
Resource Sharing Usage Aware Resource Selection Policies for Backfilling Strategies

F. Guim 1, J. Corbalan 2 and J. Labarta 3

Barcelona Supercompuning Center

Jordi Girona 13, Barcelona, Spain
1francesc.guim@bsc.es

2julita.corbalan@bsc.es 3jesus.labarta@bsc.es

KEYWORDS

Resource Selection Policies, Resource Sharing Consid-

eration, Backfilling, Job Scheduling

1 ABSTRACT

Job scheduling policies for HPC centers have been ex-

tensively studied in the last few years, specially backfill-

ing based policies. Almost all of these studies have been

done using simulation tools. All the existent simulators

use the runtime (either estimated or real) provided in the

workload as a basis of their simulations. In our previous

work we analyzed the impact on system performance of

considering the resource sharing of running jobs includ-

ing a new resource model in the Alvio simulator.

In this paper we present two new Resource Selection

Policies that have been designed using the conclusions

reached in our preliminary work. First, the Find Less

Consume Distribution that attempts to minimize the job

runtime penalty that an allocated job will experience.

Based on the utilization status of the shared resources

in current scheduling outcome and job resource require-

ments, the LessConsume policy allocates each job pro-

cess to the free allocations in which the job is expected

to experience the lowest penalties. Second, we have also

described the Find Less Consume Threshold Distribu-

tion selection policy which finds an allocation for the job

that satisfies the condition that the estimated job runtime

penalty factor is lower than a given value Threshold.

2 INTRODUCTION

Several works focused on analyzing job scheduling poli-

cies have been presented in the last decades. The goal

was to evaluate the performance of these policies with

specific workloads in HPC centers. A special effort

has been devoted to evaluating backfilling-based (Chi-

ang et al. (2002)Tsafrir et al. (2005)) policies because

they have demonstrated an ability to reach the best per-

formance results (i.e: Feitelson et al. (2004) or Talby and

Feitelson (1999)). Almost all of these studies have been

done using simulation tools. To the best of our knowl-

edge, all the existent simulators use the runtime (either

estimated or real) provided in the workload as a basis of

their simulations. However, the runtime of a job depends

on runtime issues such as the specific resource selection

policy used or the resource jobs requirements.

In Guim et al. (2007) we evaluated the impact of con-

sidering the penalty introduced in the job runtime due to

resource sharing (such as the memory bandwidth) in sys-

tem performance metrics, such as the average bounded

slowdown or the average wait time, in the backfilling

policies in cluster architectures. To achieve this, we de-

veloped a job scheduler simulator (Alvio simulator) that,

in addition to traditional features, implements a job run-

time model and resource model that try to estimate the

penalty introduced in the job runtime when sharing re-

sources. In this work we have only considered in the

model the penalty introduced when sharing the memory

bandwidth of a computational node.

Results showed a clear impact of system performance

metrics such as the average bounded slowdown or the av-

erage wait time. Furthermore, other interesting collateral

effects such as a significant increment in the number of

killed jobs appeared. Moreover the impact on these per-

formance metrics was not only quantitative.

In this paper we describe two new resource selection

policies that are designed to minimize the saturation of

shared resources. The first one, the Find Less Consume

Allocation (henceforth referred to as LessConsume) at-

tempts to minimize the job runtime penalty that an al-

located job will experience. It is based on the utiliza-

tion status of shared resources in the current scheduling

outcome and the job resource requirements. The sec-

ond once, the Find Less Consume Threshold Distribution

(henceforth referred to as LessConsumeThreshold) , finds

an allocation for the job that satisfies the condition that

the estimated job runtime penalty factor is lower than a

given value Threshold. This resource selection policy has

been designed to provide a more sophisticated interface

between the local resource manager and the local sched-

uler in order to find the most appropriate allocation for a

given job.

The rest of the paper is organized as follows: section

3 briefly introduce the resource and runtime models that

we proposed; next, the two resource selection policies we

propose are described; in section 6 we present their eval-

uation; and finally in section 7 we present the conclusions

of this work.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

3 MODELING RUNTIME PENALTY IN ALVIO

In this section we provide a brief characterization for the

runtime model that we designed for evaluate the resource

sharing in the Alvio simulator. In Guim et al. (2007) we

present a detailed description of the model and its evalu-

ation.

3.1 The Job Scheduling Policy

The job scheduling policy uses as input a set of job

queues and the information provided by the Local Re-

source Manager (LRM) that implements a Resource Se-

lection Policy (RSP). It is responsible to decide which of

the jobs that are actually witting to be executed have to

be allocated to the free resources. To do this, consider-

ing the amount of free resources it selects the jobs that

can run and it requires to the LRM to allocate the job

processes.

3.2 The Resource Selection Policy

The Resource Selection Policy, given a set of free pro-

cessors and a job α with a set of requirements, decides to

which processors the job will be allocated. To carry out

this selection, the RSP uses the Reservation Table (RT).

The RT represents the status of the system at a given mo-

ment and is linked to the architecture. The reservation

table is a bi dimensional table where the X axes represent

the time and the Y axes represent the different processors

and nodes of the architecture. It has the running jobs al-

located to the different processors during the time. One

allocation is composed of a set of buckets1 that indicate

that a given job α is using the processors {p0, .., pk} from

start time until end time.

An allocation is defined by: allocation{α} =
{

[t0, t1] ,P =
{

p{g,nh}, ..p{s,nt}

}}

and indicates that the

job α is allocated to the processors P from the time t0
until t1. The allocations of the same processors must sat-

isfy that they are not overlapped during the time.

3.3 Modeling the conflicts

The model that we have presented in the previous section

has some properties that allows us to simulate the behav-

ior of a computational center with more details. Differ-

ent resource selection policies can be modeled. Thanks

to the Reservation Table, it knows at each moment which

processors are used and which are free.

Using the resource requirements for all the allocated

jobs, the resource usage for the different resources avail-

able on the system is computed. Thus, using the Reserva-

tion Table, we are able to compute, at any point of time,

the amount of resources that are being requested in each

node.

1The b(i,ti0 ,ti1
) bucket is defined as the interval of time [tx, ty] associ-

ated to the processor pi

In this extended model, when a job α is allocated dur-

ing the interval of time [tx, ty] to the reservation table to

the processors p1, .., pk that belong to the nodes n1, ..,n j,

we check if any of the resources that belong to each node

is overloaded during any part of the interval. In the affir-

mative case a runtime penalty will be added to the jobs

that belong to the overloaded subintervals. To model

this properties we defined the Shared Shadows and the

penalty function associated to it.

The Shared Windows

A Shared Window is an interval of time [tx, ty] associated

to the node n where all the processors of the node sat-

isfy the condition that: either no process is allocated to

the processor, or the given interval is fully included in a

process that is running in the processor.

The penalty function

This function is used to compute the penalty that is asso-

ciated with all the jobs included to a given Shared Win-

dow due to resources overload. The input parameters for

the function are:

• The interval associated to the Shared Window [tx, ty].

• The jobs associated to the Shared

Window{α0, ..,αn}

• The node n associated to the Shared Window with

its physical resources capacity.

The function used in this model is defined as 2:

∀res ∈ resources(n) → demandres =
{α0,..,αn}

∑
α

rα,res (1)

Penalty =
res

∑
resources(n)

(
max(demandres,capacityres)

capacityres

−1)

(2)

PenlizedTime = (ty − tx)∗Penalty (3)

First for each resource in the node the resource usage

for all the jobs is computed. Second, the penalty for each

resource consumption is computed. This is a linear func-

tion that depends on the overload of the used resource.

Thus if the amount of required resource is lower than the

capacity the penalty will be zero, otherwise the penalty

added is proportional to the fraction of demand and avail-

ability. Finally, the penalized time is computed by multi-

plying the length of the Shared Window and the penalty.

This penalized time is the amount of time that will be

added the node penalized time to all the jobs that belong

to the Window. This model has been designed for the

2Note that all the penalty, resources, resource demands and capac-

ities shown in the formula refer to the node n and the interval of time

[tx, ty]. Thereby, they are not specified in the formula

memory bandwidth shared resource and can be applica-

ble to shared resources that behave similar. However, for

other typology of shared resources, such as the network

bandwidth, this model is not applicable. Future work will

be focused on modelizing the penalty model for the rest

of shared resources of the HPC local scenarios that can

impact in the performance of the system.

For compute the penalized time that is finally associ-

ated to all the jobs that are running: first, the shared win-

dows for all the nodes and the penalized times associated

with each of them are computed; second the penalties of

each job associated with each node are computed adding

the penalties associated with all the windows where the

job runtime is included.

4 THE LESSCONSUME RESOURCE SELEC-

TION POLICY

The core algorithm of this selection policy is similar to

the the First Fit resource selection policy. This last one

selects the first α{CPUS,p} where the job can be allocated.

However, in contrast to this previous algorithm, the Less-

Consume policy, once the base allocation is found, the

algorithm computes the penalties associated with the dif-

ferent processes that would be allocated in the reserva-

tion. Thereafter it attempts to improve the allocation by

replacing the selected buckets (used for create this initial

allocation) that would have higher penalties with buckets

that can be also selected, but that have not been evaluated.

The LessConsume algorithm will iterate until the rest of

the buckets have been evaluated or the penalty factor as-

sociated to the job is 1 (no penalty). 3

The LessConsume policy, given a required start time

treq and given the job α with a requested runtime

of α{RunTime,rt} and number of requested processors

α{CPUS,p}, finds in the reservation table the α{CPUS,p}

processor allocation that tries to minimize the job run-

time penalties due to resource sharing saturation closest

to the treq. To do this, the selection policy follows these

steps:

1. For each processor pi in the reservation table, the

resource selection policy selects the interval of time

[txi
, tyi

] that is closest to the treq that satisfies it: no

process is allocated to the processor during the inter-

val and its length is equal or greater to α{RunTime,rt}

. All the buckets associated to the selected intervals

of time are added to the set Buckets where they are

strictly ordered by the interval start time.

2. Given all the different buckets
{

b(1,t10
,t11

), ..,b(N,tN0
,tN1

)

}

associated with the

reservation table that are included in the set Buck-

ets, the resource selection policy will select the first

α{CPUS,p} buckets that satisfy the condition that

3The penalty factor is computed:

PenaltyFactorα =
α{RunTime,rt}+α{PenalizedRunTime,prt}

α{RunTime,rt}

their interval of time shares at least the runtime

required by the job.

3. In the case that in step 2 the number of buckets that

satisfied the required conditions was lower than the

required processors, this implies that there were not

enough buckets which shared the required amount

of time. In these situations, the first bucket b(i,ti0 ,ti1)

with start time greater than to treq is selected, the treq

is updated as treq = ti0 and the steps 1, 2 and 3 are

iterated again.

At this point, from the buckets obtained in the first

step we will have three different subsets:

• The buckets Πdisc =
{

b(k,tk0
,tk1

), ..,b(l,tl0 ,tl1
)

}

that have already been selected since they can-

not form part of a valid allocation for the spec-

ified requirements.

• The buckets Πsel =
{

b(m,tm0
,tm1

), ..,b(n,tn0
,tn1

)

}

that have been selected for the base allocation

and that conform to a valid allocation which

satisfy the requirements for the job. In the

case that the penalties of this allocation can-

not be improved by a valid allocation, this set

of buckets will be used.

• The buckets ΠtoCh =
{

b(o,to0
,to1

), ..,b(p,tp0
,tp1

)

}

that have not

already been evaluated. These buckets will

be used to try to improve the base allocation.

Thus, the LessConsume policy will try to find

out if any of these buckets could replace any

of the already selected buckets reducing the

estimated penalty factor of the job.

4. For each of the buckets in the set of the selected

buckets Πsel , the algorithm checks the estimated

penalty that a process of the given job would achieve

if it were allocated to the given bucket. Each of the

selected buckets has an associated penalty factor. If

all the buckets have an associated penalty of 1 the al-

location definition based on these buckets is defined

and returned. Otherwise, the last valid allocation is

initialized based on this set of buckets and the selec-

tion process goes ahead.

5. For each bucket b(r,tr0
,tr1

) in the set of buckets ΠtoCh:

(a) If the number of buckets in the set Πsel is lower

than the number of requested processors, the

bucket is added to the set and the next iteration

continues.

(b) Similar to the previous step, the algorithm

evaluates the penalty penaltyr that a process

of the job would have if this bucket were used

to allocate it.

(c) The bucket bMax(p,tp0
,tp1

) of the set Πsel with

the highest penalty penaltyp is selected.

(d) In case that the penalty that penaltyr is lower

than the penalty penaltyp, on one hand the

bucket b(r,tr0
,tr1

) is added to the set Πsel and re-

moved from the set ΠtoCh. On the other hand,

the bucket bMax(p,tp0
,tp1

) is removed from the

Πsel and added to the set Πdisc. Note that at

this point the inserted bucket may not share the

interval required to allocate the job to the rest

of the buckets of the set Πsel .

i. The buckets of the set Πsel that do not

share the required time are removed from

this set and added to the Πdisc.

ii. If the number of buckets of the Πsel it

is the number of requested processors the

last valid allocation is built based on this

set. If the current penalty of all the buck-

ets is 1, the current set of buckets is re-

turned as the allocation. Otherwise the

algorithm goes ahead with the next iter-

ation to evaluate the next bucket of the set

ΠtoCh.

6. The last valid allocation is returned.

As an example, suppose that the current scheduling

outcome is the one presented in the figure 1 and that an

allocation has to be found for a job with requested pro-

cessors α{CPUS,3} and runtime α{RunTime,20secs}.

1. Firtsly, in the step 1 the LessConsume

algorithm would define the set ΠtoCh =
{b1−3,b7,b17,b4−6,b11−12,b14−16,b13,b18}.

2. In the step 2 the three buckets 1, 2 and 3 would be

selected. Note that all of them satisfy the condition

that they all share an interval of time greater than

the required runtime.

3. In the step 3 a valid allocation is created with the

buckets selected in the previous step. Thus, the set

of buckets Πsel is composed of Πsel = {b1,b2,b3}.

Note that these buckets are removed from the set

ΠtoCh.

4. In the step 4 the penalty associated with each of the

buckets is computed. In the example, due to the

resource saturation, the three buckets have an as-

sociated penalty of penalty1,penalty2 and penalty3

greater than one (marked with a gray area in the fig-

ure 2). With these buckets the basic allocation is

created because they share the required amount of

time.

5. In step 5 the algorithm has to evaluate whether the

current allocation can be improved by replacing any

of the buckets of {b1,b2,b3} by any of the buckets

that have not been evaluated ΠtoCh.

(a) As the current number of buckets in Πsel is

equal to the requested processors the algo-

rithm continues the iteration.

(b) The bucket with the maximum penalty is se-

lected b1 (> 1).

(c) In the first iteration the bucket b7 is evalu-

ated. The penalty factor that processing the

job α would experience if it were allocated us-

ing this bucket would be penalty7 = 1.

(d) As the penalty penalty7 is lower than the

penalty1, on one hand the bucket b1 is re-

moved form the Πsel and inserted to Πdesc. On

the other hand the bucket b7 is removed from

the ΠtoCh and inserted in Πsel . The reservation

table at this point is shown in figure 3. Since

not all the penalties of the selected buckets

are 1 the algorithm goes ahead with the next

bucket.

(e) As in the first iteration, since the current num-

ber of buckets in Πsel is equal to the requested

processors the algorithm continues the itera-

tion.

(f) The bucket with the maximum penalty is se-

lected b2.

(g) In the second iteration, bucket b17 is evalu-

ated. The penalty factor that a process of the

job α would experience if it were allocated us-

ing this bucket would be penalty17 = 1.

(h) As the penalty penalty17 is lower than the

penalty2, on one hand the bucket b2 is re-

moved form the Πsel and inserted to Πdesc. On

the other hand the bucket b17 is removed from

the ΠtoCh and inserted in Πsel . The reservation

table at this point is shown in figure 4. Since

all the penalties of the selected buckets is 1, the

algorithm returns the allocation based on the

currently selected buckets, because they pro-

vide the minimum penalty.

Figure 1: Less Consume Example

In the previous example, the start time for the alloca-

tion computed using the LessConsume resource alloca-

tion policy is the same as would have been obtained by

using a First Fit resource selection policy. Thus, in the

Figure 2: Less Consume Example - General Step 1

Figure 3: Less Consume Example - General Step 2

previous example, the start time remained equal to the

First Fit RSP, and the penalty associated with the job has

been reduced. However, in some situations, the Less-

Consume policy may provide allocations with later start

times than those using First Fit. For instance, if in this

example the process allocated to the bucket b17 had ex-

perimented a penalty of 1.5 the LessConsume algorithm

would have iterated again looking for an allocation with

less penalty factor but later start time.

5 THE LESSCONSUME THRESHOLD RE-

SOURCE SELECTION POLICY

As we have shown in the example, in some situations this

policy not only minimizes the penalized factor of the al-

located jobs, but it also provides the same start times as

the first fit allocation policy, which in practice provides

the earliest possible allocation start time. However, in

many situations the allocation policy of the lower penalty

factor provides a start time that is substantially later than

that achieved by a FirstFit allocation. To avoid circum-

stances where the minimization of the penalty factor re-

sults in delays in the start time of scheduled jobs, we

have designed the LessConsumeThreshold RSP. This is a

Figure 4: Less Consume Example - General Step 3

parametrized selection policy which determines the max-

imum allowed penalty factor allocated to any given job.

This resource selection policy has been mainly de-

signed to be deployed in two different scenarios. In the

first case, the administrator of the local scenario speci-

fies in the configuration files the penalty factor of a given

allocated job. This factor could be empirically deter-

mined by an analytical study of the performance of the

system. In the second, more plausible, scenario, the local

scheduling policy is aware of how this parametrized RSP

behaves and how it can be used by different factors. In

this second case the scheduling policy can take advantage

of this parameter to decide whether a job should start in

the current time or whether it could achieve performance

benefits by delaying its start time. In the following sub-

section we describe a backfilling based resource selection

policy that uses the LessConsumeThreshold RSP to de-

cide which jobs should be backfilled and how to allocate

the jobs.

The main differences between the two policies is that

in the steps 4) and 5.d.2) if the number of buckets of the

set Πsel is the required processors for the job, and they

have an associated penalty factor lower or equal to the

specified Threshold, then the allocation will be defined

and returned based on the current set. Note, that in the

LessConsume policy the algorithm would iterate evalu-

ating the rest of the free buckets. On the other hand, note

that policy enforces that the job allocation penalty must

be lower than the provided threshold. Thus if in the step

6) of the algorithm an allocation is found but has a higher

penalty the treq will be updated as in the step 4) and the

process would be iterated again. Note that the LessCon-

sume would be stopped at this point due to it has a valid

allocation with the lowest penalty that could achieve by

optimizing the First First allocation.

EXPERIMENTS

In this paper we evaluate the effect of considering the

memory bandwidth usage when simulating the Shortest

Job Backfilled Firts policy under several workloads and

both LessConsume resource selection policies (the Less-

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 8,8 8 7,6 7,8 7,9 8,1

M 4,8 3,8 3 3,5 4,0 3,9

L 0,9 0,7 0,5 0,7 0,6 0,8

SDSC

H 12 11 8,3 10 11 12

M 6,7 6,1 4,7 4,8 5,6 5,9

L 1,4 1,1 0,7 0,8 0,9 1,1

Table 1: Percentage of Penalized Runtime - 95th Per-

centile

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 4,2 5,9 7,92 6,1 5,3 5,2

M 2,8 3,5 4,22 3,8 3,6 3,5

L 2,2 3,12 3,62 3,8 3,4 3,5

SDSC

H 99 110 128 115 109 106

M 55 68 74 72 71 68

L 37 45 57 52 42 42

Table 2: Bounded-Slowdown - 95th Percentile

ConsumeThreshold with the thresholds 1, 1,15, 1,25

and 1,5). Two different workloads from the Feitelson

workload archive have been used. For each of them

we have generated three different scenarios: with high

(HIGH), medium (MED), and low (LOW) percentage of

jobs with high memory demand.

5.1 Workloads

For the experiments we used the cleaned Tsafrir and Feit-

elson (2003) versions of the workloads SDSC Blue Hori-

zon (SDSC-BLUE) and Cornell Theory Center (CTC)

SP2. For the evaluation experiments explained in the

following section, we used the first 10000 jobs of each

workload. Based on these workload trace files, we gener-

ated three variations for each one with different memory

bandwidth pressure:

• HIGH: 80% of jobs have high memory bandwidth

demand, 10% with medium demand and 10% of low

demand.

• MED: 50% of jobs have high memory bandwidth

demand, 10% with medium demand and 40% of low

demand.

• LOW: 10% of jobs have high memory bandwidth

demand, 10% with medium demand and 80% of low

demand.

5.2 Architecture

For each of the workloads used in the experiments we de-

fined an architecture with nodes of four processors, 6000

MB/Second of memory bandwidth, 256 MB/Second of

Network bandwidth and 16 GB of memory. In addition

to the SWF Chapin et al. (1999) traces with the job defini-

tions we extended the standard workload format to spec-

ify the resource requirements for each of the jobs. Cur-

rently, for each job we can specify the average memory

bandwidth required (other attributes can be specified but

are not considered in this work). Based on our experi-

ence and the architecture configuration described above,

we defined that a low memory bandwidth demand con-

sumes 500 MB/Second per process; a medium memory

bandwidth demand consumes 1000 MB/Second per pro-

cess; and that a high memory bandwidth demand con-

sumes 2000 MB/Second per process.

6 EVALUATION

Table 2 present the 95th percentile of the bounded slow-

down for the CTC and SDSC centers for each of the

three workloads for the FirstFit, LessConsume and Less-

ConsumeThreshold resource selection policy. The last

one was evaluated with four different factors: 1, 1,15,

1,25 and 1,5. In both centers the LessConsume policy

performed better than the LessConsumeThreshold with a

factor of 1. One could expected that the LessConsume

should be equivalent to use the LessConsumeThreshold

with a threshold of 1. However, note that this affir-

mation would be incorrect. This is caused due to the

LessConsume policy at the step 6) of the presented al-

gorithm will always stop. The goal of this policy is to

optimize the First Fit allocation but without carry out a

deeper search of other possibilities. However, the Less-

ConsumeThreshold may look further in the future in the

case that the penalty is higher than the provided thresh-

old. Thereby, this last one is expected to provide higher

wait time values. On the other hand, as we had expected,

the bounded slowdown decreases while increasing the

factor of the LessConsumeThreshold policy. In general,

the ratio of increment of using a factor of 1 and a factor

of 1,5 is around a 20% in all the centers and workloads.

The performance of these two resource policies, com-

pared to the performance of the First Fit policy, shows

that LessConsume policies give an small increment in the

bounded slowdown. For instance, in the CTC high mem-

ory pressure workload the 95th percentile of the bounded

slowdown has increased from 4,2 in the First Fit to 5,94

in the LessConsume policy, or to 7,92 and 5,23 in the

LessConsumeThreshold with thresholds of 1 and 1,5 re-

spectively.

The 95th percentage of penalized runtime is presented

in the table 1. The penalized runtime clearly increases by

incrementing the threshold. For instance, the 95th Per-

centile of the percentage increases from 8,31 in the SDSC

and the high memory pressure workload with a factor of

1 until 11,64 with a factor of 1,5. The LessConsume,

different from to the two previously described variables,

shows similar values to the LessConsumeThreshold with

a factor of 1,5. This percentage of penalized runtime was

reduced with respect to the First Fit when using all the

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 428 120 57 70 87 97

M 247 101 76 77 102 99

L 64 45 36 38 58 52

SDSC

H 475 105 87 130 127 130

M 255 89 76 79 103 145

L 51 34 22 27 33 41

Table 3: Number of Killed Jobs 95th Percentile

different factors in both centers.

Figure 5: BSLD versus Percentage of Penalized Runtime

- CTC Center

The number of killed jobs is the performance variable

that showed most improvement in all the memory pres-

sure workloads. The number of killed jobs is qualita-

tively reduced with the LessConsumeThreshold with a

factor of 1: for example with the high memory pressure

workload and the CTC center, the number of killed jobs

was reduced from 428 with the First Fit to 70. The other

threshold factors also showed clear improvements; the

number was halved. As to the LessConsume policy, the

number of killed jobs was reduced by a factor of 4 com-

pared to the First Fit and the high and medium memory

pressure workloads of both centers.

The LessConsume policy shows how the percentage

of penalized runtime and number of killed jobs can be

reduced in comparison to the First Fit and First Continu-

ous Fit, by using this policy with EASY backfilling. Fur-

thermore, the LessConsume threshold shows how, with

different thresholds, performance results can also be im-

proved. Relaxing the penalty factor results in better per-

formance of the system, and in an increase in the number

of killed jobs and the percentage of penalized runtime.

The LessConsume policy shows similar performance re-

sults as the LessConsumeThreshold with factors of 1,25

and 1,5.

Figures 6 and 7 present the BSLD of the LessCon-

sume policies against the percentage of penalized run-

time of the jobs and the number of killed jobs. The goal

of these figures is to show the chance that the LessCon-

sumeThreshold and LessConsume policies have to im-

Figure 6: BSLD versus Killed Jobs - CTC Center

prove the performance of the system while achieving an

acceptable level of performance. As can be observed in

figures 6 and 5 a good balance is achieved in the CTC

center using the threshold of 1,15 where both the num-

ber of Killed Jobs and the percentage of penalized run-

time converge are in acceptable values. In the case of

the SDSC center, this point of convergence is not as

evident as the CTC center. Considering the tendency

of the bounded slowdown, it seems that the LessCon-

sumeThreshold with a factor of 1 is an appropriate con-

figuration for this center, due to the fact that the penalized

runtime and the number of killed jobs presents the lowest

values, and the bounded slowdown shows values that are

very close to the factors of 1,15 and 1,25.

Figure 7: BSLD versus Killed Jobs - SDSC Center

7 Conclusions

In this paper we have shown how the performance of the

system can be improved by considering resource sharing

usage and job resource requirements by using the two

LessConsume resource selection policies that consider

the resource sharing when the jobs are allocated.

We have described the Find Less Consume Distribu-

tion that attempts to minimize the job runtime penalty

that an allocated job will experience. Based on the uti-

lization status of the shared resources in current schedul-

ing outcome and job resource requirements, the Less-

Consume policy allocates each job process to the free al-

locations in which the job is expected to experience the

lowest penalties. We have also described the Find Less

Consume Threshold Distribution selection policy which

finds an allocation for the job that satisfies the condition

that the estimated job runtime penalty factor is lower than

a given value Threshold. This resource selection policy

has been designed to provide a more sophisticated inter-

face between the local resource manager and the local

scheduler in order to find the most appropriate allocation

for a given job. Thus, this RSP can be used by the sched-

uler to find an allocation for a given job in an iterative

process until the most appropriate allocation is found.

We have evaluated the impact of using the LessCon-

sume and LessConsumeThreshold (Thresholds 1, 1.15,

1.25 and 1.5) with the Shortest Job Backfilled first. In

this evaluation, we have used the workloads described

in the previous chapter where we evaluated the impact

of memory bandwidth sharing on the performance of the

system. Both resource allocation policies show how the

performance of the system can be improved by consid-

ering where the jobs are finally allocated. The bounded

slowdown of both policies show slightly higher values

than those achieved by a First Fit resource allocation pol-

icy. However, they show a very important improvement

in the percentage of penalized runtimes of jobs, and more

importantly, in the number of killed jobs, showing a very

good balance in the increment of the BSLD. Both have

reduced by four or even six times the number of killed

jobs in all the evaluated workloads. Note that each of

the indicated thresholds depends on the center. In the

SDSC the a threshold of 1 or 1.15 shows a good balance

of performance (BSDL) and number of killed jobs and

percentage of penalized runtime, and in the CTC center

the appropriate threshold is 1.5.

ACKNOWLEDGEMENTS

This paper has been supported by the Spanish

Ministry of Science and Education under contract

TIN200760625C0201, the under grant BES-2005-7919

and the IBM/BSC MareIncognito project.

REFERENCES

Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P.,

Leutenegger, S. T., Schwiegelshohn, U., Smith, W.,

and Talby, D. (1999). Benchmarks and standards for

the evaluation of parallel job schedulers. Job Schedul-

ing Strategies for Parallel Processing, vol 1659:pp.

66–89.

Chiang, S.-H., Arpaci-Dusseau, A. C., and Vernon, M. K.

(2002). The impact of more accurate requested run-

times on production job scheduling performance. 8th

International Workshop on Job Scheduling Strategies

for Parallel Processing, Vol. 2537:103 – 127.

Feitelson, D. G., Rudolph, L., and Schwiegelshohn, U.

(2004). Parallel job scheduling - a status report. Job

Scheduling Strategies for Parallel Processing: 10th In-

ternational Workshop, JSSPP 2004, 3277 / 2005:9.

Guim, F., Corbalan, J., and Labarta, J. (2007). Modeling

the impact of resource sharing in backfilling policies

using the alvio simulator. MASCOTS.

Talby, D. and Feitelson, D. (1999). Supporting priorities

and improving utilization of the ibm sp scheduler us-

ing slack-based backfilling. Parallel Processing Sym-

posium, pages pp. 513–517.

Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2005). Back-

filling using runtime predictions rather than user esti-

mates. Technical Report 2005-5, School of Computer

Science and Engineering, The Hebrew University of

Jerusalem.

Tsafrir, D. and Feitelson, D. G. (2003). Workload

flurries. Technical report, School of Computer Sci-

ence and Engineering and The Hebrew University of

Jerusalem.

