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ABSTRACT 
 
Processor allocation and the task scheduling technique 
in parallel processing systems play a significant role in 
improving the performance of a message-passing 
architecture. Adapting the right algorithms and further 
improvements in areas such as time complexity, 
execution time, speed up and synchronization 
mechanisms  undoubtedly facilitates implementation of 
advanced applications on a parallel processing system. 
These applications include but are not limited to DNA 
computing, artificial immune systems and optical 
computing to name a few. This paper highlights the 
communication cost related to a Super-Hypercube 
topology for being   a subclass of traditional 
Hypercube architecture. 
 
Furthermore, a particular reference is made to the 
mathematical modeling of Hypercube and Super-
Hypercube architectures. Finally, graphical 
presentations are carried out based on mathematical 
calculations to address the advantage of Super-
Hypercube topology.  
 
INTRODUCTION 
 
Parallel processing systems are commonly applied in 
areas such as military, space, signal processing, image 
processing and pattern recognition that require high 
computational power. These parallel processing 
systems could be implemented to solve many 
engineering problems that suffer from lack of high 
reliability, performance, flexibility and compatibility, 
availability, portability, and low in cost and size. 
 
Hypercube architectures perform well for a large range 
of problems. It is well suited for both general-purpose 
and special-purpose applications. They are mainly used 
in matrix operations, sorting, signal and image 
processing where extensive data processing is required 
(Walker 1998). Figure 1 illustrates the general form of 
this architecture. 
 

      
Figure 1: 3 D Hypercube Architecture 
 
In Hypercube architectures when communication 
between two indirectly connected Processing Elements 
(PEs) is required, the message has to cross one or more 
hyper-planes and go through intermediate PEs before 
reaching its destination. The PEs involved are required 
to compute and handle message-passing, which 
reduces the overall computational power and 
performance. In addition, if one of the intermediate 
PEs is faulty or busy performing tasks, there will be a 
significant downtime in communication between the 
source and destination PEs.     
 
In order to overcome Hypercube limitations such as 
routing and expandability, an enhanced version of the 
Hypercube architecture namely Super-Hypercube was 
developed (Abachi 1997). This architecture includes 
applying a Router (R) to the basic Hypercube. This 
router acts as a crossbar switch, which can provide a 
communication path between two indirect PEs. Its 
usage in conjunction with SGI (Silicon Graphics Inc.) 
products relieves the processor of the routing task and 
provides more efficient computing activities.  Figure 2 
shows the basic principle of this architecture.  
. 
As reported in (Grama et al. 2003), interconnection 
networks can be classified as either dynamic or static. 
The former interconnection is designed by using 
switches to connect PEs together. On the other hand, 
the latter deals with the networks consist of point-to-
point communication links among PEs. In the Super-
Hypercube topology, the adjacent PEs are directly 
connected together without use of the Router (R) and 
indirect PEs are connected together through a Router 
(R).   
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Figure 2:  Super- Hypercube Architecture 
 
The Super-Hypercube outlined in this paper uses 
combination of both categories (dynamic and static). In 
this paper it is coined as Dynamic-Static (Dynastatic) 
interconnection. 
 
The aim of this research is to identify the advantages of 
communication cost for Dynastatic Super-Hypercube 
architecture when is compared with the traditional 
Hypercube topology. 
 
MATRIX MULTIPLICATION ON 
DISTRIBUTED MEMORY SYSTEMS 
 
In many applications, matrix multiplication involves 
dealing with different sizes (squares vs. rectangular) 
and may include the communication cost. The size of 
the matrix can significantly impact on the performance 
of parallel matrix multiplication algorithm (Dongarra 
et al 2007). 
This section outlines the general mathematical model 
for square matrix multiplication. 
 
Basic Concepts, Definitions and Assumptions 
 
Let  and  be matrices of size  and  
respectively. The product of  and  is a matrix of 
size  which denoted by  and is given by: 

  
for each pair  and  with  and . 
 
For the purpose of this paper, we perform a matrix 
multiplication on a DMS which is more favorable than 
shared memory. In doing so, we consider the following 
definitions (Li 2007): 
 
Definition 1: In order to construct our mathematical 
we consider that a DMS can support one-to-one 
communication in  time unit. For this 
purpose, a fast and scalable parallel matrix algorithm is 
required.  
 
Definition 2: We assume that a DMS consists of   
PEs  with their own local 
memory .  In addition, we 
consider that PEs have the capability of 

communicating with each other through message- 
passing scheme. Moreover, the computation and 
communication are globally synchronized into steps. 
That is to say, a step is either a computation step or a 
communication step. In former, each PE has a 
capability of performing a local logic/ arithmetic 
operation or in worse scenario is idle and it utilises 
constant amount of time. 
In latter, PEs could communicate with one another bio-
directionally via an interconnection network.  In this 
case, a communication step can be mathematically 
expressed as: 

 where 
 . This results in PE  sending a value  to 

PE  and  is a mapping  
. 

 
Definition 3: If  PE  doesn’t send any messages 
during the communication step, then  and 

 is undefined. 
However, in a practical situation, there is at most one j 
such that  . This implies each PE can 
maximum receive one message in one-to-one 
communication step. This also reviles that based on 
definition 1, the DMS supports the above 
communication step in  time frame. 
From a practical application point of view, in the 
busiest communication step, every PE sends a message 
to another  processor and 

is a permutation of  

 
Definition 4: Based on the above definitions and 
assumptions, if a computation step and the 
communication step in performing a parallel task on a 
DMS, are  and   respectively, then the time 
complexity of performing parallel tasks can be 
presented as:  . 
 
Furthermore, if the number of PEs in parallel 
processing system is less than the required sub-tasks, 
then the time complexity can be shown as: 
                                       

 
  (1) 

 where  is the problem size,  is the number of PEs 
available,  is the time complexity of the best 
sequential algorithm, and  is the 
overall communication overhead of a parallel 
computation.

 From an algorithmic point of view, a DMS is 
characterized by the function  which 
measures the communication capability of the 
interconnection network.  
 
According to (Coppersmith and Winograd 1990), the 
fastest sequential algorithm for matrix multiplication 

 



 

has the time complexity of  where currently the 
best value for   is 2.3755. 
Based on these definitions, we try to find out the best 
time of running this sequential algorithm in parallel 
form on Hypercube and Super-Hypercube. 
 
MATRIX MULTIPLICATION ON HYPERCUBE 
AND SUPER-HYPERCUBE 

  
In multiplying  two matrices where the number 
of PEs is less than the  number of sub-tasks , i.e. 

, we assume that  is an integer such that 
 i.e.  which has the matrices of sub-

matrices    ( i.e., all the matrices 
  and   are partitioned 

to sub-matrices  of size ). Therefore, one can 
conclude that, in terms of computation time, if we 
multiply   matrix by  matrix sequentially 
on  PEs it will take  units of time.  
 
Calculation of the Communication Time for Matrix 
Multiplication on Hypercube 

 
As we know the identification of each PE in  
dimensional Hypercube is based on their binary 
representation. The set of PEs which are distance  
from one PE to another in Hypercube is showed by  
and it includes PEs.  Since Hypercube is a 
symmetrical architecture, so any algorithm which is 
written for any PE can be converted to an identical 
algorithm for PE by binary 
product of all PE i.d’s referenced in any specific PE 
algorithm with . 
 
We assume that it takes  time for a 
PE to send a message of length  to a neighbor, where 

 represents the transfer rate of a message and   
the time for start up and termination. 
 
According to (F. Stout and Wagar. 1990), the fastest 
possible time for one PE in  dimensional 
Hypercube to send a message to an arbitrary PE with 
distance      is:  

                

(2) 

                                       

 
In this scenario, we assume that all PEs can 
communicate to one another simultaneously. 
So, when multiplying two matrices of size on a 

-dimensional Hypercube by applying sub-matrices 

of size , each PE can broadcast the message of 
length . 

 
For calculating the communication time in the 
Hypercube, we consider the worse case scenario. This 
simply implies that if we intend to send a message of 
length  from any PE to the farthest PE ( 

), that would include the communication 
time for all the PEs within this range.   
 
Therefore, the time takes to multiply two  
matrices in forms of sub-matrices on a Hypercube is: 
 
 
 

 
This results in: 

     (3) 

                                                                                                             
where  denotes the number of PEs in Hypercube. 

Calculation of the Communication Time for Matrix 
Multiplication on Super- Hypercube 
 

Now we are in the position to expand the above 
methodology to cover the Super-Hypercube 
architecture. This means for the case of Super-
Hypercube: 

 

By including the Router (R) in the middle of 
Hypercube, we have provided a direct connection 
between any two PEs in Hypercube. Therefore, all PEs 
in Super- Hypercube are in equal distance to one 
another. 

Moreover, the required time to multiply two  
matrices in form of sub-matrices on a Super-
Hypercube is:                         

              
                          

(4) 

where  is the number of PEs in Super-Hypercube. 
In deriving equation (4) we assumed that . 

 



 

COMPARISON 

 Figure 4 shows the graphical presentation of 
communication cost with variable number of PEs and 
Figure 5 presents the graphical presentation of the 
communication cost with variable matrix size. In 
evaluating these results we have assumed that 

. 

 

Figure 4. Graphical Presentation of communication 
cost for Matrix Multiplication with variable number of 
PEs. 

 

Figure 5. Graphical Presentation of communication 
cost  for Martix Multiplication with variable matrix 
size. 

By providing a direct path between any two indirect 
nodes through  a Router (R),  the communication time 
of  a matrix product is sigificanytly shorter in Super-
Hypercube compare with the Hypercube  archticture. 
This is evident by analyzing Figure 4 and Figure 5 
respectively.  This accomplishment has played an 
important  part towards improving the overall 
operation time and hence the performance of the 
message-passing architecture.  This is clearly evident 
in Figure 4, when the number of PEs exceeds 256. 

CONCLUSION  

This paper has addressed the communication cost of  a 
matrix product on message-passing architectures.  The 
mathematical modeling for matrix multiplication on 
Hypercube and Super-Hypercube architectures was 
derived and numerical results for both architectures 
were presented.  The existence of a Router (R) in a 
traditional Hypercube which results in having the 
Super-Hypercube has significantly improved the 
overall performance of the system. As a further work, 
we intend to propose an enhanced version of Super-
Hypercube architecture. Then we will deliver the 
general formula for parallel time computation. This 
will be complementing the mathematical calculations 
and simulation carried out for this architecture.  
Furthermore, to validate this analysis, the most 
appropriate architecture will be chosen and compared 
with our findings to support our claims.  
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