times of LAPACK, CSparse, and
the generated machine code on fully populated matrices.
Code sizes of the machine codes are given in megabytes.

sented in figures 4 and 5, the code generation algorithm
worked on matrices kA(v) containing symbolic expres-
sions in its elements while CSparse worked on sparse
matrices containing double precision floating point val-
ues.

CONCLUSIONS

Typical sparse matrix algorithms are based on the anal-
ysis of a system’s non-zero pattern, or equivalently, the
system’s computational graph. The resulting techniques,
like fill-in reducing permutations or system decomposi-
tion, are often based on elaborate graph-theoretical algo-
rithms. Preconditioning and pivoting, on the other hand,
analyze the matrix elements in order to provide numerical
robustness. In contrast to the presented analytical matrix
inversion, all these techniques may be characterized as
top-down approaches.

Analytical solutions are constructed bottom-up using
simple rules, which results in highly complex tailor-made
solutions for a specific problem. Efficient handling of
the inherent complexity and the choice of the underlying
algorithm is crucial for the feasibility and the numerical
stability of the approach. The divide & conquer algorithm
qualifies in both aspects for the flow network problem.

Since the preparation of an analytical inverse may
take from seconds to several minutes the effort has to
be justified by the underlying problem (e.g. the use in
a parameter variation study) and analytical computation
is surely no option if an inverse is needed only once.
While the generated code for the analytical inverse of
fully populated matrices is slower than the LU algorithm
used in LAPACK (Fig. 4), it is about three times faster
than a state-of-the-art sparse matrix technique for ran-
domly generated sparse matrices (Fig. 5) and up to five
times faster for matrices obtained from a realistic net-
work, where symbolic equations can be provided (Fig. 6).

0

1

2

3

4

5

11

12

R
u
n
n
in

g
T

im
e

[s
]

10 200 500 1000 1500 2000
dimA

3.5M 13M 27M 48M 68M

≈ ≈≈
DGETRI
CSparse

Mach.Code

Figure 5: Running times of LAPACK, CSparse and
the generated machine code on sparse matrices obtained
from randomly connected flow networks with N(0, 1)
randomly distributed flow values.

FURTHER RESEARCH

The presented results are preliminary. Aiming to com-
pute only a subset of kx with the greatest possible ef-
ficiency the path tracing approach marked the starting
point for our research. For this reason the variants of the
classical Gauss algorithm, namely the branch-free vari-
ants of the LU and Gauss-Jordan algorithms, have not
been ranked yet.

Analytical computations require a new way of think-
ing. There is no immediate connection between the per-
formance of an analytical solution and the performance of
the algorithm that was used to generate the solution. First
results on algebraic differentiation show that the compu-
tation of derivatives is possible at little additional cost.
This is due to the fact that derivatives can be build by
reusing subexpressions of the original analytic solution.

Although the resulting machine code is rather small
the preparation of the analytical solutions consumes
much memory. First experiences with a garbage collec-
tion are promising and show that the compile-time mem-
ory requirements can be reduced drastically. Further re-
search will focus on improving the quality of the gener-
ated code and other fields of application.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling,
S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’
Guide. Philadelphia: SIAM, third ed.

Bolobás, B. 2001. Random Graphs. Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, 2nd ed.

Bruno, J. L., and Lassagne, T. 1975. The generation of optimal
code for stack machines. J. ACM, 22(3), 382–396.

0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

[m
s]

1 2 3 4 5 6 7 8 9 10 11
Cascade Level k

27M 19M

18M
13M

9.7M

5.1M

1.7M
0.3M

0.03M

3
5
7

8
4
5

1
2
8
6

1
4
4
0

1
2
8
4

9
3
4

5
3
7

2
2
9

6
7

1
2

1

Dimension of Cascade Level k, dim k
A

CSparse

Mach.Code

Figure 6: Running times on a realistic cascaded network
representing the central metabolism of E. Coli. Sparsity
increases monotonously with cascade level k and deter-
mines code size and running time.

Conway, J. H. 1971. Regular Algebra and Finite Machines.
Mathematics Series. Chapman and Hall.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems.
Fundamentals of Algorithms. SIAM.

George, A., and Liu, J. W. H. 1981. Computer Solution of
Large Sparse Positive Definite Systems. Prentice Hall Series
in Computational Mathematics.

Golub, G. H., and van Loan, C. F. 1996. Matrix Computa-
tions (Johns Hopkins Studies in Mathematical Sciences). The
Johns Hopkins University Press, third ed.

Isermann, N., Weitzel, M., and Wiechert, W. 2004. Kleene’s
theorem and the solution of metabolic carbon labeling sys-
tems. In German Conference on Bioinformatics, vol. 53 of
LNI, (pp. 75–84). GI.

Lehmann, D. J. 1977. Algebraic structures for transitive closure.
Theoretical Computer Science, 4(1), 59–76.

Muchnick, S. 1997. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. 2007. Numerical Recipes 3rd Edition: The Art of Sci-
entific Computing. Cambridge University Press, third ed.

Weitzel, M., Wiechert, W., and Nöh, K. 2007. The topology of
metabolic isotope labeling networks. BMC Bioinf., 8(315).

Wiechert, W. 2001. 13C metabolite flux analysis. Metababolic
Engineering, 3, 195–206.

Wiechert, W., and Wurzel, M. 2001. Metabolic isotopomer la-
beling systems. Part I: Global dynamic behaviour. Mathe-
matical Biosciences, 169, 173–205.

Zhang, F. (Ed.) 2005. The Schur Complement and Its Applica-
tions (Numerical Methods and Algorithms). Numerical Al-
gorithms. Springer Science+Business Media Inc.

