

Application Of Novel Techniques In RIPEMD-160 Hash Function Aiming At
High-Throughput

H. Michail,V. Thanasoulis, D. Schinianakis, G. Panagiotakopoulos and C. Goutis

Electrical and Computer Engineering Department
University of Patras

Gr-26500 Patra, GREECE
E-mail: michail@ece.upatras.gr, vthanasouli@upnet.gr, dimmugr@yahoo.gr, gpanagiotak@upnet.gr,

goutis.ece.upatras.gr

KEYWORDS
Security, hash functions, RIPEMD-160, hardware
implementation, high-throughput.

ABSTRACT

Hash functions, form a special family of cryptographic
algorithms that address the requirements for security,
confidentiality and validity for several applications in
technology. Many applications like PKI, IPSec, DSA,
MAC’s need the requirements mentioned before. All the
previous applications incorporate hash functions and
address, as time passes, to more and more users-clients
and thus the increase of their throughput is necessary. In
this paper we propose an implementation that increases
throughput and operating frequency significantly and at
the same time keeps the area small enough for the hash
function RIPEMD-160. The deployed technique
involves the application of spatial and temporal pre-
computation to the conventional operation block. The
proposed implementation leads to an implementation
that achieves 35% higher throughput.

INTRODUCTION

Nowadays many applications like the Public Key
Infrastructure (PKI) (Entrust Technologies 1999), IPSec
(National Institute of Standards and Technology 2005), and
the 802.16 (Johnston and Walker 2004) standard for Local
and Metropolitan Area Networks incorporate
authenticating services. All these applications pre-
suppose that an authenticating module, that includes a
hash function, is nested in the implementation of the
application. Moreover, digital signature algorithms like
DSA (National Institute of Standards and Technology 1994)
used for authenticating services like electronic mail,
electronic funds transfer, electronic data interchange,
software distribution, data storage etc are based on
using critical cryptographic primitives like block
ciphers and hash functions . Hashes are used also in
identifying files on peer-to-peer filesharing networks,
for example in an ed2k link. Furthermore, hashing cores
are also essential for security in networks and mobile
services, as in SSL. They are also the main modules that
exist in the HMAC implementations that produce
Message Authentication Codes (MAC’s) (National
Institute of Standards and Technology 1995).

Taking into consideration the rapid evolution of the
communication standards that include message
authenticity, integrity verification and nοn-repudiation
of the sender’s identity, it is obvious that hash functions
are widely used in most popular cryptographic schemes.
All the aforementioned applications ,which incorporate
hash functions, are being used more and more as time
goes by. So, it is necessary to increase their throughput,
so as to enable the cryptographic system to satisfy
immediately all requests from all users-clients. In some
of these cryptographic schemes the throughput of the
incorporated hash functions determines the throughput
of the whole security scheme.
The latter mentioned facts were a strong motivation to
propose a novel technique for increasing throughput of
hash functions. In this work we propose an optimizes
implementation for RIPEMD-160. The proposed
implementation introduces a negligible area penalty,
increasing the throughput and keeping the area small
enough as required by most portable communication
devices.

PROPOSED IMPLEMENTATION

In Fig. 1, the general architecture of RIPEMD-160 core
with pipelined structure is illustrated. It has to be
mentioned that no many research work has been
conducted concerning the RIPEMD algorithm since the
vast majority of both academia nad industry is focused
on proposing optimizations for the SHA hash family
which is the most widely adopted.
From (Dobbertin, et al 1996) it can be seen that
RIPEMD-160 uses two parallel processes of five
rounds, with sixteen operations for each round (5 x 16
operations for the process). This lead us to the logical
assumption to use five pipeline stages for each process
and a single operation block for each round among with
the rest necessary parts. This way not only do we
achieve to increase throughput drastically but also keep
the hash core small enough.
However this what most researchers do and not much
effort has been made in optimization of the operational
block. In our paper we propose a methodology that
intends to optimize the implementation both by
applying pipeline stages but also by optimizing the
internal operational block so as to achieve an even
shorter critical path. This way it will be achieved to

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

obtain an implementation with much higher throughput
and with negligible and small area penalty which is the
main objective of our work.
The critical path of the illustrated architecture is located
between the pipeline stages. Thus, the optimization of
the critical path is focused on the operation block. This
way the increase of operating frequency can be
achieved resulting to an implementation with a higher
throughput. The throughput of a hash function
implementation is given by the following equation:

 #
#

operationbits f
Throughput

operations
⋅

= (1)

where #bits is equal to the number of bits processed by
the hash function, #operations corresponds to the
required clock cycles between successive messages to
generate each Message Digest and foperation indicates the
maximum operating frequency of the circuit.
A message block, as provided by the padding unit, is at
most 512 bits, therefore the two terms that can be
manipulated in Eq.(1) is either #operations or the
circuit’s operating frequency, foperation. Manipulation of
the #operations is translated to the introduction of more
than five pipeline stages. This is possible but it might
result in area violation since extra circuitry must be
inserted.
Thus, the targeted design approach should focus on
increasing the operating frequency, foperation, without
introducing any significant area penalty.

Optimizing block's operating frequency

The applied technique consists of the following 2 sub-
techniques:

 • Spatial Pre-computation of additions
contributing to the critical path

 • Temporal Pre-computation of some values that
are needed in following operations

Unfolding the expressions of at, bt, ct, dt, et as they are
described in [8], it is observed that bt-1, ct-1 , dt-1 , et-1
values are assigned directly to outputs ct, dt, et, at
respectively. In Eq. (2) the expressions of at, bt , ct , dt ,
et are defined.

et = dt-1
dt = ROL10(ct-1)
ct= bt-1 (2)
bt = et-1 + ROLs[ft(bt-1,ct-1, dt-1) +at-1+Xi + Kj]
at = et-1

where ROLx(y) represents cyclic shift (rotation) of
word y to the left by x bits and ft(z, w, v) denotes the
non-linear function which depends on the round being
in process.

From Eq.(2), it is derived that the maximum delay is
observed on the calculation of the bt, value from at-1 and
value bt-1, value. Obviously the critical path consists of
three addition stages as it can be seen observing Fig. 2
and a multiplexer via which the values pass each time
to/and feed the operation block.
A notice that one can make observing the Eq. (2) is that
some outputs derive directly from some inputs values
respectively. So it can be assumed that is possible
during one operation to pre-calculate some intermediate
values that will be used in the next operation so as to
achieve concurrent calculations.
 Therefore, while the main calculations are in progress,
at the same time some values that are needed in the next
operation can also be in progress of calculation.
Furthermore, moving the pipeline stage to an
appropriate intermediate point to store these
intermediate calculated values, the critical path is
divided resulting in a decrease of the maximum delay
without paying any worth-mentioning area penalty. This
way higher operating frequency is achieved and
consequently higher throughput
This technique introduces the spatial pre-computation
and it is used in order to reduce the critical path. From
the Eq. (2) we can observe that the outputs ct, dt, et, at
derive directly from the values bt-1, ct-1, dt-1, et-1,
respectively, and it is possible to pre-calculate some
intermediate values.
Thus, Eq. (2) is transformed to generate the
intermediate values a*t-1, b*t-1, c*t-1, d*t-1, e*t-1 and gt-1 as
described in Table 1.

Figure 1: RIPEMD - 160 Architecture Core with Five

Pipeline Stages Including a Single Operation Block

Figure 2: A Single RIPEMD - 160 Operation Block

Table 1: Expressions for Spatial Technique

In Fig.3 the pre-computation technique applied in
RIPEMD-160 hash function is illustrated. Each
operation block now consists of two units the “Pre-
Computation” unit which is responsible for the pre-
computation of the values that are needed in the next
operation and the “Final-Calculation” unit which is
responsible for the final computations of each
operation.
Notice that in Fig.3 output bt enters the multiplexer and
feeds a no-load wire bt-1 which stores its value to the
register as b*t-1. Also notice at the "Pre-Computation"
unit that the inputs at-1, ct-1, dt-1, et-1, which is equal with
the values a*t-1, c*t-1, d*t-1, e*t-1 respectively, are fed
through the multiplexer from the intermediate register
outputs e*t-1, b*t-1, c*t-1, d*t-1 respectively.
The introduced area penalty is small, only a single
register for each “round”, that stores the intermediate
value gt-1.
 Moreover, power dissipation is kept low and almost the
same to that of the initial implementation as illustrated
in Fig.2.In order to reduce the critical path by one
addition level, we will continue with the application of
the second technique, which introduces a temporal pre-
computation of the values. From the “Final-Calculation”
stage of Fig.3, one can observe that in every operation,
from the current value of dt-1, derives directly the value

of et (at the next operation). Also, from the current
value of et, derives directly the value
of at+1. Consequently, the value of a, is the same as the
value of was two operations earlier. So it is valid to
write the following equation:

 at+1 =et = dt-1 (3)

Thus, we perform the temporal pre-computation of the
sum (Xt+2 + Kt+2) + at+1 two operations before it is used,
by calculating the sum (Xt+2 + Kt+2) + dt-1 at the “Final-
Calculation” unit, when the operation t is being
executed. Then this sum at the “Pre-Computation” stage
of the next operation (t+1) saved into the register h and
represent the sum (Xt+2 + Kt+2) + et.

Figure 3: The Modified Operation Block of RIPEMD-
160 Hashing Algorithm

At the “Final-Calculation” unit of the same operation,
the value of W derives directly from the value of h. The
computed sum now of the value W represents the sum
(Xt+2 + Kt+2) + at+1. Finally at the “Pre-Computation”
unit on the next operation (which is the operation t+2)
the sum Z= W + ft is calculated.
 The computed sum now represents the value (Xt+2

+Kt+2) + ft + at+1. This sum is part of the computations
needed for the calculation of bt+2 value. What remains
for the computation of the value bt+2 is the rotation
(Rols) of the value Z and then its addition with the value
e*t+1, as is performed in the “Final-Calculation” in
Fig.4.
Observing Fig.4 it can be realized that the critical path
is not located any more in the computation of the bt
value but in the computation of the value of Z. This
means that the critical path in Fig. 4 has been reduced
from three addition stages, a Non Linear Function ft and

a multiplexer in Fig.3 to two addition stages, a Non
Linear Function ft and a multiplexer.
Hence, the critical path is shortened by one adder level,
which contributes approximately 30% to the overall
maximum delay. Moreover, it has to be noticed that an
initialization of the values of W and h is needed as
illustrated in Fig.4. At the first operation of every round
the current values of Xt and Kt contribute for the
computation of the value bt+2. Thus, before the first
operation begins, the value of W must be equal to the
sum (X1 + K1) + a0, which will be used at the “Final-
Calculation” of the first operation for the calculation of
the value bt . Also the value of h must be equal to the
sum (X2 + K2) + e0, which will be used for the
calculation of the value bt+1 at the “Final-Calculation
stage of the second operation. Therefore, another one
modification that introduces two adders is needed.
However, this change does not have any effect on the
critical path.

Figure 4: The Proposed Operation Block of RIPEMD-

160 algorithm

The introduced area penalty is only two 32-bit registers,
which are used for storing the intermediate results of the
values W and h that are required. This area penalty sure
enough is worth paying for an increase of throughput at
about 36%.

EXPERIMENTAL RESULTS

The proposed hashing cores that were presented as
examples were captured in VHDL and were fully
simulated and verified using the Model Technology’s
ModelSim Simulator. The designs were fully verified
using a large set of test vectors, apart from the test
example proposed by the standards. The synthesis tool
used to port VHDL to the targeted technologies was
Synplicity’s Synplify Pro Synthesis Tool. Simulation of
the designs was also performed after synthesis,

exploiting the back annotated information that was
extracted from the synthesis tool. Further evaluation of
the designs was performed using the prototype board
for the Xilinx Virtex device family.
Probing of the FPGA’s pins was done using a logic
analyzer. No scaling frequency technique was followed,
selecting one master clock for the system, which was
driven in the FPGA from an onboard oscillator. The
behavior of the implementation was verified exploiting
the large capacity of the FPGA device. The achieved
operating frequency is equal to 87,6 MHz.
Furthermore, as far as it concerns the introduced area
overhead for the RIPEMD-160 hash core, the proposed
implementation presents an increase of approximately
8%. From the experimental results, it was proved that
RIPEMD-160 proposed implementation was about 36%
faster than the conventional implementation. From the
above results, it derives that the proposed
implementation is a worth-making optimization for the
hashing core since the required area for the whole
security scheme is much more than that needed for the
RIPEMD-160 hashing core.

Table 2: Performance Characteristics of RIPE-MD 160

Hash Function Implementations and Comparisons

It has to be added that the above comparisons concern
hardware implementations mainly in FPGA boards.
However due to the limited number of published work
concerning RIPEMD all implementation results have
been included regardless of the utilized FPGA family.
For this reason the evaluation board in each case is
mentioned so as to be easy to adapt the results and make
a fair comparison.
Beyond that however, the comparison results just
confirm the efficiency of the proposed technique and
this is accomplished with the comparison to the
conventional implementation that has also been
evaluated from our research time in the same FPGA
board. From this comparison it can be inferred that the
proposed implementation achieves its objective of
higher throughput of about 35% with only 8% area

National Instititute of Standards and Technlogy. 1994. “FIPS
186, (DSS), Digital Signature Standard”

penalty for evaluation in the same FPGA board (used
in our research laboratory).

National Instititute of Standards and Technlogy. 1995. “FIPS
198, The Keyed-Hash Message Authentication Code
(HMAC)”

CONCLUSIONS

A novel hardware implementation of RIPEMD-160
hash function was presented in this paper. Two
techniques were evaluated so as to increase throughput
and thus make it suitable for the corresponding server of
data intensive applications. The proposed
implementation has a throughput of about 2.8 Gbps,
about 35% higher from the next better performing
implementation. The experimental results showed that a
small area penalty was introduced for a remarkable
increase of throughput.

National Instititute of Standards and Technlogy. 2005.
SP800-77 , “Guide to IPSec VPN’s”.

 Ng C.W., Ng T.S. and Yip K.W. , 2004. “A unified
architecture of MD5 and RIPEMD-160 Hash algorithms”,
IEEE International Symposium on Circuits and Systems.

Sklavos N. and Koufopavlou O. .2005. “On the hardware
implementation of RIPEMD processor: Networking high
speed hashing, up to 2 Gbps”, Computers and Electrical
Engineering Journal 31 361–379.

Therefore, the proposed implementation increases the
throughput and frequency significantly and keeps at the
same time the area small. This makes the proposed
implementation suitable for server side cryptographic
schemes as well as and for every new wireless and
mobile communication application that urges for high-
performance and small-sized solutions.

AUTHOR BIOGRAPHIES

HARRIS MICHAIL (S’04) received a Diploma in
Electrical & Computer Engineering from the University
of Patras, Greece and since then he has been working
towards his PhD degree, in the domain of computer
security, hardware design and reconfigurable
architectures.

This methodology can be applied to all other hash
functions such as MD-5, SHA-1, SHA-256, SHA-384,
SHA-512 in order to increase their throughput.

ACKNOWLEDGEMENT

VASSILIS THANASOULIS is an under-graduate
student in the Department of Electrical .Eng, University
of Patras, Greece. He is currently working on his thesis
that lies in the domain of security.

This work was supported by the project PENED 2003
No 03ΕD507, which is funded in 75% by the European
Union- European Social fund and in 25% by the Greek
state-Greek Secretariat for Research and Technology.

DIMITRIS SCHINIANAKIS received a Diploma in
Electrical & Computer Engineering from the University
of Patras, Greece and since then he has been working
towards his PhD degree, in the domain of of computer
security, hardware design

REFERENCES

Akashi S. and T, Inoue. 2007. “ASIC-hardware-focused
comparison for hash functions MD5, RIPEMD-160, and
SHS” Intergration, the Vlsi Journal 40 , 3-10. Dobbertin H., Bosselaers A. and Preneel B. 1996. “
RIPEMD-160: A Strengthened Version of RIPEMD”. GEORGE PANAGIOTAKOPOULOS received a

Diploma in Electrical & Computer Engineering from
the University of Patras, Greece and since then he has
been working towards his PhD degree, in the domain of
embedded computers.

Dominikus S. 2002. “A hardware implementation of MD4-
family hash algorithms,” Proc. 9th Int. Conf. on
Electronics, Circuits and Systems, vol. 3, pp. 1143-1146.

Entrust Technologies. 1999. “RFC 2510 - Internet X.509 PKI
- Certificate Management Protocols”,

Ganesh T.S, Frederick M.T, Sudarshan T.S.B. and.Somani
A.K. 2007. "Hashchip: A shared-resource multi-hash
function processor architecture on FPGA" Intergration, the
Vlsi Journal 40 11-19.

COSTAS GOUTIS (S’70-M’78) received B.Sc in
Physics, Diploma in Electronic Engineering, M.Sc from
the University of Heriott-Watt and Ph.D from the
University of Southampton. He is currently a Professor
with the ECE Department, University of Patras.

Johnston D, and Walker J. 2004. “Overview of IEEE802.16
Security” , IEEE Security and Privacy.

