
CORRELATION OF SYSTEM EVENTS: HIGH PERFORMANCE CLASSIFICATION OF
SELINUX ACTIVITIES AND SCENARIOS

J. Rouzaud-Cornabas, P. Clemente, C. Toinard
Laboratoire d’Informatique Fondamentale d’Orléans

University of Orléans, Bâtiment IIIA, Rue Léonard de Vinci
45067 Orléans, France

Email: {jonathan.rouzaud-cornabas,patrice.clemente,christian.toinard}@univ-orleans.fr

KEYWORDS
SELinux sessions and scenarios, correlation, detection.

ABSTRACT
This paper presents an architecture for the characteri-
zation and the classification of activities occurring in a
computer. These activities are considered from a system
point of view, currently dealing with information coming
from SELinux system logs.
Starting from system events, and following an incre-

mental approach, this paper shows how to characterize
high-level and macro activities occuring on the system
and how to classify those activities. It gives the formal
basics of the approach and presents our implementation.
The results of experiments uses real samples taken from
our honeypot. Correlation results are obtained using a
grid computation. Our high performance architecture en-
ables to compute a large amount of events captured dur-
ing one year on a high interaction honeypot.

INTRODUCTION
The correlation of data generally aims at exploring het-
erogeneous information to highlight related data re-
garding particular aspects (e.g., chronology, semantics)
among these different sources.
The core of the works presented here is the reconstruc-

tion of sessions composed of system activites, assuming
that their elementary system operations (i.e., SELinux
interactions or ’system calls’) are all catched by the
SELinux logs.
Following an incremental approach, our solution as-

sembles system events together to represent high-level
system activities (linux commands, execution of pro-
cesses). We group them to represent macro activities
including malicious ones, such as connections to hosts,
island hopping between machines, massive activities,
etc. The combination of these macro activities allow us
to charaterize complete sessions on a SELinux system.
Each macro activity can be classified. Complete sessions
can also be reconstructed combining different types of
macro-activities.
The paper gives the fundations of our approach. It de-

fines events, high-level events, “meta-events”, sessions,
activities and gives the fundations for the algorithms that

compute those data. The experimental results show the
efficiency of the classification for SELinux activities. As
far as we know, it is the first solution that enables to
compute SELinux logs. It is interesting since SELinux
provides a very secured kernel but produces large amout
of events in the log file. Moreover, SELinux events are
much more complicated than classical Unix traces.

STATE OF THE ART
The advantages of correlating information from multiple
sources, are presented in (Valeur et al., 2004; Kruegel
et al., 2005). Those authors propose a generic frame-
work to correlate any kind of information coming from
multiple network sources. But they only use data col-
lected from networks and not at the operating system
level. (Qin, 2005) combines several correlation algo-
rithms. But again, the data come only from network tools
and sensors.
(Chari and Cheng, 2003) studied system activities for

specific system services. (Bowen et al., 2000) uses code
analysis to find the authorized system calls. (Molina
et al., 2007) uses strace to monitor system calls. All these
approaches monitor partially the occuring system calls,
so none of them is able to monitor all the system calls in
order to reconstruct complete sessions. Moreover, com-
plex sessions such as Island Hopping cannot be analyzed.
In (Briffaut et al., 2006), scenarios are seen in terms of
sequences of legal operations.
Finally, there is currently no solution at all supporting

the reconstruction for SELinux sessions.

SOFTWARE ARCHITECTURE
The novelty of our approach deals with the reconstruc-
tion of system sessions. Sessions are sequences of system
activites (i.e., SELinux, interactions, i.e. ’system calls’,
e.g. file/socket read/write). Those system activities en-
able to compute different types of macro activities called
macro-events. Our architecture is designed to work with
informations given by system loggers, host oriented sen-
sors, network oriented sensors and also host IDS (HIDS)
and network IDS (NIDS).
For the correlation process, each computer must have

some tools to log all the events that are created on the
computer or its local network (network connections).

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

The current implementation uses only system calls com-
ing from the SELinux logs.

Adding Meta Knowledge to SELinux Events
In this first part, our correlation architecture analyzes
each elementary operation reported by SELinux in order
to highlight the similarity(ies) between them. Indeed, a
lot of events are related to the same linux commands or
process execution.
This first step adds meta-knowledges to raw events.

That improves the effectiveness of the high-level classi-
fication modules.
Definitions
Event: Intuitively, an event is closed to the notion

of elementary operation, or SELinux interaction or also
‘system call’. Formally, a system event is a set of at-
tributes . Each attribute is associated with a label

,
Table 1 gives a subset of including the labels for the

major attributes.

Label Description
event/alarm classification
source security context
target security context

_ security permission (e.g., r, w)
_ security class (e.g., file, dir)

where the event appeared
process number
parent process number
unique event number
date (in millisecond) of the event
name of the file involved
inode number of the event
priority level of the event/alarm
unique system session number

_ source IP of the event
_ target IP of the event
_ source of the event
_ target of the event

number of occurences of the event

Table 1: Event Attributes

Meta-event (ME): The notion of meta-event is also in-
troduced. A meta-event is a set of attributes and/or
collections of attributes. For example, the meta-event

, , _ , _ ,
_ , _ represents a meta-event with multi-

ple source contexts, source IP and source ports (e.g. such
as a meta-event that modelizes a DDoS attack).
Raw events (RAW): A RAW event is com-

posed by the following attributes: , , ,
, _ , _ , , , ,

, , , _ , _ , _ , _ .
Event filtering (EF): This module is a pre-processing

for the correlation phase. If the events can not be normal-
ized, they will not be used by the correlation processus,
see figure 1.
Formally, an event has exactly the same attributes

as a RAW event.

Figure 1: Overall Process of correlation

in i t
 i d s e s s i o n = 0

 sshd
i d s e s s i o n = 0

f t pd
i d s e s s i o n = 0

 passwd
i d s e s s i o n = 1

p a s s w d
i d s e s s i o n = 2

 bash
i d s e s s i o n = 1

 ls
i d s e s s i o n = 1

Figure 2: System Session Identification

For example, the EF module will exclude every events
that have not been correctly generated by SELinux, i.e.
missing or invalid attributes (e.g. no/incomplete date).
System Session Identification (SSI): SSI adds meta-

knowledges to specific subsets of EF. It builds the tree of
PID and PPID of each session.
Each new event of EF is added in real time to an

existing tree that represents the (P)PID link or it creates a
new tree where the event is added.
The main purpose of this module is to affect a unique

attribute to each branch of the tree: the identification
number of the session. Currently, only the events, that
are associated to a user session, are taken into account.
Ongoing works also allow to take into account sessions
for services or system scripts.
Formally, a SSI event is a EF event with an extra

attribute .
The initialization of the attribute uses an
_ _ that describes the interesting transi-

tions between processes. For example, the transition
from the ‘sshd’ context to the ‘user’ context enables to
compute a new attribute.
Figure 2 shows that two branches below the

event have different s.
InTeraction Event Factorizing (ITEF):
This module aggregates all the events corresponding

to the same SELinux interaction (i.e., ‘IT’) inside a ses-
sion. This module tackles the problem that an activity
(execution of a single process) can produce a very large
number of system calls. For example, the reading of a

Figure 3: Migrating/Distributed Session Reconstruction

file can generate thousands of events for the same ac-
tivity. So ITEF generates a single “meta-event’ instead
of thousands of events. This module is largely based on
(Valeur et al., 2004; Kruegel et al., 2005; Qin, 2005).
An ITEF meta-event is composed by single

attributes: , , , , _ ,
_ , , , and
. Also, it has several sets of attributes for all in-

cluded events: , , , , _ , _ ,
_ , _ and optionally .
For example, a “meta-event“ factorizing all the read

events of during the session on the
host _ is in particular composed of:

= _ _ _ ,
= _ _ _ , =

_ , = , _ = ,
_ = , =

System Session Reconstruction (SSR)
As shown on the figure 1, the SSR module takes a sub-
set of SSI events and builds a meta-event representing the
session. The SSR meta-event contains the follow-
ing attributes: , , , ,

, and .
For example, SSR merges all the events with the same

identification session (e.g. idsession = ’1051’) and the
same hostname (e.g. hostname = ’www-server’). It’s
worth mentioning that this module is an original propo-
sition of this paper.
Enhanced System Session Activities (ESSA): In

contrast to (Valeur et al., 2004) (Kruegel et al., 2005),
this module supports Inter Process Communication (like
pipes, unix sockets). A ESSA meta-event
is composed by single: , , ,

, , and and a set of at-
tributes: .
For example, ESSA produces a “meta-event“ for a

transmission between two processes through a Unix
socket. Thus, a relationship is proposed between a

and all the associated IPC events (using their
). A meta-event links a session SSR to all the events

coming from the other sessions. The association between
the sessions is achieved by the following module.
Migrating/Distributed Session Reconstruction

(MDSR): In contrast with (Valeur et al., 2004),
MDSR authorizes multiple relationships. The MDSR

meta-event contains the following unique
attributes: , , _ ,

_ , and the following multiple attributes:
, , _ , _ ,

and , with , where equals the
number of computers involved in the session.
Let a first information flow exist between session

and and a second one between and . Then MDSR
produces a “meta-events” for the transitive information
flow. The first information flow is associated to a ESSA
“meta-event“ between and events and
the second information flow provides a ESSA meta-event

between and events. The MDSR produces
a first “meta-event“ relating and and
a second one relating and . Finally,
MDSR produces a meta-event

for the transitive flow relating and .

Meta Events Recognition
System Pattern Recognition (SPR): This module allows
the correlation processus to classify SSR and ESSA.
Prerequisites and consequences (Ning et al., 2001)

(Cuppens and Miège, 2002) do not feet for automatic
learning of sessions. Prerequisites and consequences
must be written by end users. It is a difficult task. Our
approach is totally different. SPR creates an automaton
that represents a session in order to compare it with Sys-
tem Patterns (SP) also represented as automata. Thoses
SP are learnt by different processus (see the System Pat-
tern Learning section). SPR generates a SPR meta-event
that classifies the session with those patterns.
SPR generate a SPR “meta-event“ with the following

attributes: , , _ and .
For example, as seen on figure 4, SPR allows to com-

pare a session represented as an automaton (on the left
side) with a system pattern learnt before (on the right
side). They are both real world sessions and patterns.
More precisely, the session on the left side represents a
SSH connection followed by: (1) the execution of a shell,
(2) the transition from the SSHD context to the user one,
(3) the opening of a virtual console, (4) some interac-
tions, i.e. read and write, on this console. The pattern (on
the right side) represents: (1) the detection of a connec-
tion through SSH (transition from SSHD to user context),
(2) then the opening of a virtual console.
To allow a better recognition, this module compares

the two automata using a similarity level (i.e. the number
of event attributes that have to be equal between the two
compared nodes).
For example, as seen on the figure 4, the lowest sim-

ilarity level corresponds to the comparison between the
session and the pattern session using only two predefined
security context values. Different level of classification
can be used with the same pattern. At the similarity level
4, the sub-session (in the rectangle) on the left cannot be
recognized.
In terms of complexity, the SPR module compares each

Figure 4: System Pattern Recognition

Figure 5: Massive Activity Detection

unclassified (i.e. unrecognized) session with each Sys-
tem Pattern. Let be the number of session to classify
and the number of patterns. The complexity

in number of comparisons. Each comparison is
actually quite complicated. Indeed, it adresses the prob-
lem of counting sub-graphs isomorphisms, which in gen-
eral is at least in where is the number of event
(nodes) of the graph (i.e. the System Pattern). Hopefully,
recent works (Eppstein, 2000) have provided interesting
theoritical results. They show that for a graph that
is simply a tree (i.e. a system session tree here), with
a fixed number of attributes per nodes (which is also
the case here, where), the counting of the
sub-graphs, that are isomorph to another fixed graph
, (i.e. a Session Pattern here) can be done linearly to
. With those results, the SPR complexity is reduced to

, where is a multiplicative constant
of the number of events of .
This is an important result as it can lead to a real-time

correlation using the recognition of session patterns.
Massive Activity Reconstruction:
Massive IT Reconstruction (MITR): In constrast to

(Valeur et al., 2004) (Kruegel et al., 2005), this module
classifies massive system activities. It merges and counts
all the events (i.e. interactions or IT) that are the same (all
attributes with an equal value) in a given time window to
create a MITR meta-event. If they are too many above a
given threshold, it creates a meta-event MITR. The def-
inition of these thresholds remains outside the scope of
this work. The meta-event contains relevant informations
about the massive activity like its source(s) and destina-

Figure 6: Complex Scenario Detection

tion(s). It is not limited to a one to one massive activity, it
can also classify many to many and any other variations
of a massive activity.
A MITR meta-event contains: , ,
_ , _ , , ,

_ , _ , _ ,
_ , _ , _ , and _ ,
where each equals or (with the number of
machines involved in the massive interaction).
Massive Activity Session Reconstruction (MASR): This

module is another original proposition. It ables to link a
massive activity with sessions that created it or have been
created by it. When a link is found, it creates a meta-
event MASR (see figure 5).
This module generates a MASR meta-event with the

following attributes: _ , ,
and .
For example, MASR links a massive activity, like a

DDoS that has been launched from a monitored com-
puter, with the session that have launched it (using
meta-knowledges extracted from MITR meta-event and
ESSA/SSR meta-event).

Complex Scenario Detection (CSD)
In other correlation approaches, a special language en-
ables to express the links between “meta-events” (Cup-
pens and Miège, 2002; Ning et al., 2001; Valeur et al.,

2004; Kruegel et al., 2005; Eckmann et al., 2002).
Our approach is different. CSD is not really a module

like the other ones, but a combination of modules that
represents the way to link the previously seen modules
all together (with none, one or multiple implementations
of each one) in order to detect a complex scenario. Actu-
ally, this combination is implemented by the connexion
of automata representing each module.
The abstract figure 6 represents a “Complex Scenario”

detection. It starts on the left with a scan of a moni-
tored computer (i.e. a MITR meta-event) followed by a
bruteforce attempt (i.e. a MITR meta-event. Then, the
bruteforce intrusion attempt (i.e. the MITR meta-event)
is linked (as an MASR) to the ESSA representing activi-
ties on the system caused by the bruteforce (cf. MASR).
On the right side, the SPR module classifies another

ESSA using a system pattern (SP). This ESSA represents
the system session caused by the successful intrusion fol-
lowing the bruteforce attempt.
This SPR is linked with the MASR meta-event as a new

MDSR meta-event.

SYSTEM PATTERN LEARNING (SPL)
Currently, a learning module is proposed to compute au-
tomatically the System Patterns (used in SPD and CSD).
For this purpose, each system automaton is compared
with all the other system automata, according to a sim-
ilarity level. The comparison is done on the nodes (i.e.
filtered events or factorized filtered events). If at least
two successive nodes are equals, a new pattern is cre-
ated. This pattern contains only the equal nodes with
the attributes corresponding to the similarity level used
to create the pattern. If the pattern already exists, its fre-
quency is increased.
The main advantage of this approach is that it is to-

tally unsupervised. The algorithm compares all the ses-
sions one by one in order to have correctness. In terms
of theoritical complexity, as each single session is com-
pared with all the others. Thus, the complexity is

in number of comparisons between sessions,
where is the number of reconstructed sessions. Specific
DNA sequence alignment algorithms, like the BLAST
family (Altschul et al., 1990), enable to provide a lower
complexity. Thus, this complexity problem can be ad-
dressed. Our first results provide automation for compu-
tation of the System Patterns (on the next section).

EXPERIMENTATION
Physical Architecture for the Correlation Process
The decentralized architecture presented in (Krugel et al.,
2001), did not fit our needs because we wanted to limit
the overhead on the monitored hosts due to security mon-
itoring. Also, it seems too dangerous for us to let the cor-
relation process take place on the same computers where
scenarios could happen. In addition, we needed a scal-
able architecture for the various steps of the correlation
process.

Thus, we proposed a grid architecture for the whole
correlation process, supporting a large amout of RAW
events, and also providing almost real-time recognition.

Figure 7: Correlation Architecture on Grid

The grid is composed of 3 computation nodes of
3Ghz and 512MB of RAM). We introduced a centralized
database for the data retention but also to use a dedicated
computing grid for our correlation process as shown in
the figure 7. The dedicated computing grid also brings
us the ability to easily implement our modular architec-
ture: each module is implemented as an agent that can
be instantiated on multiple nodes of the grid to compute
various data. Thus, we have an easier scalable processus:
we just need to add new computers on the fly, using PXE
boot to increase the computing power.

Experiment Results
As said before, even if our conceptual architecture can
correlate multiple informations coming from multiple
sources and sensors, at this stage of our works, our so-
lution has been experimented using SELinux events.
Those events come from a High-Interaction HoneyPot

with 4 hosts using GNU/SELinux over Gentoo and De-
bian. One year of events are processed using our grid
implementation. An IBM DB2 database is used to store
those logs.
Event Filtering: One host of our honeypot generated

around 164,000,000 of raw events i.e. SELinux system
calls. The Event Filtering EF module is important be-
cause syslog makes many errors when it reports events.
EF detects about 3 percents of wrong events but this rate
can increase with an important activity of the SELinux
host. During our experiments, EF produces 160,000,000
of valid events.
160,000,000 events cannot be processed using a clas-

sical database such as MySQL because of memory and
CPU overhead. So, the IT Event Factorizing module is
required in order to reduce the number of events that has
to be stored in the database. Starting from 160,000,000
EF events, ITEF succeeded to produce only 8,000,000
meta-events (as shown on table 2).
System Session Identification: The System Ses-

sion Identification module SSI was applied to the four
SELinux hosts of our honeypot. The SSI module was
set to use only SSH and FTP services as entry point
(other services, such as HTTP SMTP IMAP, have not been

Without ITEF With ITEF
160,000,000 8,000,000

Table 2: Events number for 1 Year on 1 SELinux Host

considered by those experiments). Table 3 shows the
number of sessions for each of the four SELinux hosts.

, and are connected directly
to the Internet while is reachable through one of
those three gateways. Differences between and

is due to the SElinux policies that are more pre-
cise on than on . Starting from a
host with 160,000,000 EF events, SSI identifies an aver-
age of 40,000 sessions.

Gentoo 1 Gentoo 2 Gentoo 3 Debian
Sessions 58,163 30,825 79 139,859

Table 3: Number of Sessions Detected for Each Com-
puter

System Session Reconstruction: The System Session
Reconstruction module associates each session with all
the system activities. Many sessions are almost empty. A
typical example can be when an attacker only tests a pass-
word and disconnects (even when the password was the
good one). Starting from 40,000 SSI sessions, SSR gener-
ates only 8,000 sessions where the activities continue af-
ter the login attempts. Table 4 shows that SSR consumes
between 800 and 3,000 milliseconds to reconstruct a ses-
sion according to the number of SELinux events included
in that session. The computation duration includes a con-
stant time of 700ms for launching the agent. Many ses-
sions requires 800ms i.e. uses only 100ms for the algo-
rithm run. The largest session takes, a longer time, up to
2300ms. This worst case was reached by a SSH session
with a local bruteforce on the ftp server. In that case, the
machine spent time for swapping because the required
memory was big. This increases abnormally the compu-
tation time for this session.

Small Average Large Huge
Length 800 1500 3000 15700

Table 4: SSR Computation Time (in milliseconds)

For one year of experiments, the average time is
1500ms with our grid configuration. With 40,000 identi-
fied sessions, it took on average 190 hours to analyze one
year of logs. So, it takes half an hour to analyze the logs
of the day and 20ms for 1mn of logs. As one can see, it
is possible to reconstruct sessions in real-time with our
architecture.
Massive IT Reconstruction: The MITR module has

been able to detect one bruteforce on the FTP service.
Due to the policy configuration of SELinux, some rele-

Figure 8: Example of a Learned (Basic) System Pattern

vant system calls were not audited. Those missing events
prevented to detect SSH bruteforces.
System Pattern Learning: As we said in the Sys-

tem Pattern Learning section, the rough complexity of
the construction of the system patterns is uncomputable.
However, the study of the data from our honeypot
showed us some directions we could exploit. In aver-
age a session includes about nodes. The comparison
between those sessions takes between seconds for the
lowest similarity level and about seconds for
the highest similarity level . About ses-
sions have been collected during one year. That means at
least seconds to compute all the ses-
sions at the lowest similarity level. Of course, the com-
parison at higher similarity level are less numerous, and
typically only few sessions are compared at the highest
level. To minimize the computation, only big sessions
have been considered, stating that those sessions contain
also smaller ones. Among these sessions, only
had above the average number(i.e. nodes per ses-

sion). Our first experiments build 30 patterns after a com-
putation of 3 weeks manually ended.
As previously said, we are currently investigating

bioinformatics algorithms (like BLAST) and also unsu-
pervised classification and learning technics to overcome
this (sub-)graph clustering problem.
System Pattern Recognition: The SPR module used

System Patterns createdwith the SPL module (see System
Pattern Learning section).
The figure 8 shows a system pattern representing the

connection of a user through SSH i.e. a migration from
the SSH context to the user context, then the opening of
a virtual console and finally an interaction between the
user and the virtual console.
6 different levels of similarity have been considered

for the recognition of 40,000 sessions (see the System
Pattern Learning section). As seen in table 5, 13040 ses-
sions contain this pattern for a similarity level 2 i.e. the
comparaison is based only on security contexts (source
and target). For level 3 (addition of one variable), 13000
sessions respect this pattern, and only 6680 sessions for
level 4 (addition of one variable). Table 5 shows also
that the recognition did not find any session respecting
the pattern for higher levels of similarity. The maximum
level of similarity can be increased using other patterns.
Actually, the learning module is too slow to compute

enough and accurate patterns, that’s why we are currently
working on bioinformatics algorithms.

Similarity OK Not OK
2 13040 26960
3 13000 27000
4 6680 33320
5 0 0
6 0 0
7 0 0

Table 5: Classified System Patterns

Migrating/Distributed Session Reconstruction:
MDSR recognized 4 IslandHopping (3 using network
connections, 1 using a Unix socket). MASR was able
to link 7 sessions that took part of a massive attack. It
is worth saying that the limited numbers of complex
sessions (such as MDSR, MITR and MASR) is due to the
efficient protection provided by the SELinux kernel.
This MAC protection limits really the possibilities of
ordinary users and controls all the interactions between
a process and the system ressources. So, it is really hard
to conduct advanced attacks on such systems. However,
one can see that possibilities to violate the security exist.

CONCLUSION

This paper presents several modules that cooperate to
analyze complete sessions of SELinux system activi-
ties. Complex sessions can be reconstructed such as dis-
tributed, migrating sessions using several connections.
Currenlty, it is the only solution able to analyze SELinux
logs. The problem is complex due to the large amount
of events generated by a complete system. The solu-
tion has been experimented during one year using sev-
eral high-interaction honeypots. More than 160,000,000
events have been analyzed for each honeypot. Thus,
8,000 sessions, with relevant activities, have been rec-
ognized. Moreover several complex sessions have been
completly reconstructed. Using a grid approach, a real-
time classification of system sessions has been proposed.
The solution uses System Patterns in order to analyze the
logs. A learning module is proposed to compute auto-
matically the relevant patterns starting from the recon-
structed sessions. The paper shows that rough Pattern
learning is a NP-Complete problem. However, heuristics
have been proposed and real constructed patterns have
been presented. Future works will address how to use
the systems sessions to defined advanced security prop-
erties such as integrity models or to detect the violation
of those properties. Applications will be proposed either
for protecting a system of for detecting the intrusions.
Moreover, several improvements will be proposed. First,
newer parallel processing could reduce the required com-
putation time. Second, newer heuristics will be defined
to compute the Activity Patterns.

References

Altschul, S., Gish, W., Miller, Myers, E., and Lipman, D.
(1990). Basic local alignment search tool. Journal of Molec-
ular Biology, 215(3):403–410.

Bowen, R., Chee, D., Segal, M., Sekar, R., Uppuluri, P., and
Shanbag, T. (2000). Building survivable systems: An in-
tegrated approach based on intrusion detection and con-
finement. In DARPA Information Survivability Symposium.
IEEE Computer Society.

Briffaut, J., Lalande, J.-F., Toinard, C., and Blanc, M. (2006).
Collaboration between mac policies and ids based on a meta-
policy approach. In Smari, W. W. et McQuay, W., edi-
tor,Workshop on Collaboration and Security (COLSEC’06),
page 48–55, Las Vegas, USA. IEEE Computer Society.

Chari, S. N. and Cheng, P.-C. (2003). Bluebox: A policy-
driven, host-based Intrusion Detection System. ACM Trans-
action on Information and System Security, 6(2).

Cuppens, F. and Miège, A. (2002). Alert correlation in a coop-
erative intrusion detection framework. In IEEE Symposium
on Security and Privacy, Oakland, USA. IEEE.

Eckmann, S., Vigna, G., and Kemmerer, R. (2002). STATL: An
Attack Language for State-based Intrusion Detection. Jour-
nal of Computer Security, 10(1/2):71–104.

Eppstein, D. (2000). Diameter and treewidth in minor-closed
graph families. Algorithmica, 27:275–291.

Kruegel, C., Valeur, F., and Vigna, G. (2005). Intrusion Detec-
tion and Correlation: Challenges and Solutions. Springer.

Krugel, C., Toth, T., and Kerer, C. (2001). Decentralized event
correlation for intrusion detection. In Information Security
and Cryptology, pages 114–131.

Molina, J., Chorin, X., and Cukier, M. (2007). Filesystem ac-
tivity following a ssh compromise: An empirical study of
file sequences. In ICISC, pages 144–155.

Ning, P., Reeves, D., and Cui, Y. (2001). Correlating alerts
using prerequisites of intrusions. Technical Report TR-2001-
13, North Carolina State University.

Qin, X. (2005). A Probabilistic-Based Framework for IN-
FOSEC Alert Correlation. PhD thesis, Georgia Institute of
Technology.

Valeur, F., Vigna, G., Kruegel, C., and Kemmerer, R. A. (2004).
A comprehensive approach to intrusion detection alert corre-
lation. IEEE Transactions on dependable and secure com-
puting, 1(3).

