

 COMMUNICATION COST OF A MATRIX PRODUCT ON
 SUPER-HYPERCUBE ARCHITECTURE

 Maryam Amiripour and Hamid Abachi

 Department of Electrical and Computer Systems Engineering
 Monash University
 Australia
 E-mail: maryam.amiripour@eng.monash.edu.au

KEYWORDS
Communication Cost, Hypercube, Super Hypercube,
Dynastatic, Matrix Product

ABSTRACT

Processor allocation and the task scheduling technique
in parallel processing systems play a significant role in
improving the performance of a message-passing
architecture. Adapting the right algorithms and further
improvements in areas such as time complexity,
execution time, speed up and synchronization
mechanisms undoubtedly facilitates implementation of
advanced applications on a parallel processing system.
These applications include but are not limited to DNA
computing, artificial immune systems and optical
computing to name a few. This paper highlights the
communication cost related to a Super-Hypercube
topology for being a subclass of traditional
Hypercube architecture.

Furthermore, a particular reference is made to the
mathematical modeling of Hypercube and Super-
Hypercube architectures. Finally, graphical
presentations are carried out based on mathematical
calculations to address the advantage of Super-
Hypercube topology.

INTRODUCTION

Parallel processing systems are commonly applied in
areas such as military, space, signal processing, image
processing and pattern recognition that require high
computational power. These parallel processing
systems could be implemented to solve many
engineering problems that suffer from lack of high
reliability, performance, flexibility and compatibility,
availability, portability, and low in cost and size.

Hypercube architectures perform well for a large range
of problems. It is well suited for both general-purpose
and special-purpose applications. They are mainly used
in matrix operations, sorting, signal and image
processing where extensive data processing is required
(Walker 1998). Figure 1 illustrates the general form of
this architecture.

Figure 1: 3 D Hypercube Architecture

In Hypercube architectures when communication
between two indirectly connected Processing Elements
(PEs) is required, the message has to cross one or more
hyper-planes and go through intermediate PEs before
reaching its destination. The PEs involved are required
to compute and handle message-passing, which
reduces the overall computational power and
performance. In addition, if one of the intermediate
PEs is faulty or busy performing tasks, there will be a
significant downtime in communication between the
source and destination PEs.

In order to overcome Hypercube limitations such as
routing and expandability, an enhanced version of the
Hypercube architecture namely Super-Hypercube was
developed (Abachi 1997). This architecture includes
applying a Router (R) to the basic Hypercube. This
router acts as a crossbar switch, which can provide a
communication path between two indirect PEs. Its
usage in conjunction with SGI (Silicon Graphics Inc.)
products relieves the processor of the routing task and
provides more efficient computing activities. Figure 2
shows the basic principle of this architecture.
.
As reported in (Grama et al. 2003), interconnection
networks can be classified as either dynamic or static.
The former interconnection is designed by using
switches to connect PEs together. On the other hand,
the latter deals with the networks consist of point-to-
point communication links among PEs. In the Super-
Hypercube topology, the adjacent PEs are directly
connected together without use of the Router (R) and
indirect PEs are connected together through a Router
(R).

PE

PE

PEPE

PE

PEPE

PE

PE: Processor Element

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

mailto:maryam.amiripour@eng.monash.edu.au

PE

PE

PEPE

PE

PEPE

PE

PE: Processor Element, R: Router

R

Figure 2: Super- Hypercube Architecture

The Super-Hypercube outlined in this paper uses
combination of both categories (dynamic and static). In
this paper it is coined as Dynamic-Static (Dynastatic)
interconnection.

The aim of this research is to identify the advantages of
communication cost for Dynastatic Super-Hypercube
architecture when is compared with the traditional
Hypercube topology.

MATRIX MULTIPLICATION ON
DISTRIBUTED MEMORY SYSTEMS

In many applications, matrix multiplication involves
dealing with different sizes (squares vs. rectangular)
and may include the communication cost. The size of
the matrix can significantly impact on the performance
of parallel matrix multiplication algorithm (Dongarra
et al 2007).
This section outlines the general mathematical model
for square matrix multiplication.

Basic Concepts, Definitions and Assumptions

Let and be matrices of size and
respectively. The product of and is a matrix of
size which denoted by and is given by:

for each pair and with and .

For the purpose of this paper, we perform a matrix
multiplication on a DMS which is more favorable than
shared memory. In doing so, we consider the following
definitions (Li 2007):

Definition 1: In order to construct our mathematical
we consider that a DMS can support one-to-one
communication in time unit. For this
purpose, a fast and scalable parallel matrix algorithm is
required.

Definition 2: We assume that a DMS consists of
PEs with their own local
memory . In addition, we
consider that PEs have the capability of

communicating with each other through message-
passing scheme. Moreover, the computation and
communication are globally synchronized into steps.
That is to say, a step is either a computation step or a
communication step. In former, each PE has a
capability of performing a local logic/ arithmetic
operation or in worse scenario is idle and it utilises
constant amount of time.
In latter, PEs could communicate with one another bio-
directionally via an interconnection network. In this
case, a communication step can be mathematically
expressed as:

 where
 . This results in PE sending a value to

PE and is a mapping
.

Definition 3: If PE doesn’t send any messages
during the communication step, then and

 is undefined.
However, in a practical situation, there is at most one j
such that . This implies each PE can
maximum receive one message in one-to-one
communication step. This also reviles that based on
definition 1, the DMS supports the above
communication step in time frame.
From a practical application point of view, in the
busiest communication step, every PE sends a message
to another processor and

is a permutation of

Definition 4: Based on the above definitions and
assumptions, if a computation step and the
communication step in performing a parallel task on a
DMS, are and respectively, then the time
complexity of performing parallel tasks can be
presented as: .

Furthermore, if the number of PEs in parallel
processing system is less than the required sub-tasks,
then the time complexity can be shown as:

 (1)

 where is the problem size, is the number of PEs
available, is the time complexity of the best
sequential algorithm, and is the
overall communication overhead of a parallel
computation.

 From an algorithmic point of view, a DMS is
characterized by the function which
measures the communication capability of the
interconnection network.

According to (Coppersmith and Winograd 1990), the
fastest sequential algorithm for matrix multiplication

has the time complexity of where currently the
best value for is 2.3755.
Based on these definitions, we try to find out the best
time of running this sequential algorithm in parallel
form on Hypercube and Super-Hypercube.

MATRIX MULTIPLICATION ON HYPERCUBE
AND SUPER-HYPERCUBE

In multiplying two matrices where the number
of PEs is less than the number of sub-tasks , i.e.

, we assume that is an integer such that
 i.e. which has the matrices of sub-

matrices (i.e., all the matrices
 and are partitioned

to sub-matrices of size). Therefore, one can
conclude that, in terms of computation time, if we
multiply matrix by matrix sequentially
on PEs it will take units of time.

Calculation of the Communication Time for Matrix
Multiplication on Hypercube

As we know the identification of each PE in
dimensional Hypercube is based on their binary
representation. The set of PEs which are distance
from one PE to another in Hypercube is showed by
and it includes PEs. Since Hypercube is a
symmetrical architecture, so any algorithm which is
written for any PE can be converted to an identical
algorithm for PE by binary
product of all PE i.d’s referenced in any specific PE
algorithm with .

We assume that it takes time for a
PE to send a message of length to a neighbor, where

 represents the transfer rate of a message and
the time for start up and termination.

According to (F. Stout and Wagar. 1990), the fastest
possible time for one PE in dimensional
Hypercube to send a message to an arbitrary PE with
distance is:

(2)

In this scenario, we assume that all PEs can
communicate to one another simultaneously.
So, when multiplying two matrices of size on a

-dimensional Hypercube by applying sub-matrices

of size , each PE can broadcast the message of
length .

For calculating the communication time in the
Hypercube, we consider the worse case scenario. This
simply implies that if we intend to send a message of
length from any PE to the farthest PE (

), that would include the communication
time for all the PEs within this range.

Therefore, the time takes to multiply two
matrices in forms of sub-matrices on a Hypercube is:

This results in:

 (3)

where denotes the number of PEs in Hypercube.

Calculation of the Communication Time for Matrix
Multiplication on Super- Hypercube

Now we are in the position to expand the above
methodology to cover the Super-Hypercube
architecture. This means for the case of Super-
Hypercube:

By including the Router (R) in the middle of
Hypercube, we have provided a direct connection
between any two PEs in Hypercube. Therefore, all PEs
in Super- Hypercube are in equal distance to one
another.

Moreover, the required time to multiply two
matrices in form of sub-matrices on a Super-
Hypercube is:

(4)

where is the number of PEs in Super-Hypercube.
In deriving equation (4) we assumed that .

COMPARISON

 Figure 4 shows the graphical presentation of
communication cost with variable number of PEs and
Figure 5 presents the graphical presentation of the
communication cost with variable matrix size. In
evaluating these results we have assumed that

.

Figure 4. Graphical Presentation of communication
cost for Matrix Multiplication with variable number of
PEs.

Figure 5. Graphical Presentation of communication
cost for Martix Multiplication with variable matrix
size.

By providing a direct path between any two indirect
nodes through a Router (R), the communication time
of a matrix product is sigificanytly shorter in Super-
Hypercube compare with the Hypercube archticture.
This is evident by analyzing Figure 4 and Figure 5
respectively. This accomplishment has played an
important part towards improving the overall
operation time and hence the performance of the
message-passing architecture. This is clearly evident
in Figure 4, when the number of PEs exceeds 256.

CONCLUSION

This paper has addressed the communication cost of a
matrix product on message-passing architectures. The
mathematical modeling for matrix multiplication on
Hypercube and Super-Hypercube architectures was
derived and numerical results for both architectures
were presented. The existence of a Router (R) in a
traditional Hypercube which results in having the
Super-Hypercube has significantly improved the
overall performance of the system. As a further work,
we intend to propose an enhanced version of Super-
Hypercube architecture. Then we will deliver the
general formula for parallel time computation. This
will be complementing the mathematical calculations
and simulation carried out for this architecture.
Furthermore, to validate this analysis, the most
appropriate architecture will be chosen and compared
with our findings to support our claims.

REFRENCES

Abachi, H and A.L, Walker. 1997. “Simulation
Modeling of Fault-Tolerant Hypercube, Super-
Hypercube and Torus Networks” Proceeding of 12th
International Conference on Computers and Their
Applications (ISCA), Arizona, U.S.A, 50-53 (March).

Amiripour, M.; H. Abachi; and R. Lee. 2007. “Total
System Cost and Average Routing Distance Analysis
of Master-Slave Super-Super-Hypercube 4-Cube
Message-Passing Architecture” The International
Journal of Computer and Information Science (IJCIS),
Vol 10, No 2, 269-279 (June).

Coppersmith, D and S. Winograd. 1990. “Matrix
Multiplication via Arithmetic Progressions.” J.
Symbolic Computation, Vol 9, 251-280.

Dongarra, J; J.F. Pineau; Y. Robert; Zh. Shi; and F.
Vivien. 2007 “ Revisiting Matrix Product on Mater-
Worker Platform.”IEEE Proceding on Parallel and
Distributed Processing Symposium,(IPDPS 2007) ,1-8,
(March)

F. Stout, Q. and B. Wagar. 1990. “Intensive Hypercube
Communication: Prearranged Communication in Link-
Bound Machines.” Journal of Parallel and Distributed
Computing 10, 167-181.

Grama, A.; A. Gupta; G. Karypis; and V. Kumar.
2003. “Introduction to Parallel Computing.” Addison
Wesley, U.S.A.

 MARYAM AMIRIPOUR
 received her B.A. in Mathematics from
Al-Zahra University in Iran in 1999. That was
followed by a Post Graduate Diploma in Information
and System Management form
Queensland University in Australia in 2001.She is
currently pursuing her PhD degree in Department of
Electrical and Computer Systems
Engineering at Monash University in Australia. Her
area of research includes hardware design, modeling
and simulation of advance parallel processing systems.
The main parameters of her investigation include
evaluation of performance, reliability, speed and cost
analysis of massively parallel processing systems. She
has a number of referred journal and conference papers
in these areas. Her e-mail address is:
maryam.amiripour@eng.monash.edu.au.

 HAMID ABACHI received his
Ph.D. degree in Computer Engineering from
University College Cardiff in Wales, Britain, in 1981.
He has twenty five years of teaching, research and
administrative experiences in international universities
around the world. He is currently an Associate
Professor in the Department of Electrical and
Computer Systems Engineering at Monash University
in Australia. He has more than 95 referred international
publications including Journal and conference papers.
He has served as a member of international program
committee to more than 72 international conferences
around the world. On a number of occasions has acted
as the conference chairman and on many occasions as
the session chairman at international conferences. He
has also participated in the plenary sessions at sessions
at international conferences. He has been a co-recipient
of the John Madsen Medal for his best Journal paper in
the discipline of Electrical Engineering form the
Institution of Engineers Australia (IEAust) in 2002,
plus receiving a number of best paper awards in
international conferences. In addition he has been
invited as a keynote speaker at four international
conferences. He is a Fellow of The Institution of
Engineering and Technology (the IET, formerly IEE)
in Britain, a Fellow of the Institution of Engineers in

Australia (IEAust) and a Senior Member of IEEE in
the USA. His research interests include design and
simulation of parallel processing systems, modeling of
advanced computer architectures, application of
distributed multimedia computing in advanced
Engineering Education. His e-mail address is:
hamid.abachi@eng.monash.edu.au.

mailto:maryam.amiripour@eng.monash.edu.au

