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ABSTRACT

In this paper, a cross-layer optimization framework is
proposed for multi-hop time division multiple access
(TDMA) networks. Particularly, given a set of quality-
of-service (QoS) constraints on the network flows, we
study a centralized controller that coordinates the rout-
ing process, link scheduling and power control to mini-
mize the energy consumption in the network. The afore-
mentioned design can be formulated as a mixed integer-
linear program (MILP) in which finding optimal solution
is well-known to have worst case exponential complex-
ity. Realizing this inherent difficulty in computational
complexity, our main contribution is to propose a novel
approach to solve the cross-layer design problem which
is based on a so-called Difference of Convex functions
Algorithm (DCA). The proposed approach is able to pro-
vide either optimal or near-optimal solutions with finite
convergence. The preliminary numerical results demon-
strate the effectiveness of the proposed design.

INTRODUCTION

Wireless networks, for example mesh, ad hoc or sensor
networks have recently emerged as essential means of
communications to provide reliable data communication
among many users. In such networks, wireless nodes
usually self-configure to exchange information without
the aid of any established infrastructure. However, due to
the random deployment and mobility of wireless nodes,
multi-hop transmission is necessary where nodes can
forward other nodes’ information. Due to interference
between links, in this research, time division multiple
access-based (TDMA) MAC is adopted to allocate com-
munication resources to links/nodes. Note that the prob-
lem of optimal scheduling in TDMA-based networks is
NP-complete (5) and is somehow similar to the vertex
coloring problem in graph theory (13). Furthermore, in
a multi-hop network, power allocation, link scheduling,
routing, and rate control interact with each other. Thus,

a cross-layer design across all layers (see, e.g., (3) for
an overview) is shown to outperform the method of de-
signing each layer by itself which is popular in wireline
networks. Recently, cross-layer optimization with differ-
ent design objectives and constraints has received much
attention from the academia (2), (4), (15), (16).

In this work, we consider a cross-layer design prob-
lem to allocate communication resources, i.e., time and
power to links in an interference-limited TDMA wire-
less network. Generally, nodes in a wireless network are
battery-powered devices and energy is consumed when a
node transmit or receive data to/from other nodes. More-
over, since nodes participate in the network operation
by either generating or relaying information that needs
to be communicated to a base station, we aim at mini-
mizing the energy consumption for all nodes. The pro-
posed design objective is helpful to estimate the energy
expenditure for optimal network operation. We show
that the proposed design can be formulated as a mixed
integer-linear program (MILP) which is well-known to
be computationally expensive. By employing the exact
penalty method theory, we are able equivalently recast
the proposed MILP as a concave minimization problem
with only continuous variables without losing optimality.
Next, we reformulate the concave minimization problem
in the form of a DC (Difference of Convex functions)
program that consists of minimizing a DC function on the
whole space. We propose a technique which combines
DC Algorithm (DCA) and the traditional branch and
bound (BnB) to solve the resulting DC problem. Gen-
erally, DCA has linear convergence and achieves near-
optimal solution. One of the powerful and distinct ad-
vantage of the DCA-BnB approach is its ability to solve
very large-scale problems.

SYSTEMS DESCRIPTION

Consider a multi-hop network with node set N . Uplink
transmission is assumed where there is one common traf-
fic destination (not included inN ) for all the nodes. Each
node n ∈ N generates traffic at a rate rn which is a inte-
ger number of unit rate. Let L denote the set of unidirec-
tional links.
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TDMA-based MAC and Flow Conservation Model
In a multi-hop network, in general, all the links may not
be scheduled to transmit concurrently since they contend
and/or interfere with each other. In addition, due to pri-
mary interference, each node cannot transmit and receive
simultaneously, and thus, a node’s outgoing and incom-
ing links cannot be active at the same time. Further, we
assume unicast network in which a transmitter cannot
transmit data to more than one receivers. In addition, any
two simultaneous transmissions with a common receiver
are not allowed due to collision in packet reception.

In the considered TDMA network, time is partitioned
into fixed-length frames, and each frame is further di-
vided into J time slots with unit duration. Since the re-
source allocation is the same in all frames, we concen-
trate our design on a single frame. A node may need to
transmit in one or more slots for its own traffic and/or
relay traffic from other nodes. If a node transmits in a
slot, while its transmission power can be varied from [0,
Pmax], its transmission rate is fixed at a unit rate. In the
TDMA-based network, a channel is specified by two el-
ements (j, l), j ∈ J , l ∈ L, where J = {1, 2, ..., J}.
For the channel, the resource allocation is denoted by
(sl

j , P
l
j ), where sl

j = 1 means link l is active at slot j

while sl
j = 0 otherwise, and P l

j > 0 denotes the trans-
mission power of link l at slot j if sl

j = 1, P l
j = 0 other-

wise.
At each node, the difference of its outgoing traffic and

its incoming traffic should be the traffic generated by it-
self, i.e.,

∑
l∈O(n)

J∑
j=1

sl
j −

∑
l∈I(n)

J∑
j=1

sl
j = rn, n ∈ N (1)

where O(n) and I(n) are the set of outgoing links and
incoming links at node n, respectively. The values of sn

for the non-source nodes are set to zero.
The energy consumption at node n can be written as

En =
∑

l∈O(n)

J∑
j=1

P l
j +

∑
l∈O(n)

J∑
j=1

εls
l
j +

∑
l∈I(n)

J∑
j=1

εls
l
j

(2)
where εl, εl denote the energy needed to transmit, receive
a unit of traffic over link l, respectively. Note that εl,
εl include the energy consumed by the signal processing
blocks at the link ends.

Interference Model
Interference relations among the nodes and/or links in
a wireless networks can be modeled in various ways,
for example by using contention-based model (15) or
the signal-to-interference-plus-noise-ratio (SINR)-based
model (11), (1). The latter model is adopted in this re-
search. Specifically, if the link l ∈ L is active at slot j

(i.e., sl
j = 1), the following inequality should hold so as

to guarantee the transmission quality of the link

SINRl
j =

P l
jhll∑

k �=l P
k
j hkl + ηl

≥ γth (3)

where SINRl
j is the SINR for link l at slot j, hkl is the

path gain from the transmitter of link k to the receiver of
link l, ηl is the noise power at receiver of link l, and γth

is the required SINR threshold for accurate information
transmission.

We assume that all wireless nodes are low-mobility
devices and/or the topology of the network is static or
changes slowly allowing enough time for computing the
new scheduler. An example of such networks is a wire-
less sensor network for environmental monitoring with
fixed sensor locations. In this case, the need for dis-
tributed implementation is not necessary.

PROBLEM FORMULATION

As discussed above, energy consumption is an important
design criterion for a multi-hop wireless network. From
the preceding discussions, the energy minimization-
based cross-layer design, i.e., joint rate control, routing,
link scheduling, and power allocation problem can be
mathematically posed as

min
rn,P l

j
, sl

j

∑
n∈N

En (4a)

subject to:

∑
l∈O(n)

J∑
j=1

sl
j −

∑
l∈I(n)

J∑
j=1

sl
j = rn, n ∈ N (4b)

rn ≥ rmin
n , n ∈ N (4c)

∑
l∈I(n̂)

J∑
j=1

sl
j =

∑
n∈N

rn (4d)

∑
l∈O(n)

sl
j +

∑
l∈I(n)

sl
j ≤ 1, ∀n ∈ {N ∪ n̂}, ∀j (4e)

hllP
l
j ≥ γth

∑
k �=l

P k
j hkl + γthηl + D(sl

j − 1),

∀l ∈ L, j = 1, . . . , J(4f)

0 ≤ P l
j ≤ Pmaxsl

j , ∀l ∈ L, j = 1, . . . , J (4g)

sl
j ∈ {0, 1}, ∀l ∈ L, j = 1, . . . , J (4h)

where n̂ denotes the common sink node for all data gen-
erated in the network, D is a very large positive constant.
The objective function is the energy consumption in the
network. Constraints (4b) ensure that the data generated
by source nodes are routed properly. Constraints (4c)
guarantee that the rate for each node is no less than a min-
imum rate. The minimum rates are possibly different for
nodes and are usually determined by the network QoS.
Nodes which do not generate traffic have rn = rmin

n = 0.
Constraint (4d) is the flow conservation at the traffic des-
tination for all the sources. Constraints (4e) state that a
node can not receive and transmit simultaneously in one



particular time slot. Constraints (4f) make sure the SINR
requirement is met: if a link l is active in time slot j,
then the SINR at receiver of link l must be larger than
the given threshold γth which also depends on the sys-
tem implementation. Constraint (4f) is automatically sat-
isfied if link l is not scheduled in time slot j. Constraint
(4g) states that if a link l is scheduled for time slot j, i.e.,
sl

j = 1, then the corresponding power value P l
j must be

less than Pmax. Otherwise, P l
j obviously equals to zero.

We also impose binary integer constraints on sl
j .

It can be seen that the cross-layer optimization prob-
lem (4a)–(4h) belongs to a class of well-known mixed-
integer linear programs (MILPs). The combinatorial na-
ture of the optimization (4a)–(4h) is not surprising and
it has been shown in some previous works, albeit with
different objective functions and formulations (11), (13),
(1). Theoretically, MILPs are NP-hard which is clearly
inviable for practical scenarios when the dimension is
large. The following theorem is in order.

LEMMA 1: At optimality, the source rate constraints
(4c) must be met with equalities for all sources.

PROOF: It is clear that at one node, the transmit
power is an increasing function with respect to the node’s
transmission rate. Therefore, in order to minimize the
transmit power, nodes should transmit at their minimum
rate requirements or only relay data for other nodes. �

Since the proposed design aims at minimizing the total
energy consumption, it may cause some particular nodes
spending more energy than the other nodes, and thus,
running out of energy quicker. Therefore, equal energy
distribution among nodes is not optimal. In this context,
the proposed design can be performed, for example dur-
ing the stage of network planning. In such scenarios, the
network designer needs to assign each wireless node a
certain amount of energy (e.g., a number of AAA bat-
teries) according to the network topology and QoS con-
straints of the nodes. Therefore, the proposed design
helps to determine which nodes need to be equipped with
more and/or less energy than the others. Moreover, it
quantifies the minimum amount of energy needed in a
TDMA frame to satisfy the QoS demands. Obviously,
depending on a particular context, this energy value is
closely related to the network lifetime depending how the
network lifetime is defined.

As discussed, the routing algorithm resulted from the
proposed design may cause some nodes spending more
time than the others. Therefore, another design objective
which may help to prevent such situation is as follows

min
rn,P l

j
, sl

j

max
n∈N

En (5a)

subject to: The constraints (4b)–(4h) . (5b)

The optimization problem (5a)–(5b) aims at minimizing
the maximum energy consumed at nodes(s). As a result,
more nodes are likely to be involved in the routing algo-
rithm, i.e., relaying information for other nodes. Here-
after, for simplicity, we only consider the optimization
problem (4a)–(4h).

The cross-layer optimization problem (4a)–(4h) has
worst case exponential complexity when BnB methods
are used to compute the solution. Moreover, when mod-
eling practical networks and depending on the number
of links, nodes and time slots, problem with large sizes
may arise. As a result, it is extremely difficult to sched-
ule links optimally. Most research in literature is based
on heuristic at the cost of performance degradation, for
example, see (11), (13). Here, we propose a method to
solve the mixed 0-1 linear program (4a)–(4h) efficiently.
To this purpose, we first apply the theory of exact pe-
nalization in DC programming (7) to reformulate the
MILP as that of minimizing a DC function over a poly-
hedral convex set. The resulting problem is then han-
dled by DCA which was introduced and extensively de-
veloped over the last decades (6), (8), (9), (10). The men-
tioned approach has been applied successfully in several
large scale problems (see (6), (8), (9), (10) and reference
therein). The details are provided in the following sec-
tion.

AN EFFICIENT ALGORITHM FOR CROSS-
LAYER DESIGN IN TDMA NETWORKS

DC Reformulation via Exact Penalty Method
Using an exact penalty result, we can reformulate the
aforementioned MILP (4a)–(4h) in the form of a con-
cave minimization program. The exact penalty tech-
nique aims at transforming the original MILP into a
more tractable equivalent problem in the DC optimiza-
tion framework. Let S be the feasible set of the problem
MILP (4a)–(4h) which does not include the binary con-
straints. For notational simplicity, we group all the power
variables and link scheduling variables in column vectors
P = [P 1

1 . . . P J
1 P 1

2 . . . P J
L ]T , s = [s1

1 . . . sJ
1 s1

2 . . . sJ
L]T

respectively where T denotes the transpose operator. We
denote a new set K := {(P, s) ∈ S : s ∈ [0, 1]LJ},
and assume that K is a nonempty, bounded polyhedral
convex set in R

LJ × R
LJ . The cross-layer optimization

problem (4a)–(4h) can be expressed in the general form

(Popt, sopt) = arg min
{

eT P + ηT s : (P, s) ∈ S,

s ∈ {0, 1}LJ
}

. (6)

where e is the column vector with all elements being 1,
η = [η1

1 , . . . , ηJ
1 , η1

2 , . . . , ηJ
L], η

j
l = ε

j
l + ε

j
l . Let us con-

sider the function p(P, s) defined by

p(P, s) =
∑

l∈L, j∈J

min{sl
j , 1− sl

j}. (7)

It is clear that p is concave and finite on K, p(P, s) ≥ 0
for all (P, s) ∈ K, and
{

(P, s) ∈ S : s ∈ {0, 1}LJ
}

=
{

(P, s) ∈ K : p ≤ 0
}

.

Hence problem (6) can be rewritten as

(Popt, sopt) = arg min
{

eT P + ηT s : (P, s) ∈ K,

p(P, s) ≤ 0
}

. (8)



The following theorem is in order.
THEOREM 2: (Theorem 1, (7)) Let K be a nonempty

bounded polyhedral convex set, f be a finite concave
function on K and p be a finite nonnegative concave
function on K. Then there exists t̃0 ≥ 0 such that for
t̃ > t̃0 the following problems have the same optimal
value and the same solution set

(Pt) α(t) = min
{
f(x) + t̃p(x) : x ∈ K

}
(9)

(P ) α = min
{
f(x) : x ∈ K, p(x) ≤ 0

}
. (10)

Furthermore

• If the vertex set of K, denoted by V (K), is con-
tained in x ∈ K : p(x) ≤ 0, then t̃0 = 0.

• If p(x) > 0 for some x in V (K), then t̃0 =

min
{

f(x)−α(0)
S0

: x ∈ K, p(x) ≤ 0
}

, where

S0 = min
{

p(x) : x ∈ V (K), p(x) > 0
}

> 0.

PROOF: The proof for the general case can be found
in (7). �

From Theorem 2 we get, for a sufficiently large num-
ber t̃ (t̃ > t̃0), the equivalent concave minimization prob-
lem to (8)

min :
{

eT P + ηT s + t̃p(P, s) : (P, s) ∈ K
}

(11)

which is a DC program

min :
{

g(P, s)− h(P, s)
}

(12)

where

g(P, s) = XK(P, s)

h(P, s) = −eT P − ηT s− t̃
∑

l∈L, j∈J

min{sl
j , 1− sl

j}

and XK(P, s) is 0 if (P, s) ∈ K, otherwise +∞ (the
indicator function of K).

We have successfully transform an optimization with
integer variables into its equivalent form with continuous
variables.

DCA for Solving (11)
In this section we investigate a DC programming ap-
proach for solving (11). In recent years, D.C. program-
ming has been developed extensively, becoming an at-
tractive topic of research in nonconvex programming. A
DC program has the following form

α := min
{

f(x) := g(x)− h(x) : x ∈ Rn
}

(13)

with g, h being lower semi-continuous proper convex
functions onRn, and its dual is defined as

α := min
{

h∗(y)− g∗(y) : y ∈ Rn
}

(14)

where g∗(y) := max{xT y − g(x) : x ∈ Rn} is the
conjugate function of g.

Based on local optimality conditions and duality in DC
programming, the DCA consists in the construction of
two sequences {xk} and {yk}, candidates to be optimal
solutions of primal and dual programs respectively, in
such a way that {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)}
are decreasing and their limits points satisfy the local op-
timality conditions. The idea of DCA is simple: each
iteration of DCA approximates the concave part −h by
its affine majorization (that corresponds to taking yk ∈
∂h(xk)) and minimizes the resulting convex function.
Generic DCA scheme:
Initialization Let x0 ∈ Rn be a best guest, 0← k.

Repeat

• Calculate yk ∈ ∂h(xk)

• Calculate xk+1 ∈ arg min{g(x) − h(xk) − 〈x −
xk, yk〉 : x ∈ Rn} (Pk)

• k + 1← k

Until convergence of xk.

Convergence properties of DCA and its theoretical ba-
sis can be found in (8), (9), (10), for instance it is impor-
tant to mention that:

• DCA is a descent method (the sequences {g(xk) −
h(xk)} is decreasing) without linesearch.

• If the optimal value of problem (13) is finite and the
infinite sequence {xk} is bounded then every limit
point x∗ of {xk} is a critical point of g − h.

• DCA has a linear convergence for general DC pro-
grams.

• DCA has a finite convergence for polyhedral DC
programs ((13) is called polyhedral DC program if
either g or h is polyhedral convex).

We now describe the DCA applied to the DC program
(12). By the very first definition of h, a sub-gradient
(u, v) ∈ ∂h(P, s) can be chosen

(u, v) ∈ ∂h(P, s)← ul
j = −1; (15)

vl
j = ηl

j + t̃ if sl
j ≥ 0.5, otherwise vl

j = ηl
j − t̃.

Algorithm 1 (DCA applied to (11))
Let ε > 0 be small enough and (P 0, s0). Set k = 0,

er = 1.
while er > ε do

• Compute (uk, vk) ∈ ∂h(P k, sk) via (16).

• Solve the linear program: min{−ukT
P − vkT

s :
(P, s) ∈ K} to obtain (P k+1, sk+1).

• Set er = ‖(P k+1, sk+1)− (P k, sk)‖, k = k + 1.



endwhile
Regarding the complexity of the proposed DCA, be-

sides the computation of the sub-gradients which is triv-
ial, the algorithm requires one linear program at each iter-
ation and it has a finite convergence. The linear program
has polynomial complexity. The convergence of Algo-
rithm 1 can be summarized in the next theorem (9).

THEOREM 3:

i) Algorithm 1 generates a sequence {(P k, sk)} con-
tained in V (K) such that the sequence {g(P k, sk)−
h(P k, sk)} is decreasing.

ii) If at iteration r we have sr ∈ {0, 1}LJ , then sk ∈
{0, 1}LJ and f(P k+1, sk+1) ≤ f(P k, sk) for all
k ≥ r.

iii) The sequence {(P k, sk)} converges to
{(P ∗, s∗)} ∈ V (K) after a finite number of
iterations. The point {(P ∗, s∗)} is a critical point of
Problem (11). Moreover such an (P ∗, s∗) is almost
always a strict local minimum of (11).

PROOF: i) is a convergence property of general DC
programs (9), (10) while ii) and iii) can be deduced from
Proposition 2 in (6). �

Since DCA works on the continuous problem (11), its
solution may not be integer, i.e. not feasible to (MILP).
For obtaining an integer solution we combine DCA with
the branch and bound method in which a lower bound is
computed by solving the corresponding relaxed linear
problem. At each iteration we restart DCA from the
optimal solution of the relaxed problem. We stop the
combined algorithm when the solution furnished by
DCA is feasible to (MILP).

Algorithm 2: DCA with starting points obtained by
BnB

Set R0 := [0, 1]LJ , k := 0.
Solve the linear relaxation problem of MILP to ob-

tain an optimal solution (P 0, s0) and the optimal value
β(R0).

If (P 0, s0) is feasible of MILP then STOP
else: solve (11) by DCA from the starting point

(P 0, s0) to obtain (P , s).
If (P , s) is feasible of MILP, then STOP
else set � = {R0} and go to the iteration step.

While (stop = false) do

• Set k := k + 1 and select a rectangle Rk.

• Let j∗ be the index to be separated. Divide Rk in to
two rectangles Rk0

and Rk1
such that

Rki
= {s ∈ Rk : sj∗ = i, i = 0, 1}.

• For each i = 0, 1 solve the corresponding re-
laxed linear problem to obtain an optimal solution
(P ki , ski) and the optimal value β(Rki

).

• Launch DCA from (P ki , ski) to obtain (P ki , ski)).

Sink

Node

N1

N2

N3 N4

N5

Figure 1: The network model used in Section V

• If (P ki , ski ) is feasible of MILP, then STOP else:

� ← � ∪ {Rki
; i = 0, 1} \Rk

endwhile
We adopted an adaptive procedure for the choice of

rectangle to be separated: choose the rectangle such as
the optimal solution of the corresponding linear relaxed
problem has one of the components sl

j , for the links l

connected to the sink node, is not integer; otherwise we
choose the rectangle corresponding to the smallest lower
bound.

COMPUTATIONAL EXPERIMENTS

In this section, we provide preliminary computational re-
sults of our approach. We have coded the Algorithm 2
in C++ programming language and tested the instances
using PC Pentium 4 3GHz, 1GB RAM. CPLEX 9.1 is
used to solve the linear programs. The small-size net-
work with 6 nodes and 10 links as in Figure 1 has been
tested. It is worth mentioning that most of currently de-
ployed wireless networks, for example sensor networks
are of small scale which centralized synchronous TDMA
is viable. Moreover, the implementation of centralized
large scaled networks are extremely difficult, if not im-
possible. If that is the case, one likely approach is to
partition the network into smaller clusters and our pro-
posed design can be applied for each cluster. The node
coordinates are showed in Table 1. The maximum trans-
mit power is taken to be equal to Pmax = 5. The noise
variance η = −20 dB. The SNR threshold γth equals
to 10 dB. Energy consumption for transmitting and re-
ceiving 1 unit data εl, εl is assumed to be 0.25. The
link gains are computed using the path loss model as
hij = 1

10 [ 1
d
] for i �= j, and hii = [ 1

d
] where d is the

Euclidean distance between nodes. The factor of 1
10 can

be viewed as the spreading gain in a CDMA system. We
have tested this network with the different number of
time slots J = 10, 15, 20, 25, 30.

In Table 2, we report the results of Algorithm 2 (the
number of iterations and the value of the objective func-
tion calculated by the algorithm). For evaluating the ef-
ficiency of Algorithm 2 we indicate in this table the
optimal value given by CPLEX 9.1 applied to (MILP).
The following notations are used: J : the number of time
slots; V arC: the number of continuous power variables
P l

j , j = 1, . . . , J, l = 1, . . . , L; V arB: the number
of binary scheduling variables sl

j , j = 1, . . . , J, l =
1, . . . , L; Con: the number of constraints in the opti-
mization problem (4a)–(4h); V alue: the computing ob-



Table 1: Node coordinates
Node N1 N2 N3 N4 N5 Sink node

Coordinates (-20,20) (0,0) (0,40) (40,40) (40,0) (80,25)

Figure 2: Comparative results of objective values be-
tween DCA and CPLEX

jective value by Algorithm 2; iter: the number of iter-
ations of Algorithm 2. OptV al: the optimal value of
(MILP) and Gap = V alue−OptV al

V alue
100%.

From Figure 2 and the column Gap in Table 2, it is
clear that the solutions given by DCA are close enough
to the optimal solutions. The ability to handle very
large-scale problems makes the proposed method imple-
mentable for practical networks.

RELATED RESEARCH

There are numerous existing results in the areas of cross-
layer design. Hereafter, we mention only the works
which are mostly related to the research in this paper.
In particular, we consider the system and interference
model as in (1), (11). (11) presents a joint link scheduling
and power control scheme for TDMA-based networks.
Moreover, routing is assumed to be fixed and the network
throughout, i.e., sum of links’ throughput is maximized.
A heuristic polynomial time algorithm to solve the pro-
posed MILP is proposed. Our proposed formulation can
be seen as an extension to the work in (11) where we also
incorporate rate control, routing with quality-of-service
(QoS) constraints on the end-to-end flows.

Routing algorithms have been designed to prolong the
network lifetime (1), (12). In (1), a cross-layer design
across physical, MAC and routing layers is proposed to
maximize the network lifetime which is defined as the
earliest time when the first node dies. Optimal TDMA
scheduling to maximize the average transmission rate
or to minimize the cross-link interference given fixed
link transmission powers is considered in (14). Unsur-
prisingly, the resulting formulation is also a MILP but
no efficient solution approaches are proposed. In (2),
the authors investigate the problem of joint routing, link

scheduling and power control in wireless multi-hop net-
works. The objective of the optimal policy is the min-
imization of the total average transmission power given
that each link attains the minimum average data rate. The
proposed approach via duality is applicable at low SINR
regions since the capacity is assumed to be a linear func-
tion of SINR.

CONCLUSION

In this paper, we have studied the cross-layer design
problem in an interference-limited TDMA wireless net-
work. Particularly, the problem of joint rate control, rout-
ing, link scheduling and power control has been consid-
ered to minimize the energy consumption. The proposed
design can be formulated as a mixed-integer linear pro-
gram which has worst case exponential complexity to
compute optimal solution. Our main contribution was
to propose a computationally efficient approach based on
DCA. The considered combinatorial optimization prob-
lem has been beforehand reformulated as a DC program
with a natural choice of DC decomposition, and the re-
sulting DCA then consists in solving a finite sequence of
linear programs. DCA is original because it gives an inte-
ger solution while it works in a continuous domain. Pre-
liminary numerical results were encouraging and demon-
strated the effectiveness of the proposed method. More-
over, notice that most problem formulations arising in
TDMA-based networks can be formulated as some sort
of MILP problems, our proposed approach seems attrac-
tive and needs more investigation.
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