
BODYF – A Parameterless Broadcasting Protocol
Over Dynamic Forest

P. Ruiz, B. Dorronsoro, D. Khadraoui, P. Bouvry, L. Tardón.

Abstract—Mobile Ad hoc Networks (MANETs) are com-
posed of mobile devices which spontaneously communicate each
other without any previous existing infrastructure. Thus, the
resulting network is highly fluctuating and has a dynamically
changing topology. Dealing with ad hoc networks, broadcasting
is one of the main operations, since many other applications
use it very often. In order to avoid the broadcast storm
problem in wireless networks, many researchers work on the
design of efficient broadcasting algorithms. In this contribution,
we present BODYF, a broadcasting protocol that relys on a
tree-based topology. The behavior of this algorithm does not
depend on any parameter, what makes it challenging and
suitable for dealing with MANETs. We compare here our
proposal to DFCN, an efficient broadcasting neighbor topology
based protocol, and also to Simple Flooding, the most simple
broadcasting technique which does not require any knowledge.

I. INTRODUCTION

Broadcasting constitutes one of the fundamental low-level
network operations which serves as the basis of higher level
applications, such as routing, in mobile ad hoc networks
(MANETs). In MANETs, the limited radio range of the
nodes, as well as node mobility, cause the unreachability of
some nodes at a given time and a highly fluctuating topology.
This is the reason why some researchers are focusing on
optimizing the behavior of these algorithms, e.g., maximizing
the number of nodes reached, and minimizing both the time
required and the network overload [1].
Recently, there exists also a tendency in the ad hoc

networks field focused on the development of new mo-
bile networks composed of vehicles. In Vehicular Ad-hoc
Networks (VANETs), vehicles can communicate each other
(Car to Car communication) or with road-side units that
allow access to backend systems which provide warnings,
traffic information, etc. Vehicle communication is a major
research topic, covered by many national and international
research projects as CARLINK [2]. Applications promise to
make our driving safer, more efficient, and funnier. This
includes warning applications, e.g., cars are able to send
warning messages to other cars alerting them of a danger
ahead, weather and traffic conditions, etc. In VANETs, due
to the high speed of the devices (car PCs), the topology of

D. Khadraoui and P. Ruiz work at C.R.P. Henri Tudor, Luxembourg. B.
Dorronsoro and P. Bouvry work at the Faculty of Sciences, Technology
and Communications, University of Luxembourg. L. Tardón is with the
Department of Communication Engineering, University of Málaga, Spain.
(Email: {djamel.khadraoui, patricia.ruiz}@tudor.lu {bernabe.dorronsoro,
pascal.bouvry}@uni.lu, lorenzo@ic.uma.es).
D. Khadraoui and P. Ruiz acknowledge that this work was partially

supported by CELTIC CARLINK project financed by the Ministry of Lux-
embourg (CARLINK project website: http://carlink.lcc.uma.es)

the network is even more dynamic than in MANETs, what
difficulties the communication between them.
In MANETs, we can typically differentiate broadcasting

protocols into heuristic- and topology-based protocol. We
are interested in topology-based protocols which are sub-
categorized into neighbor topology based protocol, source-
tree based protocol and cluster-based protocol [3]. In this
paper, we propose a new source-tree based broadcasting algo-
rithm, called Broadcasting Over Dynamic Forest (BODYF).
We will compare BODYF to a neighbor topology based
protocol, Delayed Flooding with Cumulative Neighborhood
(DFCN). In contrast to BODYF, which requires a tree-
based topology established in the network, DFCN does not
exchange any message for stablishing its topology; it just
needs the one hop neighborhood knowledge obtained using
the beacons (hello messages that devices send for notifying
their presence). We will also compare BODYF to Simple
Flooding, a well known broadcasting technique which does
not require any knowledge about the neighborhood or the
topology, and either makes any attempt to reduce the number
of forwarded messages.
In addition to the comparison (in terms of coverage,

bandwidth and elapsed time) of the behavior of these so
different broadcasting protocols, which is already interesting
by itself, with this study we can also check, whether the
overload caused by the tree-based topology is worthy or not.
The rest of this paper is organized as follows: Section II

describes DAGRS, the model for creating topologies used for
the creation of our tree, and presents BODYF, the broadcast
algorithm over this tree. Section III introduces DFCN the
broadcast protocol with one hop neighborhood knowledge.
The mobility model and the simulator used are presented in
Section IV. After that, the results are shown in Section V
and finally, Section VI concludes the paper.

II. BROADCASTING OVER DYNAMIC FOREST, BODYF

In this section we present BODYF, a broadcasting protocol
over a dynamic forest. Although broadcasting using a tree
structure is a well known and widely used technique [4], it
is typically claimed to be inappropriate for ad hoc networks,
being the maintenance of the tree very sensitive to network
changes. In this work, we built the tree using DAGRS
(dynamicity aware graph relabeling systems) [5], a general
model for creating dynamic topologies, and developed the
broadcast algorithm on top of this topology.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

A. Dynamicity Aware Graph Relabeling Systems, DAGRS
DAGRS is an extension of Graph Relabeling Systems,

GRS [6]. It is a high level abstraction model that can be
used to drastically improve the development of self-organized
systems. The model supports the design of algorithms in
which a computation step only involves direct neighbors and
where a device can react to the appearance/disappearance of
its neighbors [7]. The main advantage of DAGRS is that it
makes the description of algorithms easier to understand and
validate.
The network is represented as a graph, where the mobile

devices are the set of vertices (V), and the links between
them are the edges of the graph, (E). The dynamicity of the
network is represented by the fact that both V and E can
change at any time.
It is important to emphasize that DAGRS model does

not itself model services or applications, it just models the
mechanisms to handle with topology changes and interaction
between devices.
A spanning tree of a graph is a connected cycled-free

subgraph. In fact, in dynamic networks we should talk about
spanning forest, since the network is typically partitioned. In
this model we only use one-hop neighbor information, so it
is a localized algorithm.
Initially, all devices are labelled T, what means they are

tree themselves. The algorithm performs on the basis of four
rules described after and represented in Figure 1; where T
represents a node with token, N is a device without token,
and Any means it can be both of them. The numbers on the
edges are labels representing the route to the token.

Initially:

rule 1:

rule 2:

rule 3:

rule 4:

T

T

T

N

Any

off

1

off

2

Any

T

T

N

0 0

12

T N

12

N T

21

Fig. 1. DAGRS rules for creating spanning forest topologies.

Every tree has only one token, and the possible operations
of this token are: circulation, merging, and regeneration. As
explained before, every device is initially a tree itself, with
only one element. Only two nodes with token can merge.
When two nodes with token meet each other, rule 3 allows
merging the two trees, deleting one of the tokens (there only
can be one token in each tree). The circulation of the token
is represented by rule 4. In our implementation, the token
explores the tree in a depth-first manner. Both rules 1 and
2 deal with a broken link. In rule 1, the token must be
regenerated (label 1 represents the route to the token, so
if this link breaks the token is lost), meanwhile in rule 2,

the node has nothing to do with the maintainance of the
token (label 2 represents a different link from the route
to the token). Applying these easy rules to every device,
we can build a dynamic tree topology in the network, in a
decentralized way.
It is very important to remark that there is only one token

per tree in the forest, since it is the way for avoiding cycles.
Only two nodes with token can merge, so since there is only
one token in the tree, two nodes belonging to the same tree
are not able to merge never (it is impossible both of them
have the token at the same time).
As we explained above, we are using these simple rules of

DAGRS for creating and maintaining the tree, but as we are
dealing with high speed mobile environments and also with
distributed systems, we exchange some messages between
nodes for merging trees and also for circulating the token.
DAGRS do not specify how to implement a token. In our
protocol, the token is a message. For circulating the token,
a device sends this message to one of its neighbors. When
a device receives the token, it should check if there is any
neighbor with token in its neighborhood just to merge their
trees, but this behaviour leads in a high level number of
messages interchanged. So we take advantage of the high
mobility and use it: only when a change in the one hop
neighborhood is detected, the device with token checks if
there is any other device nearby with token.

B. The proposed broadcasting protocol, BODYF

BODYF is a broadcasting protocol specifically designed
for communication dynamic networks based on spanning tree
topologies. We suppose the tree-based topology is already
established in the network, maybe for routing or any other
necessity [8]. Once we have the tree (or the forest due
to the network partitioning), we use it for broadcasting.
Therefore, our main goal is not the tree itself, but the design
of a new broadcasting protocol that can achieve the best
possible coverage and broadcast time at a minimum cost,
using the information of the network provided by the tree-
based topology.

Fig. 2. Possible types of neighbors in a spanning forest algorithm.

Assuming we have the forest, we will distinguish between
logical neighbors, which are the ones belonging to the same
tree, and potential neighbors, which are those that do not
belong to my tree yet but are in communication range, as
it is shown in Figure 2. In this picture, devices in same
color belong to the same tree. The links between devices
are represented as a continuous line if the neighbors belong
to the same tree and are connected (logical neighbors), or as
a discontinuous line for neighbors either in communication

range but which do not belong to the tree (potential neigh-
bors) or belonging to the same tree but not connected in
order to avoid cycles.
A pseudocode of our proposed broadcasting algorithm is

given in Algorithm 1. We suppose that all the messages
have an unique identifier, and when a device receives the
same message more than once, it will directly discard it, no
processing is done.
When a device wants to spread a message, instead of doing

a multicast only to its logical neighbors (the neighbors in the
same tree), it will broadcast the information, what supposes
the same load for the network, allowing the potential neigh-
bors to also receive the message. When a device receives
the message from a logical neighbor, it will forward it if it
was not received before, otherwise it is dropped (lines 2-
4). But if it was not received from a logical neighbor (i.e.,
from its own tree), the device will wait until it receives the
token (line 5). Once the device receives the token, it will
forward the message if and only if, during the time it was
waiting for the token, it did not receive the same message
again from a neighbor belonging to its tree (lines 6-10). That
is the way the message can spread through different trees,
trying to avoid the dissemination of the same message more
than once in the same tree.

Algorithm 1 Pseudocode of BODYF.
Data: m: the incoming broadcast message.
Data: d: the node receiving broadcast message.
Data: s: the node which sent m.
1: if m is received for the first time then
2: if s and d belong to the same tree then
3: d → forward m;
4: else
5: wait until the token is received → d is token;
6: if d received m also from its tree then
7: d → discard m;
8: else
9: d → forward m;
10: end if
11: end if
12: else
13: drop m
14: end if

III. DELAYED FLOODING WITH CUMULATIVE
NEIGHBORHOOD, DFCN

DFCN [9], [10] is an efficient broadcasting protocol
specially designed for MANETs. It needs the information
about the one hop neighbors provided by the beacons. DFCN
requires to embed into the broadcast message a list of all the
neighbors of the sender nodes. This broadcasting algorithm
focuses on different goals:
1) Minimize network overhead.
2) Provide a protocol dealing with the network density.
More precisely, as illustrated in Figure 3, broadcasting

in a low density network is difficult because the pro-
tocol needs to make a very good use of the mobility
to achieve good coverage. When the density increases,
the connectivity gets better, although the network may
be partitioned. When the network is highly connected,
the broadcasting protocol must be bandwidth-efficient
in order to minimize the risk of packet collisions.

3) Provide a localized protocol which operates with 1-hop
neighborhood information. One challenge is to achieve
better performance by using less network information.

Fig. 3. Node density in MANETs. Picture on the left is a very sparse and
partitioned network. The one on the right shows a very dense network.

In this section we explain how DFCN works [9]. First of
all, we give a general idea of the problem and, after that, we
explain the problem in detail.
When the network is sparse, it is quite difficult to spread

a message, hence a node should forward the message as
soon as another device is met. This would lead to good
results since every re-emission proves to be useful because
of the reduced number of meeting points between stations.
However, in a dense environment, this strategy would lead to
catastrophic results. As a consequence, DFCN sets a random
delay (RAD) when a node receives a message for the first
time (before forwarding it). If the density is low it will
forward the message inmediately after a new neighbor is
met, but if the density is high, it will wait before resending
it (in order to avoid collisions). This perception of the density
corresponds directly to its neighborhood and, in DFCN, it is
managed with a threshold called densityThreshold.
DFCN attaches in the message a list with the neighbors of

the sender, T(m). The list T(m) is managed as follows: when
a node s sends a message m to its neighbors, it knows that
all of them will receive m (unless some collisions occur).
T(m) is set with the neighbors of s, N(s). DFCN uses this
list to decide whether the received message will be forwarded
or not, in terms of the neighbors that already received the
message which are in the one hop neighborhood. For that, we
set a threshold called minBenefit which is formally defined
on the benefit, computed as the ratio between the neighbors
of s which do not belong to T(m), and the total neighbors
of s, N(s), see Equation 1. The higher the benefit, the higher
the probability of re-emission.

benefit =
|N(s)-T(m)|
|N(s)| (1)

The behavior of DFCN is driven by the following three
events:

• the reception of a message, referred to as reactive
behavior;

• the expiration of the RAD of a message;
• and the detection of a new neighbor, referred to as
proactive behavior;

When one of these three events occurs, DFCN reacts by
behaving in a specific manner, as described below.
1) Message reception event: if a message m is received

for the first time, a RAD is then assigned to m. Otherwise the
message is dropped. This behavior corresponds to Algorithm
2. All messages are univocally identified. If a device already
received the message, it will be discarded. No processing is
done.

Algorithm 2 Behavior of DFCN upon message reception.
Data: m: the incoming broadcast message
Data: s: the node which recives m
1: if m is received for the first time then
2: rad(m)← random ∈ [0, maxRAD];
3: else
4: s drops m
5: end if

2) RAD expiration event: when the RAD of a message
expires, its hosting node computes the ratio of neighbors
that did not receive it yet. If the ratio is greater than the
threshold minBenefit, the message is forwarded, otherwise it
is dropped. If the message is emitted, then T(m) is set to
N(s). Algorithm 3 shows this behavior.

Algorithm 3 Behavior of DFCN when RAD expires.
Data: m: the message candidate to immediate emission
Data: s: the node that received m
1: benefit← |N(s)-T(m)|

|N(s)|
2: if benefit≥minBenefit then
3: T(m)← N(s);
4: s→ forward m
5: end if

3) New neighbor event: each time a node s detects a new
neighbor, the RAD for all messages is set to zero. Messages
are hence immediately candidate to re-emission. If N(s) is
higher than the threshold densityThreshold (our network is
dense), this behavior is disabled, see Algorithm 4.
DFCN behaves depending on several parameters (e.g.,

densityThreshold, minBenefit and RAD) which need to be
tuned for every different network. As an example, DFCN
was optimized in [11] for three particular scenarios: mall,
highway and metropolitan area, reporting very different pa-
rameter values. This optimization was made according to the
coverage, the usage of the network and the broadcasting time,
depending on the necessities of each application.

Algorithm 4 Behavior of DFCN when a new neighbor is
detected.
Data: M(s): the set of messages received
Data: s: node with a new neighbor
1: if |N(s)| < densityThreshold then
2: for m ∈M(s) do
3: rad(m)← 0;
4: end for
5: end if

IV. MOBILITY MODEL AND JANE SIMULATOR
In this work, we evaluate BODYF and compare it to DFCN

in a particular environment, Vehicular Ad hoc Networks
(VANETs). So, we consider every device is a car, with com-
munication capabilities. Our scenario for the simulations is
the city center of Luxembourg, see Figure 4. The simulation
area is 1323m x 1863m, what means 2.465 Km2. The speed
of cars oscillates between 30 and 75 km/h.
Many researchers are focusing on the realism of simu-

lations, and are hence, creating their own mobility models
to emulate how the protocols would behave in a real sce-
nario [12]. We did the same and developed a mobility model
where devices move along streets, stop at crossroads and also
overtake each other.

Fig. 4. Luxembourgian mobility model.

The devices move on a straight line with a constant speed
from one position to another. The mobility model uses a
directed graph given as XML file for device movement.
Vertices are crossroads and contain routing probabilities,
all possible destinies have the same probability of being
taken; the next route is chosen at random. Edges can have
an arbitrary width so that devices move on a lane and not
only on a strict line (allowing overtaking). To make a real
simulation we also have sense in the lanes, so the most
congested areas in Luxembourg city center are reflected in
our model. There are much more dense areas than others.

In this environment the diffusion process is more difficult
than in the case of using random waypoint, since movement
is more restricted, but for sure, the simulation is much more
realistic. Our main goal is to get results as close as possible
to a test on real devices moving along roads in a city center.
For simulating these scenarios we are using JANE sim-

ulator [13], [14]. The main feature of JANE is its three
steps development; it facilitates the evaluation and minimizes
the effort needed for software development in MANETs, so
that the evaluated code in the simulated environment can be
directly executed in real scenarios without modifications.

V. SIMULATION RESULTS

To compare these protocols we are simulating them with
the mobility model explained in section IV. We want to
compare several aspects of their behavior in a VANET. These
issues are:

• the broadcast coverage: that means, the number of
devices that finally receive the message;

• the message complexity: the number of broadcast and
unicast needed to spread the message in the network;

• the broadcast time: the time needed for the diffusion of
the message;

• the bandwidth used: the use of the network;
We are comparing the protocols in two scenarios: (1) the

first one is a dense network with 1000 devices, and (2) the
second one is not so dense, 500 devices (hereinafter sparse
network in our context).
As we explained before, the speed of the devices varies

between 30 and 75 km/h. As we are dealing with car PCs,
the coverage range of the devices is around 100 m.
In such scenarios we needed a training process for tuning

and adjusting DFCN parameters. We tried to maximize
the number of the devices reached when we tuned the
parameters. As a result, we are using minBenefit=0.4 and
RAD∈[0 6] seconds, for both scenarios, and the threshold
regarding the density is the only one changing between the
two cases: we set densityThreshold=15 for the dense network
and densityThreshold=12 for the sparse one.
We also include in the comparison the well known Simple

Flooding (SF) broadcasting protocol [15], [16]. It is the most
intuitive idea for disseminating a message in a network. It
does not try to reduce the number of re-emissions, so it does
not need any knowledge about the neighborhood. The strat-
egy of this algorithm is quite simple, when a device receives
a message, it will send it only once. This algorithm was
included in our comparison in order to show the validity of
the other compared protocols, since Simple Flooding reaches
in really short time all devices in a partition, but it is not
efficient at all regarding the bandwidth. Additionally, Simple
Flooding is not working properly in partitioned networks,
since it is not able to spread the message outside the partition
where the source node is.
In our experiments, we disseminated a message every 30

seconds during a period of 10 minutes (that means we made
20 broadcasting processes starting from the same device,

but from different positions since it was moving). This was
simulated in 30 different topologies to make sure our results
were realiable.
Table I presents the average of the results obtained regard-

ing the number of devices receiving the message, the number
of forwarded messages needed in each dissemination and the
ratio between them for the 30 different topologies.

TABLE I
RESULTS OBTAINED FOR BOTH DENSE AND SPARSE NETWORKS.

Devices Broadcasts sent Ratio

Dense BODYF 608.9 ± 30.31 312.13 ± 9.78 0.51
DFCN 395.23 ± 166.92 194.185± 86.29 0.49
SF 292.54 ± 115.86 292.59 ± 115.86 1

Sparse BODYF 134.81± 29.11 82.84 ± 15.90 0.62
DFCN 123.71 ± 55.58 68.29± 32.25 0.55
SF 72.44 ± 31.60 72.49 ± 31.60 1

As Table I shows, the area covered by BODYF (in terms
of devices receiving the message) is considerably higher
than the one achieved by DFCN or SF, in dense and sparse
networks. The number of forwarded messages in BODYF is
always higher, but also the devices reached, so we calculated
the ratio between forwarded messages and covered area
to make a fair comparison of the algorithms. The ratio is
calculated as the number of broadcast per device reached.
Simple Flooding is the one with less coverage and higher
ratio. We can see that the number of messages sent by
DFCN per device reached is slightly lower than in the case
of BODYF.

Coverage (%)

0

10

20

30

40

50

60

70

Dense Sparse

D
e
v
ic

e
s
 R

e
a
c
h
e
d
 (

%
)

BODYF

DFCN

SimpleFlooding

Fig. 5. Coverage percentage in both dense and sparse networks.

In Figure 5, we show the percentage of devices receiving
the message, what gives an idea of the total area covered.
As it can be seen, BODYF clearly outperforms DFCN and
Simple Flooding in the number of devices reached by the
broadcasting process.
This is an important feature for VANETs, since there are

many applications demanding large coverage of devices at a
reasonable cost, like emergency or traffic jam notifications.
One of the main reasons for minimizing the number of
forwarded messages in MANETs is the battery consumption
in processing and re-sending a message. In our work, we are

dealing with VANETs, where the optimization of the battery
use is not necessary so that all devices have power supply.
Additionally, the difference between DFCN and BODYF in
terms of this ratio is quite low, therefore we can say that
BODYF makes a reasonable use of the network resources.
We should also take into account the network overload in

our comparison. DFCN inserts all the neighbors of the device
which is forwarding the message. This list is composed
by addresses, each address is an IPv6 address, so it is 16
bytes. In our simulations, we obtained that the average of the
number of neighbors of each forwarding node was 28.70 and
15.92 in dense and sparse networks respectively. Therefore,
we were able to calculate the average of the overload related
to this list in all the broadcast process, for both dense and
also sparse networks:
1) Dense network

• The extra bandwith needed for sending the list of
neighbors in the message is 89.18 Kbytes (approx.
713.46 Kbits).

2) Sparse network
• The extra bandwith needed for sending the list of
neighbors in the message is 17.39 Kbytes (approx.
139.15 Kbits).

We can compare the total bandwidth the broadcast process
uses. For BODYF and Simple Flooding, as they do not add
any load to the message, we just need to calculate the number
of bytes of the broadcast messages sent (the header size is 40
bytes). DFCN includes the list of the neighbors the sender
node has, so, apart from the number of messages sent (with
headers), we need to sum the load this list adds. The results
are shown in Table II. As we can see, even needing more
forwarded messages to disseminate the information, BODYF
use less bandwidth than DFCN regarding the data of the
message. SF is the one with less bandwidth usage, but it is
because of the low rate of coverage. The difference between
Simple Flooding and BODYF in terms of overload is very
low, even when the coverage achieved of the latter is much
higher. Between the two protocols with higher coverage,
DFCN sends less forwarding messages than BODYF, but due
to the list of neighbors that DFCN includes in the message,
the total bandwidth used by BODYF is lower.

TABLE II
BANDWIDTH USED BY THE BROADCAST PROCESS.

BODYF DFCN Simple Flooding
Dense 12.49KBytes 96.95KBytes 11.70KBytes
Sparse 3.31KBytes 20.12KBytes 2.90KBytes

In BODYF, we do not need to add any extra load to the
broadcast message. Even though it is out of the scope of this
paper, since we suppose the tree-based topology is already
needed by the network, and not only for our broadcasting;
we here also calculate how expensive is, in terms of mes-
sages sent, the creation and maintenance of the tree, and
the circulation of the token. The messages exchanged for
building and maintaining the tree-based topology are similar

to ACKs, while we use a 40 bytes header for each exchanged
message in our estimations. We have measured the number
of broadcast and unicast needed for creating and maintaining
the network and also for circulating the token. We made this
simulation in both networks, and the results obtained were:
1) Dense network

• bandwidth used for the creation and maintenance
of the tree, and also for the circulation of the token:
48.72KBps (approx. 389.82 Kbits/second).

2) Sparse network
• bandwidth used for the creation and maintenance
of the tree, and also for the circulation of the token:
23.93 KBps (approx. 191.45 Kbits/second).

The amount of data used by the tree-based topology for a
high dense network of 1000 devices is 389.82 Kbits/second.
We can make the average per device also, and it would be
around 389.82 bits/second per device in dense networks or
382.9 bits/second for every device in sparse ones, what is
not a high overload, since the tree-based topology provides
many advantages.
Finally, we also compared the algorithms in terms of

broadcast time. For that, we did 30 simulations with different
topologies where only one broadcast was sent. In each
topology we let the network evolve for 60 seconds, and after
that spread the message, each time from a different point
of the network (different devices). For each topology we
start the broadcast from 10 different devices. We consider
the broadcast is finished if no more messages are fowarded
after 7 seconds. We chose 7 seconds since the delay set for
each device (in DFCN) oscilates between 0 and 6 seconds.
We did that for the three protocols with both network
densities. The results are shown in Table III, where we
specify the average time, the number of devices reached
in each broadcast process and the ratio between these two
values. Notice that, in this table we are testing 30 topologies
and starting the dissemination process from 10 different
devices for each topology, so the results in Table III are
the average values after 300 simulations. Regarding the

TABLE III
TIME NEEDED FOR DISSEMINATING A MESSAGE .

Time (s) Devices Ratio

Dense BODYF 90.43 ± 18.85 479.90± 107.78 5.30
DFCN 27.97 ± 6.45 93.83 ± 31.02 3.35
SF 8 ± 0 245.83 ± 125.98 30.73

Sparse BODYF 23.56 ± 5.68 37.01± 13.06 1.57
DFCN 17.19 ± 2.83 24.13 ± 6.56 1.40
SF 8 ± 0 34.31 ± 9.39 4.28

time needed for spreading a message, we must take into
account that BODYF takes longer, but the difference in
devices reached is important. We calculated the ratio between
the number of devices reached and the time the dissemination
took (devices/s), and in both networks, SF had a higher rate,
since it is extremely fast. DFCN has the worst ratio in both
densities. Simple Flooding is much faster than BODYF but
the coverage reached is much lower. BODYF nearly achieved
double size of devices than SF in dense networks.

One of the main problems of DFCN is the difficulty to tune
all its parameters. In our case, once we tuned the parameters,
if we changed something in the simulation, the number of
devices reached was highly reduced. This behavior is shown
in the average of devices in both tests, since there is a
really big difference between them (coverage and time tests)
being the scenario, topologies, speed, number of devices, and
thresholds the same in both experiments. So we can conclude
DFCN is highly dependent on the topology, while this is
clearly not the case of BODYF or SF.

VI. CONCLUSIONS
In this paper we present a broadcasting protocol over

a tree-based topology, BODYF, and we compare its per-
formance versus DFCN and Simple Flooding. DFCN is a
neighbor based topology protocol which is fast, designed to
minimize the resources required, and generally accepted by
the community [1], [10], [17]. Simple Flooding is one of the
bases of broadcasting protocols [15], [16].
In this work, we have compared these protocols in a

realistic scenario (a vehicular ad hoc network) with two dif-
ferent number of devices. Our results show that, the coverage
achieved by BODYF is much higher than DFCN or Simple
Flooding in both scenarios, sparse and dense. Although
the number of messages used for achieving this coverage
is higher, the difference between DFCN and BODYF in
terms of the ratio was very small, hence, we concluded that
BODYF makes reasonable use of the network resources.
The low level of coverage achieved by Simple Flooding,
is due to the network partitions. This protocol is not able
to disseminate the message outside the partition where the
source node is, while DFCN and BODYF are. Regarding
the broadcast time, we checked that Simple Flooding is the
fastest protocol, but the coverage is lower than BODYF.
BODYF also outperformed DFCN, achieving higher rate of
devices per second.
Finally, we can conclude that if the main goal of the

application is to maximize the covered area we should use
BODYF, but if the network resources are very limited or
having a high coverage is not really necessary (e.g., using
a hybrid network, we just want to spread a message up to
the closest hotspot), DFCN could be slightly more suitable.
However, in the VANET scenario considered here, network
resources are not as limited as in the case of MANETs, in
which devices have, for instance, a limited battery life.
As future work, we plan to compare BODYF to other

source-tree based and cluster-based protocols to really know
how good its behavior is versus other kind of approaches. We
would also like to run other algorithms on top of our tree-
based topology in such highly mobile networks, as it could
be to propagate a large document, even downloading parts
of this information from different devices if it is needed.

REFERENCES
[1] E. Alba, B. Dorronsoro, F. Luna, A. J. Nebro, P. Bouvry, and L. Hogie,

“A cellular multi-objective genetic algorithm for optimal broadcasting
strategy in metropolitan manets,” Computer Communications, vol. 30,
no. 4, pp. 685–697, 2007.

[2] “Carlink project website. http://carlink.lcc.uma.es.”
[3] Y. Yi, M. Gerla, and T. J. Kwon, “Efficient flooding in ad hoc

networks: a comparative performance study,” in IEEE International
Conference on Communications (ICC’03), 2003, pp. 1059–1063.

[4] A. Jüttner and A. Magi, “Tree based broadcast in ad hoc networks,”
Mobile Networks and Applications, vol. 10, no. 5, pp. 753–762, 2005.

[5] A. Casteis and S. Chamuette, “Dynamicity aware graph relabeling
system - a local computation model to describe manet algorithms,” in
Proceedings of the 17th IASTED International Conference on Parallel
and Distributed Computing and System, 2005, pp. 198–204.

[6] E. Sopena and Y. Metivier, “Graph relabeling systems: a general
overview,” Computers and Artificial Intelligence, vol. 16, no. 2, pp.
167–185, 1997.

[7] A. Casteis, “Model driven capabilities of the da-grs model,” in Intl.
Conf. on Autonomic and Autonomous Systems (ICAS’06). San Fran-
cisco. USA, 2006, p. 24.

[8] S. J. Yang, H. K. Oh, and S. H. Park, “Efficient multicast routing
protocol for mobile hosts in IPv6 based networks,” Electronic Letters,
vol. 38, no. 16, pp. 936–938, 2002.

[9] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba, “A
Bandwidth-Efficient Broadcasting Protocol for Mobile Multi-hop Ad
hoc Networks,” in Demo proceeding of the 5th International Confer-
ence on Networking (ICN’06). IEEE, October 2006, p. 71.

[10] L. Hogie, F. Guinand, and P. Bouvry, “A heuristic for efficient
broadcasting in the metropolitan ad hoc network,” in 8th Int. Conf.
on Knowledge-Based Intelligent Information and Engineering Systems,
2004, pp. 727–733.

[11] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms, ser. OR/CS
Interfaces. Springer-Verlag, 2008.

[12] A. Andronache and S. Rothkugel, “Hytrace-backbone-assisted path
discovery in hybrid networks,” in The Seventh International Confer-
ence on Networking ICN, to appear.

[13] D. Gorgen, H. Frey, and C. Hiedels, “JANE–the Java Ad-hoc Network
Environment,” in Proceedings of the 40th Annual Simulation Sympo-
sium, 2007, pp. 163–176.

[14] “The Java Ad-hoc Network Environment (JANE). http://syssoft.uni-
trier.de/jane/index.php/JANE Basics.”

[15] B. Williams and T. Camp, “Comparison of broadcasting techniques for
mobile ad hoc networks,” in Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), 2002, pp. 194–205.

[16] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem
in a mobile ad hoc network,” in Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking (MO-
BICOM), 1999, p. 151162.

[17] L. Hogie, “Mobile ad hoc networks, modelling, simulation and
broadcast-based applications,” Ph.D. dissertation, University of Lux-
embourg, Luxembourg, 2007.

