
1

An IDS for Web Applications
A. Biscotti, G. Capuzzi, E. Cardinale, L. Spalazzi

DIIGA — Università Politecnica delle Marche — I-60131 Ancona - Italy
e-mail: a.biscotti@univpm.it, {capuzzi, cardinale, spalazzi}@diiga.univpm.it

Abstract—This work presents a WEB-IDS that combine both
anomaly and misuse detection approach. This mixed solution
is really interesting because merges the two complementary
methods used to recognize attacks; we solved the usual conflicts
presented by this choice and obtained an higher results accuracy.
Our tool starts with the misuse-based module and its results are
passed to the anomaly detection module: in this way the system
has an high reactivity, less false negatives, it is simplier to solve
conflicts between the two modules and the anomaly based module
do not need to process dangerous events recognised by the first
module. Our system does not need any specific setting, but only
a training period. There are also different auto-setting tresholds
for the different resources that reduce false alarms. The system
is implemented as system service and tested with a real dataset
by a services company.

I. INTRODUCTION
Web servers and web applications are often under attack
by malicious software or intruders. The most part of web
applications or web server-extentions are not structured with a
secure criteria, so the number of attacks to them is increasing.
Intrusion Detection Systems are provided with signatures to
reveal attacks to this kind of applications; unfortunately is
really difficult to mantaine updated the signatures because the
high number of new vulnerability daily discovered. To avoid
this problem, this kind of IDS shoud be complemented by
anomaly detection systems that consent to discover attacks
with unknow signature. In literature the possibility to combine
misuse and anomaly detection was analyzed by E. Tombini,
et al. [6], evidencing that in web application is better to have
first the misuse module and then the anomaly one. The concept
of anomaly detection was proposed for the first time by D.E.
Denning [4], that presented an abstract model of a real-time
intrusion detection system (IDES), based on the convinction
that an use of the system different from the previous uses
may be a signal of an improper use. A lot of other techniques
were proposed to approach the anomaly intrusion detection by
A.K. Ghosh, et al. [9] that used a neural network model to
identify anomalous beaviors; L. Portnoy, et al. [12] proposed
an unsupervisioned clustering algorithm to classify normal and
abnormal activity; T. Lane and C.E. Brodley [13] presented
a machine learning model based on IBL (instance-based
learning) applyied to system applications. H. Feng, et al. [7]
improved the static analysis for intrusion detection using PDA
(push-down automaton). The limits of the state of the art is
that all this works refers to system programs that are static:
their beavior doesn’t change to much working so is simply
to identify anomalies in their working. In the case of web
applications is different: we have dinamic entities and their
behavior is strictly dependent from the interaction with the
users; for this reason are interesting statistical and probability

techniques proposed in their works about intrusion detection
on web applications by C.Kruegel, et al. [15]. Cisco Systems
[2] or Real Secure [11], implemented in their commercial
systems solutions that combine anomaly and misuse detection,
but they are principally misuse based. Therefore the target of
this project is to improve web server and web applications
security with many innovative algorithm modifications respect
to common IPS, obtaining better performance in discovering
attacks that exploit specific vulnerabilities for that applica-
tions, especially those developed in-house by service compa-
nies.With this paper we analyzed a possible combination of
two different detection modules (misuse-based and anomaly-
based) and our target was to determinate the capability and the
efficiency of this combination to discover web-based attacks.
Our attention is focused to obtain the less critical automatic
solution of the conflicts between the two different evaluations
on a same security event too, by developing an update engine
which automatically adjust the sensitivity of the system to
reduce the number of false alarms. Another objective was to
study the possibility to add an efficient automatic prevention
engine in order to decrease the quantity of critical data to
manage for the system administrator. The basic problem of
this solution is that web applications developed in-house by
service companies does not provide a list of signatures, so
it is necessary a certain time before the system can learn
the attributes of applications and either a complete list of
intrusive events or profiles of normal utilization of these
applications have to be created, before the system achieves
the best efficiency.
The paper is structured as follows: Section II provides an

overview of the Detection Model; Section III, describes the
Misuse detection Model; Section IV presents the evaluation
tests of the system; Section V describes conclusions.

II. OVERALL DETECTION MODEL
Our system analyzes on-line a series of temporal subsequent
HTTP requests as logged by most common web server (for
example, Apache [8]). The analysis focuses on either GET
or POST requests to HTML pages, server-side programs or
active documents and consists of a serial combination of
misuse and anomaly detection, with misuse detection first.
More formally, the input to the process is a request R, extracted
from web server access log file. A request R can be expressed
in several ways depending of custom web server logging
directives. In our work, we assumed that requests were logged
in the Common Log Format (CLF) or Extended Common Log
Format (ECLF). In these formats the most important features
logged by web server are the IP source address, the date and
the time of the request, the path to the desired web page

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

Fig. 1. Sample web server access log entry
(path), and sometimes an optional query string (q). The query
string is used to eventually pass parameters to the referenced
script and it is identified by a leading ”?” character. A generic
query string normally consists of an ordered list of n pairs
of parameters with their corresponding values, so q can be
expressed as q = (p1, v1), (p2, v2), ..., (pn, vn) where pi ∈ P ,
the set of all parameters and vi is a string. Another important
feature is the status code of the request. Figure 1 shows an
example of a request logged by web server in ECLF format, in
which elements used in the analysis are underlined. Let E be
the event processed by the system (in this case the last line of
the access log file). Additionally letMi andMu be the subsets
of E that represent the sets of events declared respectively
intrusive or unknown by the misuse detection component
and let As and Au be the subsets of E that represent the
sets of events declared respectively safe or unsafe by the
anomaly detection component. In this combination the misuse
component tries to match E with a set of signatures and raises
an alarm if the result of pattern matching is true (M i). Events
declared unknown in the first step (Mu) are then analyzed
by an anomaly detection component. If the anomaly detector
declares E safe, the event is assumed completely irrelevant
(Au) and is filtered out. On the contrary, an alarm is raised if
E is declared intrusive (Ai). The detection process is shown
in Figure 2. Events in the subset Mu∩Au represent the set of
events declared unsafe (potentially intrusive) by the anomaly
detector and unknown (potentially safe) by the misuse detector.
These events cannot be interpreted automatically because they
should be considered as false positives issued by the anomaly
detector or false negatives issued by misuse detector and the
anomaly model (respectively the signatures database) must be
updated. In this case the main task of system administrator is
signaling what component gave wrong response, and an update
engine automatically provides to update the anomaly detection
component or add a new signature to the misuse detection
component. At this time, in the first case the event tagged
as normal is used to refine the anomaly model by computing
a new anomaly threshold for the analyzed script, as shown
more accurately in section about Anomaly detection Model.
In the second case the automatic generation of a signature is
made simply adding the tagged request at the end of the list of
regular expressions. However in some cases, the system tries to
automatically apply some prevention rules in order to block the
communication with client who generated the anomaly event,
with the help of a firewall. The prevention model is described
in section Prevention Model.

III. MISUSE DETECTION MODELS
Misuse detection Model: The misuse detection component

is used to detect attacks embedded in URLs and report known
malicious requests. For example, the presence in the request
of the words ”SELECT” or ”WHERE” could be used to detect
an attempted incorrect use of SQL commands to retrieve

Fig. 2. System architecture

sensible data. The misuse detection process uses a list of
regular expressions, which items represent manifestations of
the most common attacks. These regular expression are used
to match against the request analyzed and an alarm is raised
when a match occurs. We used the Java regex package to
implement the mechanism of pattern matching, which is in
conformance with Level 1 of Unicode Technical Standard
#18: Unicode Regular Expression Guidelines [3], plus RL2.1
Canonical Equivalents. Currently, the list contains about 70
regular expressions, but new attacks can be detected by adding
new regular expressions. A new expression can be added
manually without stopping system execution or it can be
automatically generated and added by the system when a
suspicious request is tagged as intrusive by system admin-
istrator. Regular expressions are compiled at runtime, before
the matching process starts. The list of regular expressions is
specified into a text file, in an XML-based format. An example
is shown below.
<signatures>

<expression name="Cross-site Scripting">.*(script)+.*
</expression>
<expression name="Directory Trasversal">.*(\.\./)+.*
</expression>

<expression name "SQL Injection">.*
(select|insert|update|delete|union|--)+.*

</expression>
[...]
</signatures>

At this time, the automatic generation of a signature is made
simply adding the tagged request at the end of the list of
regular expressions. Anomaly detection Model:the anomaly de-
tection component provides a model of the ”normal behavior”
of users and applications. The basic assumption is that, in
case of intrusive actions, the behavior of users or applications
differs substantially from normal behavior and this difference
can be expressed quantitatively. The behavior of software
entities in the web applications context is very dinamic and
it is strictly connected with user interaction, which often
governs the visualization process of data and informations
through the choice of a set of values associated with some
parameters. Additionally each web application is different
from others in terms of number and type of parameters to
elaborate. Our approach was initially based on the model
proposed by C.Kruegel, et al. [15], which uses several different
evaluations about requests, parameters and their relationship
to detect anomalous entries. An evaluation is a set of statistical
procedures used to evaluate a certain feature of a request. A
feature can be related to a single parameter of a query string
(e.g. the string length of a particular parameter value), to all
parameters (e.g. the order of parameters in a query string), or
to some relationship between a request and others related to
a specific web page or script r (e.g. number of requests in a

time slot). The model operates in two distinct steps: in a first
step (learning or tuning) each evaluation is performed on a
sufficiently large set of normal requests relating to the same
web page or script (first 1000 in our implementation)and on
their parameters in order to build a profile for each web page
or script;for this purpose we used historical access log data
files, gathered from the system administrator of a small Italian
company . Afterward, a detection threshold is estabilished
by evaluating requests separately. In the detection phase, the
task of these evaluations is to assign a probability value to
either a request as a whole or one of its parameters. This
probability value reflects the probability of the occurrence of
the given feature value with regards to an established profile.
The assumption is that feature values with a sufficiently low
probability can indicate a potential intrusive behavior. Based
on the evaluation outputs, a request is either reported as a
potential intrusive behavior or as normal. This decision is
reached by calculating an anomaly score. A request is reported
as anomalous if this anomaly score is above the corresponding
detection threshold. The anomaly score value is calculated
using a weighted sum as shown in Eq.(1). In this equation, w e

represents the weight associated with evaluation e, while pe is
its returned probability value. The probability p e is subtracted
from 1 because a value close to zero indicates a possible
anomalous event. In this case it should yield a relative high
anomaly score. The we values are estabilished a priori and
they can be adjusted regarding the analyzed application, web
page or script, after a brief analysis process on historical data
of web server.

AS =
∑

e∈Evaluations

we ∗ (1 − pe) (1)

Our evaluation procedures are very similar to those proposed
by Kruegel et al., but we used only six anomaly evaluations
to perform detection process and we refined evaluation pro-
cedures in some points. The evaluations used are enumerated
below:
Length of values associated with parameters;
Distribution of characters in values associated with parame-
ters;
Presence of limited set of values associated with parameters;
Presence or absence of a parameter in a request;
Order of parameters in a request;
Access frequency to a web page or script;
When a certain request contains several parameters, we chose
to consider the lower probability value returned by our
anomaly evaluations, in order to avoid a malicious user to hide
a single invalid input into a series of valid inputs. Additionally,
when a script without parameters to elaborate is analyzed,
only two evaluations are performed: the check of presence or
absence of parameters in the request and the access frequency
to the script.
Length of values associated with parameters:The length
of a value associated with a parameter of a request can be
used to detect anomalous requests, especially when these
values are either fixed-size tokens or short strings derived
from user input (such as fields in a form). For example, to
overflow a buffer in a target application, it is necessary to

send a large amount of data, depending on the length of the
buffer. In the training phase the goal of this evaluation is
to approximate the actual but unknown distribution of the
parameter lengths, so in the detection phase it can detect
instances that significantly deviate from the observed normal
behavior. Clearly, the probability density function of the un-
derlying real distribution often doesn’t follow a smooth curve.
Additionally the distribution has a large variance in several
cases. Nevertheless, the evaluation is able to efficiently identify
significant deviations.
LEARNING:in the learning phase, the length of values associ-
ated with a certain parameter in a request can be expressed
as a random variable, and it is possible to calculate mean
μ and variance σ2 associated with it. The mean and the
variance of the real parameter values length distribution are so
approximated by calculating the sample mean and the sample
variance for the lengths l1, l2, . . . , ln of the values associated
with the analyzed parameter and processed during the learning
phase (assuming that n requests with that parameter were
processed). The cost of this evaluation is proportional to
the number n of queries analyzed during the learning phase,
followed by a constant cost to compute the mean and the
variance.
DETECTION:In the detection phase we already know the
estimated parameter length distribution, in particular μ and
σ2. The task of this phase is to evaluate the anomaly of a
value associated with the analyzed parameter with length l.
We assume that a value with length less than μ, relating to
a specific parameter, is associated with a probability value of
1. This is due the fact we consider this evaluation able to
detect anomalous requests in which a large amount of data
is injected in one or some values. To evaluate the anomaly
of a string with length l higher than μ, we quantify the
”distance” of the length l from the mean value μ with the
help of the Cantelli inequality [5]. The Cantelli inequality is
an efficient metric to model decreasing probabilities for strings
with lengths that increasingly exceed the mean. It puts, for an
arbitrary distribution with mean μ and variance σ 2, an upper
bound on the probability that a generic length x is higher than
l, as shown in Equation 2. When l is very distant from μ then
the probability value associated with a string having a greater
length than l should decrease. In this case an attacker cannot
insert malicious input by padding the string and increasing its
length, because an increase in length reduce the probability
value associated with that string.

p(l) =

⎧⎪⎨
⎪⎩

1 l ≤ μ

σ2

σ2+(l−μ)2
l > μ

(2)

Distribution of characters in values associated with param-
eters When we analyze a request, sometimes we are able to
detect an anomalous value associated with a certain parameter
by looking at its distribution of characters. This is due the fact
that often user input have a regular structure, is mostly human-
readable, and almost always contain only printable characters.
Additionally, a large percentage of characters in regular values
are drawn mainly from letters, numbers, and sometimes a

few special characters. However, there are some cases in
which a malicious user sends binary data (e.g., buffer overflow
attacks), or inject a string with a noticeable strange character
sequence (e.g., with many repetition of the dot character in
directory traversal exploits). Anyway, when we analyze a set of
several requests containing same parameters, similarities often
can be observed between the character frequencies of values
associated with a certain parameter. In fact, if we consider a
string drawn from Italian or English language, we observe that
there are words in which some characters are more frequent
than others but often there is no one that is clearly more
prevalent than others. So, if we sort in descending order the
relative frequencies for all possible characters in a legitimate
string, one can expect that the relative frequencies slowly
decrease in value. In case of malicious input, instead, these
frequencies often drop extremely fast. This can be the result
of a certain padding character that is repeated many times in a
buffer overflow attack or because of the many occurrences of
the dot character in a directory traversal attempt. Therefore we
assume that the character distribution of a value is represented
by the array of its relative frequencies sorted in descending
order.
LEARNING the goal of the learning phase is to build a
profile of the normal character distribution of a generic value
associated with a certain parameter, for each parameter of a
script. For this purpose, the character distribution for each
observed parameter is stored. Then an ”idealized” character
distribution is approximated by setting, for each index i of the
relative frequencies array, the average of all n values of stored
character distributions that are in the position i, assuming
that n requests with that parameter are analyzed. Because all
individual character distributions sum up to unity, their average
will do so as well, and the idealized character distribution is
well-defined. The cost of building this model is linear in the
number of parameters that are analyzed during this phase. For
each parameter, the character distribution has to be determined,
an operation which has a cost that is proportional to the length
of its value string.
DETECTION: the task of the detection phase is to determine
the probability that the character distribution of a certain
value is conforming with the modelized legitimate character
distribution associated with its reference parameter. In this
case, more precisely, we want to check if this array is a sample
drawn from a population with a certain distribution, that can
be represented by the idealized character distribution of its
reference parameter. This probability, or more precisely, the
confidence in this hypothesis is calculated by the Pearson χ2

statistical test[5]. We chose to group the values of the array in
six intervals defined as follows:[0], [1, 3], [4, 6], [7, 11], [12,
15], [16, 255], assuming that possible characters are drawn
from a subset of 256 character (ASCII - 8 bit) and reflecting
the fact that the relative frequencies are sorted in descending
order, so values in position i are higher when i is small. Addi-
tionally, the value representative of an interval is the average of
values between the considered indexes. When a new parameter
is analyzed, the number of occurrences of each character in
the string value is determined. Afterward, the values are sorted
in descending order and combined by aggregating values that

belong to the same interval i. The resultant value is indicated
as Oi. The χ2 value is so determined as shown in Equation
3. In this equation Ei represents the expected value and it is
calculated by multiplying the value of the interval i for the
length of the string analyzed.

χ2 =
i<6∑
i=0

Oi − Ei

Ei
(3)

The χ2 test is then used to calculate the probability that the
given sample has been drawn from the legitimate character
distribution. The actual probability p is read from a predefined
table (Table I) using the χ2 value and the degrees of freedom
as index, observing that in this test the degrees of freedom
are calculated as (numberofintervals − 1). The derived
value p is used as the return value for this model. When
the probability that the sample is drawn from the legitimate
character distribution increases, p increases as well. The cost
of evaluate an input string using this method consists of the
calculation of the χ2 value[].

TABLE I
PROBABILITY VALUES FOR 5 DEGREES OF FREEDOM

χ2 p χ2 p
0.41 0.995 9.24 0.1
0.55 0.99 11.07 0.05
0.83 0.975 12.83 0.025
1.15 0.95 15.09 0.01
1.61 0.9 16.75 0.005

Presence of limited set of values associated with param-
eters:the purpose of this evaluation is to determine whether
the values of a certain parameter are drawn from a limited set
of possible alternatives (i.e., ”checkbox”, ”radio” or ”select”
HTML input types). When a malicious user attempts to use
these parameters to pass to the analyzed script illegal values
or values that are not in the trusted set, the intrusion attempt
can be detected. When a set of possible alternatives can
be identified for a certain parameter, it is assumed that the
parameter values are random and no attacks can be detected
by this evaluation.
LEARNING:the goal of this phase is to model when the values
associated with a certain parameter are random or part of
an enumeration. When a set of different occurrences of the
analyzed parameter values are observed, one can see that in
the case of an enumeration, the number of different values
encountered does not exceed a certain unknown threshold t.
Instead, when the number of different parameter values grows
proportional to the total number of analyzed instances, the use
of random values is indicated. It is consequently necessary to
estabilish the correlation between the total number of analyzed
values and the total number of different values encountered
during this phase. More formally, to decide if a parameter is
associated with an enumeration, we calculate the statistical
correlation ρ between the values of the functions f and g,
defined ∀x ∈ {1, 2, ..., n} as follows on N0, where n is the
total number of values encountered during this phase, and S (x)

represents the set of values encountered at the time the x th

value is analyzed:
f(x) = x (4)

g(x) =

⎧⎨
⎩

g(x− 1) + 1 xthvalue ∈ S(x)

g(x− 1) − 1 xthvalue /∈ S(x)

0 x = 0
(5)

The correlation parameter ρ is derived after the training
data has been processed. It is calculated from f and g with
their respective variances Var(f), Var(g) and the covariance
Covar(f,g) as shown below:

ρ =
Covar(f, g)√

V ar(f) ∗ V ar(g)
(6)

If ρ is less than 0, then f and g are negatively correlated and an
enumeration is assumed, reflecting the fact that increasing the
value of observed values, the number of different occurrences
has not shown a proportional increase too. This means that
some values was encountered several times during the training
phase. In the opposite case, where ρ is greater than 0, the
values observed have shown sufficient variation to support
the hypothesis that they are not drawn from a small set of
predefined values. Naturally, when an enumeration is assumed,
the complete set of values encountered is stored for use in the
detection phase. The cost of building this model is strictly
connected to the calculation of the covariance between these
two simple functions. This cost depends on the number of
analyzed requests.
DETECTION:once it has been determined that the values of
a certain parameter of a script are tokens drawn from an
enumeration, any new value v is expected to appear in the set
S of known values. When this happens, a probability value of
1 is returned. If the value is not in the established set of values,
a probability value of 0 is returned, as shown in Equation 7. If
it has been determined that the parameter values are random,
the model always returns 1. In order to increase the efficiency
of the detection we use the Java HashMap data type to store
and retrieve values.

p(v) =
{

1 v ∈ S
0 v /∈ S (7)

Presence or absence of a parameter in a request: Most
of the time, server-side programs or scripts are not directly
invoked by users typing the input parameters into the URIs
themselves. Instead, client-side programs or scripts pre-process
the data and transform it into a suitable request. This usually
results in a high regularity in the number, name, and order of
parameters. Another interesting situation is when developers
with little expertise use ”hidden” type forms in their HTML
pages and then process the data in a separate script. In this
case this type of parameters does not appear in requests logged
by the web server, so its presence can indicate the attempt of
an intrusion. The analysis performed by this evaluation takes
advantage of these facts and tries to detect requests that deviate
from the estabilished profile, built in the training phase. This
evaluation described in this section, deals with the presence
and absence of parameters pi in a query string q and consider
a query as a whole, differing from previous ones, which focus
on features of individual query parameters. This approach

assumes that the absence or abnormal presence of one or more
parameters in a query might indicate malicious behavior. This
allows for the detection of intrusion attempts where server-
side applications or scripts are probed or exploited by sending
malformed requests.
LEARNING: the goal of this phase is to estabilish when a script
is associated with some parameters and, in the positive case,
to create a model of acceptable subsets of parameters that
appear simultaneously in a query string. This is done simply
by storing each distinct subset Sq = {pi, ..., pk} of parameters
seen during the training phase.
DETECTION: the detection phase have to deal with three
different situations: Scripts without visible parameters - In
this case the evaluation is performed observing if the analyzed
request has one or more parameters in its URI. In this case
a probability value of 0 is returned, 1 otherwise; Scripts with
visible parameters - In this case, for each request analyzed, the
current parameter set is extracted. When the observed set of
parameters has been encountered during the training phase, 1
is returned, otherwise 0. Generic scripts - This situation deals
with scripts that can appear with or without parameters. In
this case the detection process is performed with the method
described in the situation 2, when a set of parameters can be
extracted from the analyzed request. Otherwise a probability
value of 1 is returned. The current script type is determined
by reading a code of two boolean values, set in the training
phase, where 11 is a generic script, 10 is a script without
visible parameters, 01 is a script with visible parameters and
00 is for the Unknown.
Order of parameters in a request:As discussed in the
previous section, legitimate requests often contain the same
parameters in the same order. This is usually not the case for
hand-crafted requests, as the order chosen by a malicious user
can be arbitrary and has no influence on the execution of the
program. The goal of this evaluation is to determine whether
the given order of parameters is consistent with a profile built
during the learning phase.
LEARNING The order constraints between all k parameters of
a legitimate query string are determined during this phase. It
is consequently necessary to estabilish an order relationship
between parameters. So we assume that a parameter p t of a
script precedes another parameter ps when pt and ps appear
together in the parameter subset of at least one query string
and pt comes before ps in the ordered list of parameters of
all queries where they appear together. In order to store these
relationships between parameters we use a matrix M of (s x s)
elements, where s is the total number of parameters associated
with the analyzed script and Mij = 1 if pi precedes pj , 0
otherwise. So, for every query string q i, with i = 1,. . . ,n, that
is analyzed during the training period, the ordered list of its
parameters p1, p2, ..., pi is processed. For each attribute pair
(pt, ps) in this list, with t �= s, the Mts value is set to 1. In
this phase all analyzed requests are assumed to be normal,
so the final result is that Mts �= Mst when pt precedes ps,
assuming that parameters can only appear in the same order.
If parameters pt and ps are admitted in both different orders,
then Mts = Mst. The cost of building this profile is not high,
because the total number of parameters processed by a generic

script is usually relatively small.
DETECTION The detection process checks whether the pa-
rameters of a query string satisfy the order constraints deter-
mined during the learning phase. Given a query string with
parameters p1, p2, ..., pi and the matrix M, all the parameter
pairs (pj , pk), with j �= k, are analyzed to detect potential
violations. A violation occurs when for any single pair (p j , pk)
of the current query string, where pj precedes pk, the cor-
risponding Mjk value is 0. In this case the evaluation returns
a probability value of 0, otherwise it returns 1.
Access frequency to a web page or script:different server-
side applications or web scripts normally are invoked with
different frequencies. However, after monitoring a specific
web page or script in a sufficiently long time interval, one
can often observe that the general access patterns remain
relatively constant. It is possible to distinguish between two
types of access frequencies for each web page or script. One
is the frequency of the application being accessed from a
certain client (based on the IP address), the other is the total
frequency of all accesses. When a malicious user attempts
a DoS (Denial of Service) exploit for a certain script, the
number of accesses observed in a small time interval from
that client can increase drastically. Otherwise the frequency of
all accesses can grow extremely in case of DDos (Distributed
DoS) attempts. Changes in access patterns can indicate in-
trusion attempts (e.g., when an application is usually accessed
infrequently but is suddenly exposed to a burst of invocations).
This increase could be also the result of an attacker probing
for vulnerabilities or trying to guess parameter values. A
single determined attacker can evade detection by executing
his actions slowly, but often most intruders use tools that
execute brute force attacks, raising the total access frequency
to a suspicious level.
LEARNING:the objective of this phase is to build a model
of normal access frequency pattern for a web page or script.
To determine the expected normal access frequencies, the
time period between the first and the last request in the
training data set is divided into consecutive time intervals of a
fixed size (60 seconds in our implementation). Then, the total
number of requests and the numbers of requests from distinct
clients (distinct IP addresses) are counted in each of these
intervals. The counts for the total accesses and the counts for
the accesses from distinct clients can be considered as two
random variables, which respective means and variances can
be evaluated. These values can represent the normal web page
or script behavior in terms of number of requests made to it.
The cost of building this profile is proportional to the number
of requests that are analyzed during the training period.
DETECTION:this evaluation focuses on whole sequences of
queries, so it is necessary to maintain data of recent accesses
to the analyzed script for a certain time interval. The main
goal is to be able to detect vulnerability probing, parameter
value guessing and DoS attempts. So during detection, time
is divided into intervals of the same fixed size that was
used during the learning phase. When a request is evaluated,
the number of total requests n1 and the number of requests
from this client n2, both in the current time interval, are
determined. Similar to the attribute length evaluation, the

Cantelli inequality is used to calculate the probability of n1,
given the mean and the variance of the total access frequencies,
and the probability of n2, given the mean and the variance of
access frequencies from distinct clients. This two probabilities
are then combined in a weighted sum, as shown below, and
returned by this evaluation.

p(a) =
2∑

i=1

wi ∗ p(ni) (8)

The wi values are initially set to 1/i, but they can adjusted
by the system administrator taking in account the specific
web page or script type. The detection cost is proportional to
the number of requests analyzed during the current detection
interval. This module can be linked to a prevention module:
we did it, but we do not talk about it in this paper.

IV. EVALUATION
This section describes the approach used in order to evaluate
the intrusion detection system proposed. The evaluation was
performed by gathering on-line (in two different experiment)
real data from the main web server of an Italian company,
SIMobile s.r.l.(www.simobile.it). The IDS was configured and
integrated with the web architecture (e.g., operating system,
web server, DBMS), by installing it as a service.
TUNING PHASE: the system tuning phase was performed
off-line, analyzing a stored database of historical legitimate
HTTP/HTTPS requests. So we usedthem to model the normal
system behavior. Table II, shows relevant informations about
the learning set, like data gathering time interval, total number
of analyzed requests and total number of pages or scripts
modeled.
DETECTION:there are several indexes to evaluate the
effectiveness of an intrusion detection system. In our work,
we used a set of typical indexes often used in diagnostic
tests, as shown below.

TABLE II
LEARNING PHASE INFORMATIONS

Time interval Log size # of requests # of modeled scripts
165 days 16 MByte 87284 260

Sensitivity (Sen)= TP
TP+FN ,

Specificity (Spe)= TN
TN+FP ,

Positive predictive value (PPV) = TP
TP+FP ,

Negative predictive value (NPV) = TN
TN+FN ,

Prevalence (Prev)= TP+FN
TP+FN+FP+TN ,

Where TP,FN,FP,FN are respectively: true positive, false
negative,false positive and false negative. The test has an high
degree of effectiveness when sensitivity and specificity values
are close to 1. Other two fundamental indexes are related to
false alarms, as shown below.
False Positive Rate (FPR) = FP

TN+FP = 1 − specificity ,
False Negative Rate (FNR) = FN

FN+TP = 1 − sensitivity .

Obviously, the test has an high degree of effectiveness when
the false positive/negative rate is close to 0. The system has
been evaluated by analyzing on-line the HTTP/HTTPS traffic
towards the monitored web server. In our experiment the

weight we of Equation (1) has been set to 1/6 = 0, 167 and
the weight wi of Equation (8) has been set to 1/2 = 0, 5.
Table III reports the results of one of the two experiments.

TABLE III
EVALUATIONS RESULTS

Monitoring days 55 alerts 28 Sen 1
Request logged 18894 TP 17 Spe 0,997
Suspicious events 28 TN 3655 FPR 0,003
Intrusive events 17 FP 11 FNR 0

FN 0 PPV 0,607
Prev 0,0046 NPV 1

We have a false negative when the system fails to identify a
potentially intrusive behavior; therefore, we can not compute
the number of false negatives with an automatic procedure.
The number reported in Table III has been manually computed
by the system administrator day by day. His task consisted in
checking daily requests (around 343 requests per day) and
identifying potential intrusions not signaled by the system.
The reliability of the evaluation depends on two factors: the
total number of analyzed requests and the comparison with the
related works. The total number of analyzed request is related
to the average server traffic load of the monitored company,
but however the system shows that results are comparable with
the main reference work [15]. Anyway we expect a sensible
improvement in reducing false positives when automatically
updating the misuse engine with new specific signatures and
the anomaly engine with adjusted thresholds after a longer
monitoring period.

V. CONCLUSIONS
In this work we considered the security problem of web-
applications and the application of Intrusion Detection Sys-
tems to this kind of systems.We proposed an intrusion de-
tection model that improves the previous model proposed
by [15]. I this model we combined an anomaly detection
approach with a misuse detection approach. Indeed, the best
way to reveal web application attacks is to use the precision
of signature based systems with the flexibility of anomaly
detection systems and to solve problems coming from the
combination of two approaches. About anomaly detection we
obtained a great advantage combining different evaluation
systems to cover the great number of attack typologies. The
model proposed doesn’t need any specific configuration, but
only a training period. We implemented this model in a IDS
that we experimented in a real context.

TABLE IV
IPS COMPARISON

Sistem Sensitivity FP/ # logs DATA
Our IDS 100% 0,02% - 0,06 % Real Data
[15] 100% 0,002% - 1,45% Simulated
[14] - 0,069% Real Data

Table IV shows that our results are comparable with the
main reference work [15] in terms of false positive , with
the difference that while their results came from a simulation,
we applied our IDS to a real company network. Furthermore,
the Positive Predictive Value is about 60 %, that is a tipical
value of PPV for IDS/IPS, as described in [10] and [1]. False
positives in particular, occured in the first days of monitoring

and then decreased, as consequence of adjusting detection
thresholds.

REFERENCES[1] J.S. Baras. A.Cardenas and K. Seamon. A framework for the evaluation
of intrusion detection systems. In IEEE Symposium on Security and
Privacy.

[2] Cisco. Cisco intrusion prevention system. Technical report,
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html.

[3] Mark Davis. Unicode technical standard 18, unicode regular expressions.
Technical report, http://www.unicode.org/unicode/reports/tr18.

[4] D.E. Denning. An intrusion detection model. volume 2, pages 222–232,
1987.

[5] Luc Devroye. In Non-Uniform Random Variate Generation, 1986.
Springer-Verlag, New York.

[6] L. Me E. Tombini, H. Debar and M. Ducasse. A Serial Combination of
Anomaly and Misuse IDSes Applied to HTTP Traffic. December 2004.

[7] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA,, 2004.

[8] Apache Software Foundations. Apache http server log files. Technical
report, http://httpd.apache.org/docs/2.2/logs.html.

[9] A.K. Ghosh, J. Wanken, and F. Charron. Detecting anomalous and
unknown intrusions against programs. volume AZ, pages 259–267,
December 1998.

[10] David Dagon Wanke Lee Guofei Gu, Prahlad Fogla. In Measuring
Intrusion Detection Capability: An Informmation-Theoretic Approac.,
March 2006. In Proceedings of ACM Symposium of InformAction,
Computer and Communications Security(ASIACCS06).

[11] IBM. Ibm internet security sytems proventia net-
work intrusion preventionsystem. Technical report,
http://www.iss.net/products/product sections/Intrusion Prevention.html.

[12] S. Stolfo L. Portnoy, E. Eskin. Intrusion detection with unlabeled data
using clustering. Novembre 2001.

[13] T. Lane and C.E. Brodley. Temporal sequence learning and data
reduction foranomaly detection. pages 150–158. ACM Press, 1998.

[14] M. Dacier M. Almgren, H. Debar. A lightweight tool for detecting web
server attacks. In ISOC Symposium on Network and Distributed Systems
Security.

[15] W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using General-
ization and Characterization Techniques in the Anomaly-based Detection
of Web Attacks. In Proceeding of the Network and Distributed System
Security (NDSS) Symposium San Diego, CA, 2006.

