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ABSTRACT 

Hash functions, form a special family of cryptographic 
algorithms that address the requirements for security, 
confidentiality and validity for several applications in 
technology. Many applications like PKI, IPSec, DSA, 
MAC’s need the requirements mentioned before. All the 
previous applications incorporate hash functions and 
address, as time passes, to more and more users-clients 
and thus the increase of their throughput is necessary. In 
this paper we propose an implementation that increases 
throughput and operating frequency significantly and at 
the same time keeps the area small enough for the hash 
function RIPEMD-160. The deployed technique 
involves the application of spatial and temporal pre-
computation to the conventional operation block. The 
proposed implementation leads to an implementation 
that achieves  35% higher throughput. 
 
INTRODUCTION 

Nowadays many applications like the Public Key 
Infrastructure (PKI) (Entrust Technologies 1999), IPSec 
(National Institute of Standards and Technology 2005), and 
the 802.16 (Johnston and Walker 2004) standard for Local 
and Metropolitan Area Networks incorporate 
authenticating services. All these applications pre-
suppose that an authenticating module, that includes a 
hash function, is nested in the implementation of the 
application. Moreover, digital signature algorithms like 
DSA (National Institute of Standards and Technology 1994) 
used for authenticating services like electronic mail, 
electronic funds transfer, electronic data interchange, 
software distribution, data storage etc are based on 
using  critical cryptographic primitives like block 
ciphers and hash functions . Hashes are used also in 
identifying  files on peer-to-peer filesharing networks, 
for example in an ed2k link. Furthermore, hashing cores 
are also essential for security in networks and mobile 
services, as in SSL. They are also the main modules that 
exist in the HMAC implementations that produce 
Message Authentication Codes (MAC’s) (National 
Institute of Standards and Technology 1995).  

Taking into consideration the rapid evolution of the 
communication standards that include message 
authenticity, integrity verification and nοn-repudiation 
of the sender’s identity, it is obvious that hash functions 
are widely used in most popular cryptographic schemes. 
All the aforementioned applications ,which incorporate 
hash functions, are being used more and more as time 
goes by. So, it is necessary to increase their throughput, 
so as to enable the cryptographic system to satisfy 
immediately all requests from all users-clients. In some 
of these cryptographic schemes the throughput of the 
incorporated hash functions determines the throughput 
of the whole security scheme.  
The latter mentioned facts were a strong motivation to 
propose a novel technique for increasing throughput of 
hash functions. In this work we propose an optimizes 
implementation for RIPEMD-160. The proposed 
implementation introduces a negligible area penalty, 
increasing the throughput and keeping the area small 
enough as required by most portable communication 
devices. 
 
PROPOSED IMPLEMENTATION 

In Fig. 1, the general architecture of RIPEMD-160 core 
with pipelined structure is illustrated. It has to be 
mentioned that no many research work has been 
conducted concerning the RIPEMD algorithm since the 
vast majority of both academia nad industry is focused 
on proposing optimizations for the SHA hash family 
which is the most widely adopted.  
From (Dobbertin, et al  1996) it can be seen that 
RIPEMD-160 uses two parallel processes of five 
rounds, with sixteen operations for each round (5 x 16 
operations for the process). This lead us to the logical 
assumption  to use five pipeline stages for each process 
and a single operation block for each round among with 
the rest necessary parts. This way not only do we 
achieve to increase throughput drastically but also keep 
the hash core small enough.  
However this what most researchers do and not much 
effort has been made in optimization of the operational 
block. In our paper we propose a methodology that 
intends to optimize the implementation both by 
applying pipeline stages but also by optimizing the 
internal operational block  so as to achieve an even 
shorter critical path. This way it will be achieved to 
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obtain an implementation with much higher throughput 
and with negligible and small area penalty which is the 
main objective of our work.  
The critical path of the illustrated architecture is located 
between the pipeline stages. Thus, the optimization of 
the critical path is focused on the operation block. This 
way the increase of operating frequency can be 
achieved resulting to an implementation with a higher 
throughput. The throughput of a hash function 
implementation is given by the following equation: 
 

                 #
#

operationbits f
Throughput

operations
⋅

=          (1) 

 
where #bits is equal to the number of bits processed by 
the hash function, #operations corresponds to the 
required clock cycles between successive messages to 
generate each Message Digest and foperation indicates the 
maximum operating frequency of the circuit. 
A message block, as provided by the padding unit, is at 
most 512 bits, therefore the two terms that can be 
manipulated in Eq.(1) is either #operations or the 
circuit’s operating frequency, foperation. Manipulation of 
the #operations is translated to the introduction of more 
than five pipeline stages. This is possible but it might 
result in area violation since extra circuitry must be 
inserted.   
Thus, the targeted design approach should focus on 
increasing the operating frequency, foperation, without 
introducing any significant area penalty. 
 
Optimizing block's operating frequency 

The applied technique consists of the following 2 sub-
techniques:  
 
          • Spatial Pre-computation of additions 
contributing to the critical path 
 
          • Temporal Pre-computation of some values that 
are needed in following operations  
 
Unfolding the expressions of at, bt, ct, dt, et   as they are 
described in [8], it is observed that bt-1, ct-1 , dt-1 , et-1  
values are assigned directly to outputs ct, dt, et, at 
respectively. In Eq. (2) the expressions of at, bt , ct , dt , 
et are defined. 
 

et = dt-1 
dt = ROL10(ct-1)  
ct= bt-1                                                                                              (2)                                                                                            
bt = et-1 + ROLs[ ft(bt-1,ct-1, dt-1) +at-1+Xi + Kj ] 
at = et-1 

 
where ROLx(y) represents cyclic shift (rotation) of 
word y to the left by x bits and  ft(z, w, v) denotes the 
non-linear function which depends on  the round being 
in process. 

From Eq.(2), it is derived that the maximum delay is 
observed on the calculation of the bt, value from at-1 and  
value bt-1, value. Obviously the critical path consists of 
three addition stages as it can be seen observing Fig. 2 
and a multiplexer via which the values pass each time 
to/and feed the operation block. 
A notice that one can make observing the Eq. (2) is that 
some outputs derive directly from some inputs values 
respectively. So it can be assumed that is possible 
during one operation to pre-calculate some intermediate 
values that will be used in the next operation so as to 
achieve concurrent calculations. 
 Therefore, while the main calculations are in progress, 
at the same time some values that are needed in the next 
operation can also be in progress of  calculation. 
Furthermore,  moving  the pipeline stage to an 
appropriate intermediate point to store these 
intermediate calculated values, the critical path is 
divided resulting in a decrease of the maximum delay 
without paying any worth-mentioning area penalty. This 
way higher operating frequency is achieved and 
consequently higher throughput  
This technique introduces the spatial pre-computation 
and it is used in order to reduce the critical path. From 
the Eq. (2) we can observe that the outputs ct, dt, et, at 
derive directly from the values bt-1, ct-1, dt-1, et-1, 
respectively, and it is possible to pre-calculate some 
intermediate values. 
Thus, Eq. (2) is transformed to generate the 
intermediate values a*t-1, b*t-1, c*t-1, d*t-1, e*t-1 and gt-1 as 
described in     Table 1. 
 

 

 
 
Figure 1: RIPEMD - 160 Architecture Core with  Five 

Pipeline Stages Including a Single Operation Block 
 

 



 

 

 
 

Figure 2: A Single RIPEMD - 160 Operation Block 
 

Table 1: Expressions  for Spatial Technique 
 

 
 
In Fig.3 the pre-computation technique applied in 
RIPEMD-160 hash function is illustrated. Each 
operation block now consists of two units the “Pre-
Computation” unit which is responsible for the pre-
computation of the values that are needed in the next 
operation and the “Final-Calculation” unit which is 
responsible for the final computations of each 
operation. 
Notice that in Fig.3 output bt enters the multiplexer and 
feeds a no-load wire bt-1 which stores its value to the 
register as b*t-1. Also notice at the "Pre-Computation" 
unit that the inputs at-1, ct-1, dt-1, et-1, which is equal with 
the values a*t-1, c*t-1, d*t-1, e*t-1 respectively, are fed 
through the multiplexer from the intermediate register 
outputs e*t-1, b*t-1, c*t-1, d*t-1 respectively. 
The introduced area penalty is small, only a single 
register for each “round”, that stores the intermediate 
value gt-1. 
 Moreover, power dissipation is kept low and almost the 
same to that of the initial implementation as illustrated 
in Fig.2.In order to reduce the critical path by one 
addition level, we will continue with the application of 
the second technique, which introduces a temporal pre-
computation of the values. From the “Final-Calculation” 
stage of Fig.3, one can observe that in every operation, 
from the current value of dt-1, derives directly the value 

of et  (at the next operation). Also, from the current 
value of et, derives directly the value                       
of at+1. Consequently, the value of a, is the same as the 
value of was two operations earlier. So it is valid to 
write the following equation:     

 at+1 =et = dt-1                                           (3) 

Thus, we perform the temporal pre-computation of the 
sum (Xt+2 + Kt+2) + at+1 two operations before it is used, 
by calculating the sum (Xt+2 + Kt+2) + dt-1 at the “Final-
Calculation” unit, when the operation t is being 
executed. Then this sum at the “Pre-Computation” stage 
of the next operation (t+1) saved into the register h and 
represent the sum (Xt+2 + Kt+2) + et.  
 

 
 

Figure 3: The Modified Operation Block of  RIPEMD-
160 Hashing Algorithm  

 
 

At the “Final-Calculation” unit of the same operation, 
the value of W derives directly from the value of h. The 
computed sum now of the value W represents the sum 
(Xt+2 + Kt+2) + at+1. Finally at the “Pre-Computation” 
unit on the next operation (which is the operation t+2) 
the sum Z= W + ft is calculated. 
 The computed sum now represents the value  (Xt+2 

+Kt+2) + ft + at+1. This sum is part of the computations 
needed for the calculation of bt+2 value. What remains 
for the computation of the value bt+2 is the rotation 
(Rols) of the value Z and then its addition with the value 
e*t+1, as is performed in the “Final-Calculation” in 
Fig.4. 
Observing Fig.4 it can be realized  that the critical path 
is not located any more in the computation of the bt 
value but in the computation of the value of Z. This 
means that the critical path in Fig. 4 has been reduced 
from three addition stages, a Non Linear Function ft and 

 



 

a multiplexer in Fig.3 to two addition stages, a Non 
Linear Function ft and a multiplexer.  
Hence, the critical path is shortened by one adder level, 
which contributes approximately 30% to the overall 
maximum delay. Moreover, it has to be noticed that an 
initialization of the values of W and h is needed as 
illustrated in Fig.4. At the first operation of every round 
the current values of Xt and Kt contribute for the 
computation of the value bt+2. Thus, before the first 
operation begins, the value of W must be equal to the 
sum (X1 + K1) + a0, which will be used at the “Final-
Calculation” of the first operation for the calculation of 
the value bt . Also the value of h must be equal to the 
sum (X2 + K2) + e0, which will be used for the 
calculation of the value bt+1 at the “Final-Calculation 
stage of the second operation. Therefore, another one 
modification that introduces two adders is needed. 
However, this change does not have any effect on the 
critical path. 
 

 
 
Figure 4: The Proposed Operation Block of  RIPEMD-

160 algorithm  
 

The introduced area penalty is only two 32-bit registers, 
which are used for storing the intermediate results of the 
values W and h that are required. This area penalty sure 
enough is worth paying for an increase of throughput at 
about 36%. 
 
EXPERIMENTAL RESULTS 

The proposed hashing cores that were presented as 
examples were captured in VHDL and were fully 
simulated and verified using the Model Technology’s 
ModelSim Simulator. The designs were fully verified 
using a large set of test vectors, apart from the test 
example proposed by the standards. The synthesis tool 
used to port VHDL to the targeted technologies was 
Synplicity’s Synplify Pro Synthesis Tool. Simulation of 
the designs was also performed after synthesis, 

exploiting the back annotated information that was 
extracted from the synthesis tool. Further evaluation of 
the designs was performed using the prototype board 
for the Xilinx Virtex device family. 
Probing of the FPGA’s pins was done using a logic 
analyzer. No scaling frequency technique was followed, 
selecting one master clock for the system, which was 
driven in the FPGA from an onboard oscillator. The 
behavior of the implementation was verified exploiting 
the large capacity of the FPGA device. The achieved 
operating frequency is equal to 87,6 MHz.  
Furthermore, as far as it concerns the introduced area 
overhead for the RIPEMD-160 hash core, the proposed 
implementation presents an increase of approximately 
8%. From the experimental results, it was proved that 
RIPEMD-160 proposed implementation was about 36% 
faster than the conventional implementation. From the 
above results, it derives that the proposed 
implementation is a worth-making optimization for the 
hashing core since the required area for the whole 
security scheme is much more than that needed for the 
RIPEMD-160 hashing core. 
 
Table 2: Performance Characteristics of RIPE-MD 160 

Hash Function Implementations and Comparisons 
 

 
 
 
It has to be added that the above comparisons concern 
hardware implementations mainly in FPGA boards. 
However due to the limited number of published  work 
concerning RIPEMD all implementation results have 
been included regardless of the utilized FPGA family. 
For this reason the evaluation board in each case is 
mentioned so as to be easy to adapt the results and make 
a fair comparison.  
Beyond that however, the comparison results just 
confirm  the efficiency of the  proposed technique and 
this is accomplished with the comparison to the 
conventional implementation that has also been 
evaluated from our research time in the same FPGA 
board. From this comparison it can be inferred that the 
proposed implementation achieves its objective of 
higher throughput of about 35% with only 8% area 

 



 

National Instititute of Standards and Technlogy. 1994. “FIPS 
186, (DSS), Digital Signature Standard” 

penalty for  evaluation in the same FPGA board  (used 
in our research laboratory). 

National Instititute of Standards and Technlogy. 1995. “FIPS 
198, The Keyed-Hash Message Authentication Code 
(HMAC)”  

CONCLUSIONS 

A novel hardware implementation of RIPEMD-160 
hash function was presented  in  this  paper. Two  
techniques  were evaluated so as to increase throughput 
and thus make it suitable for the corresponding server of 
data intensive applications. The proposed 
implementation has a throughput of about 2.8 Gbps, 
about 35% higher from the next better performing 
implementation. The experimental results showed that a  
small  area  penalty  was  introduced  for a  remarkable 
increase of  throughput. 

National Instititute of Standards and Technlogy. 2005.  
SP800-77 , “Guide to IPSec VPN’s”. 

 Ng C.W., Ng T.S.  and Yip K.W.  , 2004. “A unified 
architecture of MD5 and RIPEMD-160 Hash algorithms”, 
IEEE International Symposium on Circuits and Systems. 

Sklavos N. and Koufopavlou O. .2005. “On the hardware 
implementation of RIPEMD    processor: Networking high 
speed hashing, up to 2 Gbps”, Computers and Electrical 
Engineering Journal 31 361–379. 

 
Therefore, the proposed implementation increases the 
throughput and frequency significantly and keeps at the 
same time the area small. This makes the proposed 
implementation suitable for server side cryptographic 
schemes as well as and for every new wireless and 
mobile communication application that urges for high-
performance and small-sized solutions. 
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