
Evaluation of Different Optimization Techniques in the Design of Ad
Hoc Injection Networks

Bernabé Dorronsoro, Grégoire Danoy, Pascal Bouvry, and Enrique Alba

Abstract—Injection networks arise as a way to deal with the
network partitioning problem in ad hoc networks. In this kind
of networks, it is assumed that devices might have other com-
munication interfaces rather than Wi-Fi and/or Bluetooth that
allow them to connect to remote devices, such as GSM/UMTS.
The problem considered in this work is to establish remote links
between devices (called bypass links) in order to maximize the
QoS of the network by optimizing its properties to make it small
world. Additionally, these bypass links are not free, so the number
of this kind of links in the network should be minimized as well.
We face the problem with six different GAs and compare their
behaviors. These alorithms are two panmictic algorithms, two
GAs with the population structured in islands and two cellular
GAs. One of the island GAs (a simple distributed GA with
steady-state GAs runing in the islands) and the two cellular
GAs were applied here for the first time to this problem. The
other island GA, a cooperative coevolutionary GA, is considered
the current state-of-the-art algorithm for this problem. As a
result, we conclude that the two cellular GAs outperform all the
compared algorithms, including the CCGA, for the three studied
network instances.

I. INTRODUCTION

Mobile multi-hop ad hoc networks most often face the
problem of network partitioning. In this work we consider
the problem of optimizing injection networks which consist in
adding long-range links (e.g., using GSM, UMTS or HSDPA
technologies) that are also called bypass links to interconnect
network partitions. To tackle this topology control problem,
we use small-world properties as indicators for the good
set of rules to maximize the bypass links efficiency. Small-
world networks [1] feature a high clustering coefficient (γ)
while still retaining a small characteristic path length (L).
On the one hand, a low characteristic path length is of
importance for effective routing mechanisms as well as for the
overall communication performance of the entire network. On
the other hand, a high clustering coefficient features a high
connectivity in the neighborhood of each node and thus a
high degree of information dissemination each single node can
achieve. This finally motivates the objective of evoking small-
world properties in such settings. In order to optimize those
parameters (maximizing γ, minimizing L) and to minimize
the number of required bypass links in the network, we relied
on Evolutionary Algorithms (EAs) and more specifically on
Genetic Algorithms (GAs) [2].
This optimization problem was first introduced in [3], where

it was solved with two panmictic GAs (generational and
steady-state) and a cooperative coevolutionary GA (CCGA),
this latter one reporting the best results. However, in that
study the CCGA was compared versus two simple panmictic

algorithms. In this work we extend this preliminar study by
proposing three aditional decentralized GAs, namely a GA
distributed in islands running a steady-state GA in each island,
and two cellular genetic algorithms: a canonical and a hier-
archical one. We consequently compare two panmictic GAs
and four decentralized GAs (two island and two cellular GAs,
the main kinds of structured GAs) on this complex problem.
One important contribution of this paper is the comparison we
perform among the CCGA versus other decentralized GAs.
As an additional contribution of this work, we found that the
two cellular GAs generally outperformed all the compared
algorithms, representing the new state of the art for the
problem.
The remainder of this paper is organized as follows. In

the next section we introduce the injection network problem.
Section III provides a brief description of the studied genetic
algorithms, as well as the representation used and the fitness
function we defined. Then, section IV presents the experiments
and discuss the results. The last section contains our conclu-
sions and perspectives.

II. PROBLEM OVERVIEW

The problem we study in this article consists in overcoming
partitioning in ad hoc networks by optimizing the placement
of long range links that we call bypass links.
Our initial motivation for the current investigation is based

on the assumption that technologies like Bluetooth and Wi-Fi
can be used to create ad hoc communication links within the
transmission range at no charge. Additional cellular network
links such as GSM/UMTS/HSDPA might be employed by
appropriately equipped devices to establish supplementary
communication links, that we call bypass links, between
two capable devices. These links will induce additional
costs, and they are typically used to connect distant (not in
range) devices that are either far away (there is a many-hops
communication between them) or not connected (belonging
to different clusters) in the network. Practically, a bypass link
can be built by using a cellular network as well as by using
access points. Nevertheless, in our model a bypass link is
counted as a single hop, thus simplifying the real topology
behind that bypass link. Devices used for establishing
bypass links are called injection points, and self-organizing
communication networks based on bypass links and injections
points as described here are called injection networks (see an
example injection network in Fig. 1).

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

Bypass Link

Injection Points

Fig. 1. Example of an Injection Network.

Injection points serve two different purposes: a point where
information dissemination starts and where services are being
placed (service placement, Herrmann et al. [4]). In the first
case, the injection point is of essential importance at the
moment of receiving information and passing this information
to the neighborhood. The injection point might represent a
bottleneck, depending on the amount of data passing through.
In addition, injection points become particularly attractive
when offering a service. In fact, information dissemination
can be seen as such a service that is usable by devices
in the injection points surrounding. Hence, the criterion for
determining the injection point might highly influence the
behavior of the network.
In order to optimize this kind of networks, we consider

small-world properties as indicators for the good set of
rules to maximize the bypass links efficiency. Small-World
networks [1] are a class of random graphs that exhibit a
small characteristic path length (L), indicating the degree
of separation between the nodes in the graph, and a high
clustering coefficient (γ), defining the extent to which nodes
in the graph tend to form closely-knit groups that have many
edges connecting each other in the group, but very few edges
leading out of the group. The challenging aspect in using
small-world properties is that small-world networks combine
the advantages of regular networks (high clustering coefficient)
with the advantages of random networks (low characteristic
path length). In order to study the small-world properties of
such hybrid networks, we had to rely on some ad hoc network
simulator. In our case we used Madhoc [5], an application-
level network simulator dedicated to the simulation of mobile
ad hoc networks. The main motivation for using Madhoc is
its ability to simulate hybrid networks, i.e., mixing different
technologies (e.g., bluetooth/Wi-Fi for local connections and
UMTS for long distance calls), and its graphical and batch
modes of visualization, which greatly help in understanding

the network design alternatives.

III. THE ALGORITHMS
We compare in this work several algorithms with different

population structures (panmictic, cellular, and islands) on the
complex problem of optimizing the design of injection ad
hoc networks. On the one hand, panmictic algorithms do not
consider any structure into the population; so any individual
can mate with any other one in the population. On the other
hand, in structured, or also called decentralized, populations
(e.g., cellular and distributed GAs) individuals can only inter-
act with a subset of the individuals in the whole population.
In cellular GAs, a distance measure is defined among all
the individuals in the population and only individuals that
are close each other can interact. In the case of island (or
distributed) GAs, the population is partitioned into several
smaller subpopulations that independently evolve, exchanging
some information among them during the run.
We present in this section the six algorithms evaluated in

this study. Specifically, they are two panmictic GAs, the gen-
erational (genGA) and steady-state GAs (ssGA), two cellular
ones, a canonical (cGA) and a hierarchical one (HcGA), and
two island GAs, a canonical one (dGA) and a coevolutionary
GA (CCGA). All these algorithms are briefly described in
sections III-A to III-C, while the problem representation and
the fitness function are presented in Section III-D.

A. Panmictic Genetic Algorithms
We present in this section the two GAs with centralized

population we study in this paper, namely the steady-state
(ssGA) and the generational (genGA) genetic algorithms. In
panmictic algorithms, any individual in the population can
mate with any other one during the breeding loop. These two
algorithms perform in a similar way: they iterate a process
in which two parents are selected from the whole population
with a given selection criterion, they are then recombined,
the obtained offsprings are mutated, and finally they are
evaluated and inserted back into the population following a
given criterion.
The difference between the ssGA and the genGA is the

way in which the population is being updated with the new
individuals generated during the evolution. In the case of the
ssGA, new individuals are directly inserted into the current
population (it is a (μ+1)-GA), while in the case of the genGA,
a new auxiliary population is built with the obtained offsprings
and then, once this auxiliary population is full, it completely
replaces the current population (it is a (μ, λ)-GA, with μ =
λ). Thus, in ssGAs the population is asynchronously being
updated with the newly generated individuals, while in the
case of genGAs all the new individuals are updated at the
same time, in a synchronous way.

B. Cellular Genetic Algorithms
Cellular genetic algorithms (cGAs) [6] are a kind of GA

with a structured population in which individuals are spread
in a two dimensional toroidal mesh, and they are only allowed

Fig. 2. Example 5 × 5 population of a cGA with C9 neighborhood

to interact with their neighbors. As an example, we show in
Fig. 2 the disposition of the individuals in the population of a
cGA, the neighborhood of the center individual (shadowed),
and of another individual far from the center, in the upper left
corner (dashed line).
A canonical cGA follows the pseudo-code included in

Algorithm 1. In this basic cGA, the population is usually
structured in a regular grid of d dimensions (d = 1, 2, 3),
and a neighborhood is defined on it. The algorithm iteratively
considers as current each individual in the grid (line 3), and
individuals may only interact with individuals belonging to
their neighborhood (line 4), so parents are chosen among
the neighbors (line 5) with a given criterion. Crossover and
mutation operators are applied to the individuals in lines 6
and 7, with probabilities Pc and Pm, respectively. Afterwards,
the algorithm computes the fitness value of the new offspring
individual (or individuals) (line 8), and inserts it (or one of
them) instead of the current individual in the population (line
9) following a given replacement policy. This loop is repeated
until a termination condition is met (line 2).

Algorithm 1 Pseudocode for a canonical cGA
1: proc Evolve(cga) //Algorithm parameters in ‘cga’
2: while ! StopCondition() do
3: for individual ← 1 to cga.popSize do
4: n list←Get Neighborhood(cga,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cga.Pc,parents);
7: offspring←Mutation(cga.Pm,offspring);
8: Evaluation(offspring);
9: Add(position(individual),offspring,cga);
10: end for
11: end while
12: end proc Steps Up;

In addition to the previously described canonical cGA, we
also study in this paper a hierarchical version of the algorithm,
called hierarchical cGA (HcGA) [7]. HcGA is a simple
extension of canonical cGAs in which the population structure
is augmented with a hierarchy according to the current fitness
of the individuals. The basic idea is to put the best current
solutions all together in the same region of the population,
so that high quality solutions are exploited quickly, while
at the same time new solutions are provided by individuals
outside this region that keep exploring the search space. This
algorithmic variant is expected to increase the convergence

speed of the cGA algorithm and to maintain the diversity given
by the distributed layout. In [7], the HcGAs were proposed for
the first time and were validated in a theoretical and empirical
comparison versus an equivalent canonical cGA.

C. Distributed Genetic Algorithms
In addition to the cellular model, there is another common

way for structuring the population of GAs. It consists of
splitting the whole population into several subpopulations in
which isolated GAs are evolving, and these subpopulations
exchange some information among them during the run. We
study in this paper two algorithms following this model,
namely dGA, a simple distributed GA with an ssGA running
in every island, and CCGA, a cooperative coevolutionary GA
that represents current state of the art for this problem.
The main idea behind coevolutionary algorithms is to

consider the coevolution of subpopulations of individuals
representing specific parts of the global solution, instead of
considering a population of similar individuals representing
a global solution, like classical genetic algorithms do. The
quality of this kind of algorithms have been reported in a large
number of papers in the literature. As an example, two differ-
ent coevolutionary GAs were applied in [8] on a number of
test functions known in the area of evolutionary computation,
and they were demonstrated to clearly outperform a sequential
GA.
Cooperative (also called symbiotic) coevolutionary genetic

algorithms (CCGA) involve a number of independently evolv-
ing species which together form complex structures, well-
suited to solve a problem (see a pseudocode in Algorithm 2).
The fitness of an individual depends on its ability to col-
laborate with individuals from other species. In this way,
the evolutionary pressure stemming from the difficulty of
the problem favors the development of cooperative strategies
and individuals. The CCGA considered here is based in the
model proposed by Potter and DeJong [9], in which a number
of populations explore different decompositions of the prob-
lem. In this system, each species represents a subcomponent
of a potential solution. Complete solutions are obtained by
assembling representative members of each of the species
(populations). The fitness of each individual depends on the
quality of (some of) the complete solutions it participated in,

Algorithm 2 Pseudocode of the CCGA
1: gen = 0
2: for all speciess do
3: Pops(gen) = randomly initialized population
4: evaluate fitness of each individual in Pops(gen)
5: end for
6: while termination condition = false do
7: gen = gen + 1
8: for all speciess do
9: select Pops(gen) from Pops(gen− 1) based on fitness
10: apply genetic operators to Pops(gen)
11: evaluate fitness of each individual in Pops(gen)
12: end for
13: end while

thus measuring how well it cooperates to solve the problem.
The evolution of each species is controlled by a separate,
independent evolutionary algorithm. In the initial generation
(t=0) individuals from a given subpopulation are matched with
randomly chosen individuals from all other subpopulations. A
fitness for each individual is evaluated, and the best individual
in each subpopulation is found. The process of cooperative
coevolution starts form the next generation (t=1). For this
purpose, in each generation a cycle of operations is repeated
in a round-robin fashion. Only one current subpopulation is
active in a cycle, while the other subpopulations are frozen. All
individuals from the active subpopulation are matched with the
best values of frozen subpopulations. When the evolutionary
process is completed a composition of the best individuals
from each subpopulation represents a solution of a problem.

D. Problem Encoding and Fitness Functions
Solution encoding is a major issue in this kind of algorithms

since it will determine the choice of the genetic operators
applied for exploring the search space. We have used a binary
encoding of the solution in which each gene encodes an integer
on 15 bits, that corresponds to one possible bypass link in the
half-matrix of all possible links. For instance, if the maximum
number of bypass links fixed a priori for the network that
is optimized is 10, then a chromosome will have 10 genes
of 15 bits. Figure 3 shows the example of a chromosome
composed of 2 genes (thus the maximum number of created
bypass links is 2) on a network of 5 stations. The 5×5
half-matrix represents all the possible links in the network
including the already existing local links in the network (i.e.
the existing Wi-Fi connections). In the example showed in
Figure 3, the first gene (circled) with the integer value 2
stands for the connection between station 1 and station 3 in
the corresponding half-matrix (also circled).

Chromosome 2 7 9 16

000000000000011
Binary

Encoding

1

3

2

4

5

Network

Bypass Link1

1

2 3 4 5

2

3

4

5

2 3 4

6 7

8

First Station

S
e
c
o
n
d

S
ta

ti
o
n

9

1

5

10

Fig. 3. Solution encoding example

In order to assign a fitness value to the candidate solutions
(i.e. sets of possible bypass links) of our algorithms, we use a
unique cost function F which combines the two small world

measures (L and γ) and the number of created bypass links.
The calculation of the characteristic path length L imposes
that there exists a path between any given nodes a and b.
Consequently, the computation of the fitness function requires
that we first test if the network is partitioned.
If the optimized network is still partitioned (the bypass links
defined do not achieve to connect all the partitions), the fitness
value is assumed to be a weighted term of the number of
partitions in the network.
On the contrary, if the optimized network is no longer parti-
tioned, the fitness value is assumed to be a linear combination
of the clustering coefficient, of the characteristic path length,
and of the difference between the number of bypass links
defined and the maximum number allowed.
The aim of the optimization process is to maximize the clus-

tering coefficient, and to minimize both the characteristic path
length and the number of bypass links. By using this fitness
function we now face the maximization problem defined in
Algorithm 3.

Algorithm 3 Fitness Function
1: if Graph connected then
2: F = α * γ - β * (L - 1) - δ * (bl - blmax)
3: else
4: fitness = ξ * P
5: end if

With weights experimentally defined:
α = 1
β = 1 /(N -2)
δ = 2 / (N * (N-1)) - WifiConnections
ξ = 0.1

where bl is the number of bypass links created in the simulated
network by one solution, blmax (defined a priori) is the
maximum number of bypass links that can be created in the
network, P is the number of remaining partitions in the whole
network after the addition of bypass links and N is the number
of stations in the global network. Finally, WifiConnections is
the number of existing Wi-Fi connections in the network.

IV. EXPERIMENTS
This section presents the results obtained on the injection

network optimization problem using the different GAs pre-
sented in Section III. We first describe the parameters used for
the genetic algorithms. Next, the configuration of the network
simulator is introduced and, finally the results obtained using
the six GAs are analyzed and compared.

A. Parameterization
In Table I, we show the parameters used for all the proposed

algorithms. All of them have a single population of 100
individuals, except for the two distributed algorithms: CCGA
(10 populations of 50 individuals), and dGA (5 subpopulations
of 100 individuals), having both of them a total population of
500 individuals. The termination condition is achieving 50,000

TABLE I
PARAMETERS USED FOR THE STUDIED GAS

Number of Subpopulations 10 for CCGA
5 for dGA

(Sub)Population size 100 (genGA, ssGA, dGA)
10 × 10 (cGA, HcGA)
50 (CCGA)

Termination Condition 50,000 function evaluations
Selection Binary tournament (BT)

Current individual + BT in cGA and HcGA
Neighborhood C9 in cGA

C13 in HcGA
Crossover operator DPX, pc=0.8
Mutation operator bit flip, pm = 1/chrom length
Elitism 1 individual (not for ssGA)

Algorithm

Madhoc Simulator

Cluster 2 Cluster 3

Cluster 1

x

f(x)

Panmictic Model (genGA, ssGA)

Cellular Model (cGA, HcGA)

Islands Model (CCGA, dGA)

Fig. 4. Components of the experimental study

fitness function evaluations, common to all the algorithms, as
well as the recombination (the two points crossover –DPX–
) and mutation (bit-flip) operators, and their probabilities:
pc = 0.8 and pm = 1/chrom length, respectively.
The two parents are selected using a binary tournament,

except for the two cellular algorithms, for which one of them
is considered to be the current individual itself. A specific
parameter of these cellular models is the neighborhood. We
used C9 (9 closest individuals measured in Manhattan distance
–see Fig.2–) for cGA and C13 for HcGA. The reason of using
a different neighborhood for HcGA is that it maintains a higher
diversity in the population than the cGA, and thus we can use
a more exploitative neighborhood. Finally, all the algorithms
follow an elitist strategy, with the exception of ssGA.

B. Madhoc Configuration
As stated before, the Madhoc simulator was used for man-

aging the complex scenarios posed by this injection network
problem. Fig. 4 shows how the genetic algorithms interact with
Madhoc.
The parameters we have used in Madhoc for defining our

problem instances are shown in Table II. We have defined a
square simulation area of 0.2 km2 and tested three different

TABLE II
PARAMETERIZATION USED IN MADHOC

1 Cluster 3 Clusters 5 Clusters
Surface 0.2 km2 0.2 km2 0.2 km2

Node Density 350 nodes/km2 210 nodes/km2 150 nodes/km2

Number of Nodes 70 42 30
Partitions 1 3 5

Possible Links 2189 745 400

densities of 150, 210 and 350 devices per square kilometer.
Each device is equipped with both Wi-Fi (802.11b) and UMTS
technologies. The coverage radius of all mobile devices ranges
between 20 and 40 meters in case of Wi-Fi.
The studied networks, as presented in Fig. 5, here represent

a snapshot of mobile networks in the moment in which a single
set of users moved away from each other creating the clusters
of terminals, that were obtained using the graphical mode of
Madhoc. As an example, the network with 3 clusters (center
of Fig. 5) consists in 42 stations located in three partitions, the
first partition has 38 stations, the second one 3, and the third
one has a single station. The number of possible connections
in this 3-clusters network is N∗(N−1)

2 = 861. The number of
existing Wi-Fi connections in this network is 116, thus the
number of possible bypass links is 861-116 = 745. The clusters
are selected purposely to be different and thus challenging.

C. Results
In Table III we show the averaged results, the best ones,

and the total computational time for all 30 runs for each
algorithm. Additionally, we show the results of the statistical
tests in the comparison of the different algorithms for each
cluster instance in order to obtain concluding results from the
comparison made. For performing these statistical tests, we
first check whether the data follow a normal distribution or not
using the Shapiro-Wilks test. Then, if the data are normally
distributed we perform an ANOVA test. In the other case, we
use the Kruskal-Wallis test. This statistical study allows us to
assess if there are meaningful differences among the compared
algorithms with 95% probability or not.
Symbol ’+’ in Table III stands for existing statistical differ-

ences in the comparison of the algorithms. Grey background
means that the result is the best one with statistical confidence
(if there are more than one result with grey background
for the same problem it means that there are no statistical
difference between them, but they are better than the others
with statistical significance).
As we can see in Table III, the two cellular models and

the CCGA are clearly the three best compared algorithms.
The two panmictic GAs and dGA obtain the worst results
with statistical significance with respect to the best performing
algorithm for the three studied instances. If we now compare
the CCGA and the two cellular models, we can see that the
celullar alorithms outperform CCGA in the case of the 5
clusters instance with statistically significant differences. For
the other two instances (1 and 3 clusters), CCGA obtains better

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
Cluster 2

Cluster 3

Cluster 1

Fig. 5. Studied Networks with 1, 3 and 5 clusters

TABLE III
RESULTS OF ALL EXPERIMENTS

Network GA Avg. Result Best Result Time (s) p-value

1 Cluster

genGA 0.6833 0.6920 8256

+

ssGA 0.6736 0.6855 8395
dGA 0.6760 0.6856 11311

CCGA 0.6911 0.6925 17784
cGA 0.6887 0.6924 10760

HcGA 0.6893 0.6926 10366

3 Clusters

genGA 0.6685 0.6782 4486

+

ssGA 0.6489 0.6651 3289
dGA 0.6555 0.6664 5703

CCGA 0.6739 0.6757 6793
cGA 0.6727 0.6757 3563

HcGA 0.6724 0.6754 2883

5 Clusters

genGA 0.5634 0.5848 1672

+

ssGA 0.5527 0.5809 1717
dGA 0.5576 0.5783 3563

CCGA 0.5652 0.5864 8674
cGA 0.5790 0.5923 1713

HcGA 0.5779 0.5931 1569

average results, but the differences with the cellular models
are not statistically significant. If we now pay attention to the
best solution found in the 30 runs, HcGA finds the best result
for instances of 1 and 5 clusters, while in the case of the 3
clusters problem, both the cGA and CCGA achieve the same
best value.
Regarding the computation time, the HcGA is the fastest

algorithm among the three best ones. Indeed it is the fastest
algorithm out of the six compared ones for instances of 3 and 5
clusters, being only improved by the two panmictic algorithms
(wich find much worse results) in the largest instance.
With the goal of better understanding the behavior of the

different compared algorithms, we now analyze the evolution
of the population during the run for all the alorithms. So, we
plot in figures 6 to 8 the evolution of the average of the best
fitness values during the execution in the 30 runs for the six
algorithms and the three studied problem instances. As it can
be seen, the behavior of the algorithms is similar for the three
problem instances.
As a general rule, all the algorithms experiment a high

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

1 Cluster

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 6. Evolution of the average best fitness value (30 executions) during
the run. One cluster instance

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

3 Clusters

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 7. Evolution of the average best fitness value (30 executions) during
the run. Three clusters instance

improvement of the fitness value during the first function
evaluations, but then they get stuck and the improvement of the
fitness is very low. The reason for this too slow evolution of
the fitness value is that the population (or populations) of the

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

5 Clusters

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 8. Evolution of the average best fitness value (30 executions) during
the run. Five clusters instance

algorithms prematurely converged in the first steps of the run,
loosing the diversity of individuals, and thus making difficult
the improvement of the current individuals with the application
of the variation operators.
As an exception, the reader can see how the convergence of

the cellular GAs is slower from the beginning of the evolution,
and it does not get stuck as in the case of the other compared
algorithms. The reason is that the cellular model preserves the
diversity of the population for longer [6] with respect to the
other compared GAs. It thus makes possible to improve the
current solutions with the application of the variation operators
to the individuals in the population during the breeding loop.
We can clearly see this effect in Fig. 8: the fitness value is
continuously growing during the whole evolution for the two
cellular models, while the other algorithms hardly improve the
fitness value in the second half of the run.
The CCGA experiments a really fast convergence during

the first generations, but after that the convergence becomes
much slower, slightly improving the solution. The two cellular
models show a similar behavior in the three problem instances.
The convergence of these two algorithms is slower than for the
other ones, consequently they need more funtion evaluations
to achieve good results, but they maintain the diversity of the
population for longer avoiding local optimal solutions.
Finally, it can be seen how the island and the two panmictic

GAs prematurely converge to local optimal solutions, from
which they find difficulties to escape.

V. CONCLUSIONS AND FURTHER WORKS

We have compared in this paper six different GAs on the
problem of designing ad hoc injection networks. The compared
algorithms are two panmictic algorithms, the generational and
steady-state GAs, two algorithms with population structured in
islands, a distributed GA with steady-state GAs in the islands
and a coevolutionary GA, and two cellular GAs: the canonical
and the hierarchical cGA.
Our main conclusion from our comparison study is that the

cellular models outperform the other compared ones for the

three studied instance problems. The CCGA reports similar
average results than the cellular algorithms for the two largest
intances, but the cellular models are better in terms of the
best solution found and the computational time required. As
future works, we propose the study of more realistic instances
of the problem. This can be achieved by either considerably
increasing the size of the problems or by studying dynamic
networks varying with time.

REFERENCES
[1] D. J. Watts, Small Worlds – The Dynamics of Networks between Order

and Randomness. Princeton, New Jersey: Princeton University Press,
1999.

[2] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary
Computation. Oxford University Press, 1997.

[3] G. Danoy, E. Alba, P. Bouvry, and M. R. Brust, “Optimal design of ad
hoc injection networks by using genetic algorithms,” in GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2007, pp. 2256–2256.

[4] K. Herrmann and K. Geihs, “Self-Organization in Mobile Ad hoc
Networks based on the Dynamics of Interaction,” Erlangen, Germany,
2003, frühjahrstreffen der GI-Fachgruppe Betriebssysteme. [Online].
Available: http://www.kbs.cs.tu-berlin.de/publications/fulltext/gi0403.pdf

[5] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba, “Simulating
Realistic Mobility Models for Large Heterogeneous MANETS,” in Demo
proceeding of the 9th ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM’06).
IEEE, October 2006.

[6] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms, ser. Operations
Research/Compuer Science Interfaces. Springer-Verlag Heidelberg,
2008.

[7] S. Janson, E. Alba, B. Dorronsoro, and M. Middendorf, “Hierarchical
cellular genetic algorithm,” in Evolutionary Computation in Combina-
torial Optimization (EvoCOP), ser. Lecture Notes in Computer Science
(LNCS), J. Gottlieb and G. Raidl, Eds., vol. 3906. Budapest, Hungary:
Springer-Verlag, Heidelberg, April 2006, pp. 111–122.

[8] F. Seredynski, A. Zomaya, and P. Bouvry, “Function optimization with
coevolutionary algorithms,” in Proc. of the International Intelligent In-
formation Processing and Web Mining Conference. Springer, 2003.

[9] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Parallel Problem Solving from Nature (PPSN
III). Springer, 1994, pp. 249–257.

