
DISTRIBUTED REAL-TIME RAILWAY SIMULATOR

Mihai Hulea, Camelia Avram, Tiberiu Letia, Dana Muresan, Sergiu Radu
Technical University of Cluj-Napoca, C. Daicoviciu street, nr. 15, Cluj-Napoca, Romania

{mihai.hulea, camelia.avram, tiberiu.letia}@aut.utcluj.ro

KEYWORDS
Railway traffic, real time simulation, distributed
systems.

ABSTRACT

The problem of control and management of railway
transportation is a complex task with major outcomes
in a modern society. Trains are suitable for transporting
peoples and goods with a good trade-off between cost
and rapidity. A railway system consists of a network of
tracks, list of stations, safety devices (signals, sensors,
etc) and a set of trains. Trains moves from one station
to other along the network. Distributed applications are
applicable in case of large systems.

INTRODUCTION

Railways are perceived as the most efficient means of
mass passenger transportation. In the case of land
based freight movements, railways are usually at a
competitive advantage relative to road transport for the
non-urban medium to long distances, bulk and
containerized tasks. The operations of railway systems
involve multi-disciplinary practices, ranging from
business to transport operations and engineering (Ho et
al 2004).
Many railway systems are still state-owned, but the
privatization of various extents has been going on in
many countries (Zimmermann et al 2003). The newly
evolved private companies assume different roles
within the operational chart of a railway system.
Indeed, more than one company may take on the same
role and compete with each other, which is one of the
supposed advantages of privatization. A number of
non-privatized railway lines are also contemplating
decentralization in some way so that local authorities
or contracting companies are running the rail services.
As a result, there are many parties, such as track
owners and service providers, working together
(collaborating and/or competing) to provide such
services that the overall business and engineering
objectives are considered and balanced, as well as
fulfilling their own interests and duties. In order to
study the behavior of this system with multiple,
interactive and autonomous parties, agent-oriented
technology offers the framework for modeling. Each
party is represented by an independent agent who is
equipped with its objectives, intelligence and
autonomy (Ho et al 2004; Cuppari et al 1999; Faber et
al 2006).

The increase demand of short-term train schedules by
Transport Operators highlights the necessity of
automated tools for train traffic decision support. When
the number of trains running on a railway line and the
availability of tracks are known on day by day basis,
decision support systems can help in maximizing the
demand granting and optimizing the traffic flow.
(Cuppari et al 1999)
The issue in railway simulation is to let trains move
through the network based on their time table and to
check if deadlocks appears. Also the simulator can be
used to check the performances of different dynamic
control algorithms before implement them in the real
field. The simulators can be used also for training the
railway operators.
As stated in (Ferschea 2005) the fundamental
approaches for simulating systems are continuous vs.
discrete; event and time driven vs. event driven. In
continuous event simulation the state change
continuously in time, while in a discrete event
simulation the events happen instantly at a fixed
moment in time. The proposed approach of this paper
is a time driven simulation in which the simulator
update the state of the system at fixed point in time
based on a given pulse clock. For solving very large
railway simulation problems a distributed architecture
approach must be considered. The main reasons for
this are: scalability, performance and reliability.
 The paper proposes a distributed time driven generic
simulation system suitable for testing various routing
and planning algorithms. By generic is meant that the
simulator is able to take a configuration as input in
form of the XML structures therefore not being tied by
a static railway structure. The simulator updates time in
discrete steps. One basic requirement needed to be
fulfilled by the time update method is to synchronize
it’s time update interval with other simulator instances.
It should not be possible for one simulator to progress
faster than other simulators. Taking into account the
discrete nature of the proposed simulator, each entity in
the system should update his state on each time step.
Tow possible approaches can be identified to
accomplish this. This first approach is a parallel update
where all entities update states concurrently. With this
method extra care should be taken in order to
synchronize updating threads and to prevent data
inconsistency. The second approach is a sequential
method where all entities are updated one after another.
The proposed simulation architecture uses the
sequential method.
The simulator provides a structure communication
module through which other applications (like

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

controller, monitoring and information and advisory
system) can send commands to the railway objects
(switches, signals, etc.) and read the current state of the
different railway objects (sensors, signals, trains, etc).
The system also integrates a GPS emulator which can
be queried in order to obtain current train coordinates
and speed. The simulator instances communicate
through a communication and coordination module.
The issue of railway simulation is to virtually let trains
run through the network and to check whether the
timetable is verified or stable (H. Schlenker 2005).

STATE OF THE ART

Modeling behavioral characteristics is a key issue of
Rail way Intelligent Safety Guarantee System (RISGS)
presented in (Cai et al 2006). A multi-agent simulation
system in RISGS is considered and the proposed model
is evaluated in a simulated experiment. This model
incorporates the philosophy of object oriented
concepts, available Petri-nets analysis tools and multi-
agent techniques. The analysis results indicate this
method can provide effective judgments without
deadlocks, and improve complicated characteristics
description about intelligence, autonomy and security.
Using parallel processing reduce the computing time
and therefore is suitable for building real-time
simulators and present different issues related to
solving a power distribution system with parallel
computing based on a multiple-CPU server and they
concentrate, in particular, on the speed-up performance
(Fun et al 2000). The model presented in [Bon, 2000]
was initially based on the track analyzer method
developed by Volpe National Transportation Systems
Center, but was significantly enhanced in order to
provide accurate predictions over a wider variety of
vehicle behavior and to fulfill the real time constraints.
Several models are described in literature and some
programming constraints for the routing and
scheduling of trains running through a junction are
taken into account (Rodriguez 2005). The model uses
input data from relevant time events of train runs
calculated by a simulator. The model can be integrated
into a decision support system used by operators who
make decisions to change train routes or orders to
avoid conflicts and delays.
Hybrid Petri nets can be used to simulate the traffic and
to evaluate the performance of the control system.
(Kaakai et al 2007) propose a simulation model based
on hybrid Petri nets able to carry out performance
evaluation procedures in order to increase the traffic
safety.

DESIGN OF THE SIMULATOR

Railway structure modeling

XML Schema is used to describe the structure of the
document containing the railway network structure. In

this section the elements used to describe the network
are presented.
The root of the XML document is the railmap element
which contains all other elements which define a
railway network.
The following types of railway elements are defined:
gate, connectionGate, segment, signal, switch and
sensor. Each element has a unique id and is stored in
the element ID attribute. Also all elements have tow
attributes (posX and posY) which store the location of
the elements and are used for displaying them inside
the simulator graphical user interface.

A gate represents a connection point between tow
segments. A special type of gate is a connectionGate
which is used to define connectivity between segments
located in the networks managed by different
simulators. This type of gates are located at the border
of the railway network, and when the train pass a
connectionGate it will be transferred to the remote
network in a position which correspond to the remote
connectionGate identified by the local connectionGate.

A segment represents a railway track and is
delimited by tow gates named gate1 and gate2. A
convention is maid that the moving direction from
gate1 to gate2 is the positive direction and is coded
with the value 1 while moving from gate2 to gate1 is
considered negative direction and is noted with -1.
The railway switch is modeled by switch element. A
switch element is composed of a set of gates and has at
a moment of time one active connection which allows
a train to pass from one segment to another segment.
The switch can be commuted in order to change the
connected segments.

The signal element models a railway semaphore. The
signals can have 2 possible states: green state and red
state. Signals are attached to segments and are
identified by the gate where are located and by the
direction from which they can be seen.
The sensor element models a presence sensor which
can be installed on any position on the road network.
The sensor is activated when the train passes over it.
Based on the presented XSD schema, the XML files
are created representing various railway network
structures. When a simulator instance is launched it
will load a railway network located in a XML file.

System Architecture

The paper proposes a distributed simulator architecture
in which each station in a road network is handled by
one simulator. The simulators are interconnected and
communicate between each others. The UML
component diagrams in Figure 1 presents the general
simulator software architecture.

Figure 1: Simulator general software architecture.
The railway network structure is loaded from an XML
file by the configuration module. The core of the
configuration module is the RailMapLoader which uses
a XML parser for interpreting the structure XML file
and creating a structure of objects representing the
railway network. The UML diagram presented in the
Figure 2 describes the structure of objects used to
model the railway network.

The RailwayMap class is a container class which
stores the structure of the railway network and the
current state. The simulator engine accesses the
internal data and alters the state of the network through
a set of function defined in the following modules:
StructureQuer, DataTransformtion, SingalReceive and
SignalApply.

The communication between simulator instances is
realized through CommServer and CommClient
modules which use TCP\IP protocol in order to
exchange messages. The serialization mechanism is
used for sending messages. When a train reach the
border of the network controlled by a simulator it will

be sent to the corresponding remote simulator as stated
in the network structure connection rules (this rules are
set in the connectionGate elements presented in the
previous section).

Moving trains and controlling structure states inside
the network are accomplished by the simulator engine
using the TrainMove and CollisionDetection modules.
On each step the next position of the trains will be

calculated taking into account the following aspects:
the dynamic train characteristics and the current status
of the railway objects (the state of signals, semaphores
and switches). The CollisionDetection implements an
algorithm for detecting collision between trains which
are moving on the same segment.

Figure 2: Railway structure modeling classes

The communication model

The communications between distributed simulators
are implemented at tow levels. At the first level it is
implemented a communication layer between simulator
engines. When a train leaves a zone controlled by a
simulator it will be sent through the simulator engine
connection to the corresponding neighbor simulator. At

the second level it is implemented a communication
layer between controllers. At this level messages are
exchanged between controllers in order to make path
reservations. In Figure 3 the communication between
simulators is presented.

In this paper an asynchronous message passing model
for implementing the distributed communication
mechanism is proposed. This approach as been used
both for implementing the communication at the
simulator engine level but also at the controller level.
The components will exchanges messages in an
asynchronous manner.

In order to model task and threads the following
stereotypes have been defined:

• <<PeriodicThread>>, which represent
activities which are executed with a given
time period;

• <SporadicThread>> , which represents
activities which are executed each time an
event occurs;

For communication between threads the following
stereotypes have been defined:

• <<PriorityQueue>>, this is an unbounded
queue in which elements are ordered based on
an priority attribute associated with each
element;

• <<Buffer>>, this is a simple buffer on which
data are ordered based on the FIFO rule;

Based on the stereotypes defined before, the UML

object communication diagram for the simulator
system is presented in Figure 4.

The messages are passed between threads using
unbounded buffers and queues. For send commands to
the railway structure elements, and for receiving data
about the state of the railway structure elements
FIFOBuffers are used. The PriorityQyeye queue are
used for exchanging messages between working
threads (simulator SimulatorEngine and Controller)
and communication threads (Sender and Receiver).
Messages between distributed controllers are

exchanged using CSender and CRecevier threads.
When a new message must be sent, it must be added in
the COutQueue queue or the corresponding
SOutQueue, from where is get by the CSender or
SSender and is sent to the destination. When a new

message is received by SReceiver threads or the
corresponding CReceiver, it is put in the CInQueue or
SInQueue queue, from where is read by the Controller
or Simulator Engine thread.

Figure 3. Simulators communication.

Time modeling

The method chosen to update time in the simulators
is to use discrete time steps. This means that time is not
updated continuously but in blocks of a certain
interval. The time updates are executed by calling a
tick method in the simulator engine. Each entity new
state is calculated based on (e.g. a train updates its
position, velocity and acceleration) the previous state
and the time passed since last tick. The component
responsible for calling the tick method is the Timer.

Figure 4. Object communication diagram.

In order to synchronize time of tow or more simulator
instance, a time server coordinate all the simulators
timers and notify each simulator timer when the
simulator must advance at the next step.

SIMULATOR IMPLEMENTATION

The simulator application has been implemented in
Java language using JDK v1.6.0. The implementation
has been tested on Windows XP and Linux RedHat
platforms.

In Figure 5 a screenshot of the simulator graphical user
interface is presented. The railway network managed
by the simulator is presented into a window. We are
using color codes to represent states of structure
elements. For example a free segment is drawn in
green while a segment on which is at least one train is
drawn in red. A manual control interface is available to
the operator from which he can change the state of
structure elements, and also can control trains.
The screenshot in Figure 6 represents the structure
view window. In this window the details of the
simulated structure are presented to the operator. For
each structure element a separate table is displayed
containing the attributes values.

The simulator architecture has been designed with
the goal to be used for testing various controls and
routing algorithms. In order to provide this
functionality the simulator implements tow interfaces
through which other modules like controller,
monitoring or information systems can have access to
the simulation data or can interact with the simulated
railway structures.

CONCLUSIONS

This paper highlights the benefits of applying
distributed techniques to rail transportation system
modeling.
The proposed simulator enables the handling of more
complex problems than the existing technology can
handle. In the case of railroads, this might include
routing more trains over more tracks, whereas
traditional movement planning systems are able to plan
the movement of only one train at a time. Another
advantage of this simulator is that it enables more rapid
adaptation to alternative schedules because of changes
in the environment (e.g., a track blocked by an
accident) and does not require a total reassessment.
The proposed system architecture is distributed since
several train stations are connected and on each of it a
simulator railway is started.
The communication will be realize on each layer
(control, monitoring, information, simulation) between
two simulator railways and between different layers
inside of a simulator railway.
Using a good scheduling algorithm the traffic can be
increase and to test the result is better to use a proper
distributed simulator.

REFERENCES

Bernaer, S.; E. Burke; P. De Causmaecker; G. Vanden
Berghe; and T. Vermeulen, 2006. “A Multi Agent

System to Control Complexity in Multi Modal
Transport”, The IEEE Simulation Tran.

Bonaventura, C.S.; J.W. Palese; and A.M. Zarembki,
2000. “Intelligent system for real-time prediction
of railway vehicle response to the interaction with
track geometry”, Railroad Conference,
Proceedings of the 2000 ASME/IEEE Joint
Volume, Issue, 2000 Page(s):31 – 45.

Cai, G.; Z. Zhang; L. Jia; and Y.Ye, 2006. “A Multi-
Agent Model of Railway Intelligent Safety
Guarantee System, (PRC)”, From Proceeding
(523) Computational Intelligence.

Cuppari, A.; P.L. Guida; M. Martelli; V. Mascardi; and
F. Zini. 1999. “An Agent Based Prototype for
Freight Trains Traffic Management”, Proc. of
FMERail Workshop.

Faber J; and R. Meyer. 2006. “Model Cheking Data-
Dependent Real-Time Properties of the European
Train Control System”, Proceedings of the Formal
Methods in Computer Aided Design.

Ferschea, A. 2005. “Parrallel and distributed simula-
tion of discrete events systems”, Handbook of
Parallel and Distributed Computing. McGraw-
Hill.

Fung, Y.F.; T.K. Ho; and W.L. Cheung. 2000. “Real-
time simulation for power systems based on
parallel computing-an empirical study”,
International Conference on Advances in Power
System Control, Operation and Management,
Volume 2.

Gambardella, L.M.; A.E. Rizzoli. 2005. “Agent-based
Planning and Simulation of Combined Rail/Road
Transport”, Mathematical and Computer
Modelling.

Ho, T.K.; L. Ferreira; and K.H. Law. 2004. “Agent
applications in rail transportation”, Proc of
International Conference on Intelligent Agents
Web Technologies and Internet Commerce, pp.
251-260, Vienna.

Kaakai, F.; S. Hayat; and A. El Moudni. 2007. “A
hybrid Petri nets-based simulation model for
evaluating the design of railway transit stations”,
Simulation Modeling Practice and Theory,
Science Direct.

Rodriguez, J. 2005. “A constraint programming model
for real-time train scheduling at junctions”,
Transportation Research Part B 41 pp 231–245,
Science Direct.

Schlenker, H. 2005. “Distributed Constraint Based
Railway Simulation”, Springer Verlag Berlin
Heidelberg 2005.

Zimmermann A.; and G. Hommel. 2003. “A Train
Control System Case Study in Model-Based Real
Time System Design”, Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS’03).

Figure 5. Simulator application main view.

Figure 6. Simulator structure view.

AUTHOR BIOGRAPHIES

Camelia Avram works in the field of designing and
implementing of real time applications and
discrete events systems applied in communications
protocols.

Mihai Hulea works in the filed of object oriented
programming and real time applications.

	DISTRIBUTED REAL-TIME RAILWAY SIMULATOR
	
	
	KEYWORDS
	ABSTRACT
	The problem of control and management of railway transportation is a complex task with major outcomes in a modern society. Trains are suitable for transporting peoples and goods with a good trade-off between cost and rapidity. A railway system consists of a network of tracks, list of stations, safety devices (signals, sensors, etc) and a set of trains. Trains moves from one station to other along the network. Distributed applications are applicable in case of large systems.
	INTRODUCTION
	STATE OF THE ART
	DESIGN OF THE SIMULATOR
	Railway structure modeling
	System Architecture
	The communication model
	Time modeling

	SIMULATOR IMPLEMENTATION
	REFERENCES

