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ABSTRACT 

In this paper we present SinCity, a pedagogical testbed 
to compare multi-agent learning strategies. SinCity has 
been developed in NetLogo and it can be considered as 
an extension of the simple predator-prey pursuit 
problem. In our case, we model a police/thief pursuit in 
an urban grid environment where several elements 
(cars, traffic lights, etc.) may interact with the agents in 
the simulation. SinCity allows to model, in a graphical 
friendly environment, different strategies for both, the 
Police and the thief, also implying coordination and 
communication among the agent set. SinCity is oriented 
mainly as a pedagogical testbed for learning techniques. 
The main contributions of the paper are a graphical 
simulating environment in NetLogo (distributed as open 
source), a pedagogical testbed for simulating multi-
agent learning strategies, and the results concerning the 
simulations performed. 
 
 
INTRODUCTION 

The predator-prey pursuit problem (Benda et al. 1985) 
is one of the first and well-known testbed for learning 
strategies in multi-agent systems. Basically it consists in 
a set of agents, named predators, that aim to surround 
another agent, named prey, that must escape from them. 
This problem has been addressed many times by the AI 
Community. Initially, (Korf 1992)  proposed a solution 
without multi-agent communication. A great number of 
alternatives have emerged since Korf’s one, involving 
genetic programming (Haynes and Sen, 1995), Petri 
nets (Chainbi et al. 1996), reinforcement learning (Tan 
1997), blackboard architectures (Jim and Giles, 2000), 
profit sharing (Katayama et al. 2005), and many more. 
 
Many other learning simulations have appeared in 
multiple domains (social sciences, economy, biology, e-
commerce, etc.) and with much more complex 
scenarios. Presently one of the most popular ones are 
the Robocop Simulation Leagues for Soccer and Rescue 
(Robocop 2006). The simulators and techniques used 
for these two competitions are brand new approaches 
but usually very complex to be managed as a 

pedagogical testbed for comparison of new learning 
techniques. 
 
In this paper we propose a simulator named SinCity, 
modeling a city, and a new pursuit problem, which is a 
more complex version of the predator-prey. SinCity is 
developed in an open source, simple, popular and user 
friendly environment (Netlogo) that may be used as a 
testbed for checking multiple multi-agent learning 
techniques. 
  
The rest of the paper is organized as follows. First we 
introduce multi-agent systems and the Netlogo 
environment for multi-agent simulation. Then we 
describe the simulation scenario developed. Next, we 
introduce our police-thief pursuit model. In next section 
we describe the learning techniques used in our 
simulations and the results we have obtained. Finally, 
we present the conclusions and future research work. 
 
 
MAS AND NETLOGO 
 
In this section we introduce Multi-agent Systems 
(MAS) and Netlogo, which are the basic elements used 
to build the SinCity simulator. 
 
Multi-agent Systems 
 
Before introducing Multi-agent Systems (MAS), we 
need to define what we understand by an agent. 
Unfortunately, there is no general agreement in the 
research community about what an agent is. Therefore 
we cite a general description (Wooldridge and Jennings, 
1995), and according to it, the term agent refers to a 
hardware or (more usually) software-based computer 
system characterized by the well-known properties: 
autonomy, social ability, reactivity, and pro-activeness. 
There are some other attributes that can be present, but 
usually they are not considered as a requisite: mobility, 
veracity, benevolence, rationality and adaptability (or 
learning); see (Wooldridge 2002) for more details. A 
system consisting of an interacting group of agents is 
called a Multi-agent System (MAS), and the 
corresponding subfield of Artificial Intelligence (AI) 
that deals with principles and design of MAS is called 
Distributed AI. 
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Netlogo 
 
We implemented our city model using NetLogo 
(Wilensky 2007), a multi-agent modeling environment 
for simulating natural and social phenomena. It is 
particularly well suited for modeling complex systems 
that evolve. Modelers can give instructions to hundreds 
of agents operating independently. This makes possible 
to explore the connection between the micro-level 
behavior of individuals and the macro-level patterns 
that emerge from the interaction of many individuals. 
 
NetLogo is an easy-to-use development environment. It 
allows to launch simulations and play with them by 
exploring their behavior under various conditions. 
Custom models can be created easily for quick tests of 
hypotheses about self-organized systems. 
 
NetLogo has extensive documentation and tutorials. It 
also comes with a Models Library, which is a large 
collection of pre-written simulations that can be used 
and modified. These simulations address many areas in 
natural and social sciences, including biology and 
medicine, physics and chemistry, mathematics and 
computer science, and economics and social 
psychology. 
 
NetLogo is a 2D world made of agents that 
simultaneously carry out their own activity. There are 
three types of agents: 
• Patches: stationary agents that make up the 

background or “world”. They have integer 
coordinates. 

• Turtles: mobile agents that move around on top of 
the patches, not necessarily in the center, so they 
have decimal coordinates and orientation. 

• The observer: oversees everything going on in the 
world. It can create new turtles and has read/write 
access to all the agents and variables. 

 
An agentset can be created using a subset of the agents. 
There is also the possibility to create breed, a “natural” 
agentset of turtles, which come with automatically 
derived primitives. 
 
NetLogo uses a simple scripting language to define the 
systems, and it also has a user-friendly graphical 
interface to interact with the system. The graphical 
interface consists of three elements: 
• Controls: they allow to run and control the flow of 

execution. There are two types: buttons and 
command center. The buttons are used to initialize, 
start, or stop the model, and step through it. They 
can be either “once”, which execute one action (a 
piece of code) or “forever”, which repeat the same 
action (the same piece of code) until pressed again. 
The command center allows to ask observer, 
patches or turtles to execute specific commands “on 
the fly”, while the model is running, so it is 

possible observe how these modifications alter the 
model. 

• Settings: they allow to modify parameters. There 
are sliders (to set a quantity from a minimum to 
maximum by incremental steps), switches (to set a 
boolean variable true or false) and choosers (to 
select a value from a list). 

• Views: they allow to display information. There are 
monitors (to display the current value of variables), 
plots (to display the history of a variable in a 
graphic), output text areas (text log information) 
and graphics window (main view of the 2D 
NetLogo world). 

 
As common programming languages, NetLogo has 
variables, i.e., value containers. There are global 
variables (a single value for the variable that every 
agent can access it), turtle and patch variables (each 
turtle/patch has its own value for every turtle/patch 
variable), local variables (defined and accessible only 
inside a procedure) and built-in variables (already 
defined in NetLogo for turtles and patches). 
 
To model the behavior of the agents, NetLogo has 
different procedures: commands (actions for the agents 
to carry out, i.e. “void” functions), reporters (to report a 
result value, i.e. functions with return type), primitives 
(built-in commands or reporters, i.e. language 
keywords), procedures (user-made custom commands 
or reporters) and “ask” (to specify commands to be run 
in parallel by a set of turtles  or patches). 
 
 
CITY MODEL 
 
Previous models 
 
The first approach to traffic models, which is included 
in the NetLogo distribution, is Traffic Basic (Wiering et 
al. 2004) (figure 1). It models the movement of cars on 
a highway. Each car follows a simple set of rules: it 
slows down (decelerates) if it sees a close car ahead, 
and it speeds up (accelerates) if it does not see a car 
ahead. It demonstrates how traffic jams can form even 
without any “centralized cause”. 
 

 
Figure 1: Traffic Basic Model 

 
Using the movement of the cars in the previous model, 
a small city with traffic lights is modeled in Traffic Grid 
(Wilensky 2005) (figure 2, left), also included in the 
NetLogo distribution. It consists of an abstract traffic 
grid with intersections between cyclic single-lane 
arteries of two types: vertical or horizontal. It is possible 
to control traffic lights, speed limit and the number of 
cars, creating a real-time traffic simulation. This allows 



 

 

the user to explore traffic dynamics and develop 
strategies to improve traffic and to understand the 
different ways to measure the quality of the traffic. 
 

 
Figure 2: Traffic Grid (left) and SOTL (right) Models 

 
Using the Traffic Grid model as a starting point, a more 
complex model is presented in (Gershenson 2004), 
called Self-Organizing Traffic Lights. Cars flow in a 
straight line, eastbound or southbound by default. Each 
crossroad has traffic lights that only allow traffic flow 
in one of the arteries that intersect it with a green light. 
Yellow or red lights stop the traffic. 
 
The light sequence for a given artery is green-yellow-
red-green. Cars simply try to drive at a maximum speed 
of a “patch” per time step, but they stop when a car or a 
red or yellow light is in front of them. Time is discrete, 
but space is continuous. A “patch” is a square of the 
environment with the size of a car. The environment is 
shown in figure 2 (right). The user can change different 
parameters, such as the number of arteries or cars. 
 
Different statistics are shown: the number of stopped 
cars, their average speed, and their average waiting 
times. In this scenario, the author presents three self-
organizing methods for traffic light control 
outperforming traditional ones, since the agents are 
“aware” of changes in their environment, and therefore 
they can adapt to new situations. 
 
City Model Improvements 
 
Our model is a more realistic city scenario, as we will 
explain in this section. To model the 2D scenario, 
different agentsets for the patches are used. The main 
ones are: 
• intersections: agentset containing the patches that 

are intersections of two roads. 
• controllers: agentset containing the intersections 

that control traffic lights. Only one patch per 
intersection. 

• roads: agentset containing the patches that are 
roads. The rest of the patches are buildings. There 
will be four sub-agentsets, depending if the road is 
southbound, northbound, eastbound or westbound. 

• exits: agentset containing the patches where cars 
will go when leaving the simulation. 

• gates: agentset containing the patches where cars 
will sprout from. 

 
Given the previous model of the traffic in a city, 
described in [10], we have made some improvements to 
represent a more realistic scenario. In the previous 
model, the roads have a single lane and direction, and 
there are only two directions by default, south and east, 
although they can be changed to four, by adding north 
and west. A car only changes road or direction 
depending on a probability prob-turn, which means that 
the cars move at random. Also, in the previous model a 
torus was used by default, which means that when a 
given car coming from the west to the east arrives to the 
end of the scenario at the east, the same car will appear 
at the beginning of the scenario at the west. 
To increase realism, we remove the torus and impose 
four directions (north, east, south and west), and we are 
able to shape traffic thanks to sliders vertical, 
southbound and eastbound. Also, a by-pass road is 
created to improve traffic, which is the outermost in the 
scenario. 
 
We have also changed the car creation and elimination 
scheme. Now, for every car, we define a source (a 
random road patch) and a destination (another random 
road patch), such that every car is created at a source, 
and it moves (following the shortest path) to its 
destination, where it is eliminated. The sources and 
destinations may be outside the world, depending on the 
value of the sliders origin-out and destination-out, 
leading to some cars appearing and disappearing at the 
borders of the world. 
 
We have added the possibility of bidirectional roads, 
which are controlled with slider bidirectional, and roads 
with two lanes in the same direction, controlled with 
slider 2-lane. 
 
We have modified all the control methods so that, 
instead of just one yellow light cycle, now there are as 
many yellow light cycles as patches in the intersection, 
i.e. if the traffic light protects a bidirectional road, with 
two lanes in each direction, there will be four yellow 
lights cycles. In order to try to correct deadlocks at the 
intersections, a deadlock algorithm has been 
implemented. If a given car at an intersection after a 
given time has not moved, it tries to change direction in 
order to keep moving and to try to exit the deadlock. 
This movement could affect other cars and help 
finishing the current deadlock. 
 
 



 

 

 
Figure 3: The SinCity Model 

 
Due to all these improvements, specially the possibility 
of an origin and a destination and bidirectional roads, a 
complex algorithm to guide the cars is needed. 
Whenever a car is in a patch that is an intersection (it 
belongs simultaneously to a horizontal and a vertical 
road), it runs the guiding algorithm in order to know if a 
change of direction is necessary, before moving on. If 
not, the car will keep the same direction, at least until 
the next intersection. 
 
As seen in figure 3, with these changes we obtain a 
more realistic scenario where we can notice the 
different widths of the streets, depending if they are 
bidirectional and single or dual lane streets. We can also 
see the distribution of the traffic lights, and the by-pass 
road surrounding the city. 
 
 
THE SINCITY PURSUIT MODEL 
 
Our SinCity simulation is an extension of the predator-
prey pursuit problem, where the prey is substituted by a 
thief car and the predators by a set of police cars. 
 
On every challenge, the thief car starts driving at normal 
speed to a city bank. It stops in front of the bank, does 
the theft and getaway to its hideout at double speed. On 
the other hand, police cars patrol the city before the 
theft is done. When the thief car robs the bank an alarm 
is triggered, and police cars double their speed and 
patrol along the city trying to identify the thief’s car. 

The chase begins when any police sees the thief, before 
it arrives to its hideout, in the same road and at a 
distance of two blocks or less. On the one hand, if the 
thief’s car is seen, then all police cars know its position. 
On the other hand, if it is lost, we keep the point where 
the thief was last seen. If any police car arrives to that 
point but the thief car is not in sight, then the chase 
stops, prevent the others to go to that place and the 
patrol continues. 
  
We consider that the thief is captured if it is surrounded 
by police in a road (two police cars) or in an 
intersection (4 police cars). We consider that the thief 
escapes when it reaches its hideout and enters into it 
without to be seen by any police car. Besides, there are 
more cars in the city that cause thief or police cars to 
reduce their speed in the prosecution, from double to a 
normal one, if they are in front of the car. 
 
Figure 3 shows a snapshot of the SinCity map and data 
with the thief car is highlighted. The bank is marked in 
red at the upper right and the hideout is marked in green 
at the center. At every challenge the position of the 
bank and hideout changes but they must have a distance 
greater than the 25% of the map size. At the bottom and 
the right of the map we can see a graphic display, some 
outputs related with the simulation, and also configure 
several parameters; related with the algorithms 
explained in next sections. 
 
 



 

 

ALGORITHMS AND LEARNING TECHNIQUES 
In this section we describe the learning techniques 
implemented in the SinCity simulator to compare their 
results. We have implemented the non-learning Korf’s 
Algorithm, a self-organizing neural network (SOM) and 
two reinforcement learning algorithms: Learning 
Automata and Q-Learning. All these techniques are 
described next. 
 
Korf’s Algorithm 
(Korf 1992) approach was to use a fitness function that 
combined two forces: each predator was ”attracted” by 
the prey and ”repelled” from the closest other predator. 
This solution kept predators away from other predators 
while they got closer to the prey; the idea was to chase 
the prey arranging predators in an stretching circle. Korf 
concluded that the pursuit domain was easily solved 
with local greedy heuristics. 
 
Self-Organizing Maps Algorithm 
A Self-Organizing Map (SOM) (Kohonen 2001) is a 
type of artificial neural network that is trained using 
unsupervised learning to produce a low-dimensional 
(typically two dimensional), discretized representation 
of the input space of the training samples, called a map. 
We use the formula: 
 

Wn(t + 1) = Wn(t) + Θ ( t) . α(t) . (I(t) - Wn(t)) 

where α(t) is a monotonically decreasing learning 
coefficient and I(t) is the input vector. The 
neighborhood function Θ(t) depends on the lattice 
distance between the winner neuron and neuron v. 

 
Learning Automata Algorithm 
The Learning Automata (Narendra and Thathachar, 
1989) is a type of reinforcement learning algorithm that 
uses two very simple rules: 
 

P (s,a) = P(s,a) + α . (1 – P(s,a))  (1) 
P (s,b) = (1 –  α) . P (s,b)   (2) 

 
In these equations (α) is a small learning factor. If case 
of success, rule (1) is used to increase the probability of 
action (a) in state (s), while rule (2) is used to decrease 
the probability of the rest of actions. 
 
Q-Learning Algorithm 
The Q-Learning algorithm is another type of 
reinforcement learning algorithm (Kaelbling et al. 
1996), which works with the well-known formula: 
 

Q(s,a) = Q(s,a) + α (R(s) + γ max b Q(s’,b) – Q(s,a)) 
 

Where (s) is the previous state, (s’) the next state, (a) 
the action previous chosen, (α) the learning factor, 
(R(s)) the reinforcement, (γ) the discount factor, Q(s,a) 
is the value of Q for the present state and action chosen, 
and Q(s’,b) for the next state (s’) and action b. 

SIMULATION RESULTS 
In this section we present our simulation conditions and 
results. The simulations have been performed on a 
superserver with 8 processors Intel(R) Xeon(R) CPU 
X5460 at 3.16GHz and with 6 MB of cache memory per 
processor taking less than an hour for the whole set. We 
use a 65% of bidireccional roads and we generate a new 
city for every challenge.  
 
For implementing the learning techniques described in 
the previous section we took several decisions. First, 
police cars and the thief car take decisions about what 
road to take only at every intersection. This reduces the 
number of states and speed up the simulations. 
 
The thief has two different learning systems. The first is 
used to go from its particular location to the hideout 
when there is no police car at sight. The other learning 
system is used in the chase to escape from the police. 
The police car only have one learning system which is 
used to go from its present location to a destination, for 
instance, to pursue the thief during the chase. 
 
For the LA and QL techniques, when going to a 
destination, the input for every learning system 
considers the possible configurations of the road 
intersection (16 – 1 = 15 posibilities, as one has all 
roads blocked) depending if a certain road is blocked or 
not. We also consider the 8 possible locations of the 
destination point around the car. Therefore we have 8 x 
15 = 120 input states for LA and QL. 
 
In the thief case, using LA and during the chase, we 
consider only what is the closest police car. Therefore 
we have 4 inputs x 15 possible road intersections = 60 
input states. For the QL case, we consider the discrete 
distance in blocks (0, 1 or 2) of every police car when 
they are closer than two blocks. Then we have 81 inputs 
x 15 road intersections = 1215 states. Finally, the SOM 
neural network is only used by the thief during the 
chase. First we identify the type of intersection we have 
(15 possibilities) and for each one we set a SOM with 4 
real valued inputs (the 4 directions) with a number 
describing the exact distance to a police car (if anyone if 
less than 2 blocks, or zero if there is no one). We used a 
lattice of 16 x 16 = 256 neurons. Therefore, we have 
256 x 15 = 3840 neurons with 4 inputs each one. The 
output of every neuron is one of the four possible roads 
to take and it is based in a probability distribution of 
those possible exits, and trained as the LA case. 
 
The learning parameters we used in the simulations are: 
α=0.1 for the LA, QL and the probability distribution of 
every neuron in the SOM. Besides, in QL we set 
R(s)=±0.25 and γ=0.2. Finally, for the SOM case we 
have �(t)= 1 / (1 + 0.01*t) and Θ ( t) = �(t)= 1 / (1 + 
0.01*t), where t is the learning iteration. Of course, as 
there are several SOMs, each one has its own �(t) and 
�(t) parameters. 



 

 

 
Figure 4: % of thief victories using LA (2 police cars) 

 
Figure 4 shows the evolution of the absolute percentage 
of thief victories along 1800 challenges in a city of 5x5 
blocks; with the thief using the LA technique. We see 
how it starts low and it grows as soon as the automata 
learns the best options in every situation. After 1000 
challenges, this percentage remains stable around 28%. 
 
Now we compare the results using the learning 
techniques in a run. A run (set of challenges) stops 
when the average standard deviation of the thief wins in 
last 500 challenges is lower than a 3%, provided than at 
least 1000 challenges have taken place.  
 

 
Figure 5: 10x10 map results with Police using Korf 

 
Figure 5 shows the results obtained with a city of 10x10 
blocks. We set the Korf’s algorithm for the police cars 
and then we change the algorithms for the thief car. 
Korf’s algorithm does not learn and may be used to 
compare thief success when using the learning 
techniques. As we may see in figure 5, the best results 
are obtained in average by the LA algorithm, followed 
by the Korf, SOM and the QL algorithms. This is even 
more interesting considering that the LA algorithm only 
uses less states and considers if there are police cars in a 
direction, but without determining their precise 
distance. We are still considering this curious result as 

we see how sometimes an excess of information can be 
a disadvange, and simple solutions are good enough for 
complex problems; (Korf, 1992; Gershenson, 2004) 
exemplify it. As it was expected (figure 5) the 
percentage of thief victories decreases when the number 
of police cars increases. 
 
We present in table 1 a comparison among the 3 
learning strategies. LA is clearly the winner in all cases, 
and on the other side, QL obtains the worst results. We 
point out that SOM is only used by the thief. 
 

Table 1:   % of thief victories among the learning 
strategies: LA, QL and SOM (used only by the thief) 

Thief 
Algorithm

Police 
Algorithm 

Police 
Cars 

% Thief 
Wins 

LA QL 2 81,4 
SOM QL 2 76,6 
SOM LA 2 59,4 
QL LA 2 48,2 
LA QL 4 77,2 

SOM QL 4 46,8 
SOM LA 4 34,2 
QL LA 4 20,4 
LA QL 6 60,2 

SOM QL 6 29 
SOM LA 6 18,2 
QL LA 6 10,4 

 
 
CONCLUSIONS AND FUTURE WORK 
 
In this paper we have presented SinCity, a simulating 
testbed that has been created to obtain a highly flexible 
and efficient testbed for MAS. SimCity has been 
developed in NetLogo and it can be considered as a 
more complex version of the predator-prey pursuit 
problem. In our case, we model a police/thief pursuit in 
an urban grid environment where other elements (cars, 
traffic lights, etc.) may interact with the agents in the 
simulation. SinCity allows to model, in a graphical 
friendly environment, different learning strategies for 
both, the police or the thief.   
 
The main contributions of the paper are a graphic city 
simulator in NetLogo (distributed as open source), 
which serves as a testbed for simulating multi-agent 
learning strategies. We also present the results of the 
simulations performed. 
 
As future work we plan to extend the model of the 
traffic in the city and to allow more complex 
interactions among the normal traffic and the police-
thief cars. We also plan to implement more complex 
learning techniques and consider evolutionary 
programming techniques for generating the agents 
decision rules. 



 

 

REFERENCES 
 
Benda M., Jagannathan, V. and Dodhiawalla, R. 1985. On 
Optimal Cooperation of Knowledge Sources, Technical 
Report BCS-G2010-28, Boeing AI Center. 
 
Chainbi, W., Hanachi, C. and Sibertin-Blanc, C. 1996. The 
Multi-agent Prey-Predator problem: A Petri net solution. In 
Proceedings of the IMACS-IEEE-SMC conference on 
Computational Engineering in Systems Application 
(CESA’96), Lille, France, 692–697. 
 
Gershenson, C. 2004. Self-organizing traffic lights. Complex 
Systems 16, No 29. 
 
Haynes T. and Sen. S. 1995. Evolving behavioral strategies in 
predators and prey. In Sandip Sen, editor, IJCAI-95 Workshop 
on Adaptation and Learning in Multi-agent Systems, 
Montreal, Quebec, Canada, 20-25 Morgan Kaufmann, 32–37. 
 
Jim, K. and Giles, C.L. 2000. Talking helps: Evolving 
communicating agents for the predator-prey pursuit problem. 
Artificial Life 6, No 3, 237–254 
 
Kaelbling, L.P., Littman, M.L., Moore A.W. 1996. 
Reinforcement Learning: A Survey. Journal of Artificial 
Intelligence Research 4, 237–285 
 
Katayama, K. Koshiishi, T. and Narihisa, H. 2005. 
Reinforcement learning agents with primary knowledge 
designed by analytic hierarchy process. In SAC ’05: 
Proceedings of the 2005 ACM symposium on Applied 
computing , New York, NY, USA, 14–21 
 
Kohonen, T. 2001. Self-Organizing Maps. Third, extended 
edition. Springer. 
 
Korf, R.E. 1992. A simple solution to pursuit games. In 
Proceedings of the 11th International Workshop on 
Distributed Artificial Intelligence. Glen Arbor, MI. 
 
Narendra, K., and Thathachar, M. 1989. Learning Automata: 
An Introduction. Prentice-Hall, Englewood Cliffs, NJ. 
 
RoboCup 2006. Robot Soccer World Cup X. Lakemeyer, G., 
Sklar, E., Sorrenti, D.G., Takahashi, T. (Eds.). Vol. Springer-
Verlag 4434. 
 
Wiering, M., Vreeken, J., van Veenen, J.,  and Koopman, A. 
2004. Simulation and optimization of traffic in a city. IEEE 
Intelligent Vehicles Symposium, 453–458. 
 
Wilensky, U. 2005. NetLogo Traffic Grid model. Web site: 
http://ccl.northwestern.edu/netlogo/models/TrafficGrid 
 
Wilensky, U. 2007. NetLogo: Center for connected learning 
and computer-based modeling, Northwestern University. 
Evanston, IL. Web site: http://ccl.northwestern.edu/netlogo 
 
Wooldridge, M. and Jennings, N. R. 1995. Intelligent agents: 
Theory and practice. Knowledge Engineering Review, 10, No. 
2, 115–152. 
 
Wooldridge, M. 2002. An Introduction to multi-agent systems. 
John Wiley and Sons, Ltd., London. 
 

AUTHOR BIOGRAPHIES 

ANA M. PELETEIRO-RAMALLO is 
presently finishing her M.Sc. Thesis in 
Telecommunication Engineering at the 
University of Vigo, Spain. She currently 
has a grant to serve as assistant 

researcher in the Department of Telematic Engineering 
in the University of Vigo, Spain. Her research interests 
include autonomous agents and multi-agent systems. 
Her e-mail is: Ana.Peleteiro@det.uvigo.es 
 

JUAN C. BURGUILLO-RIAL 
received the M.Sc. degree in 
Telecommunication Engineering in 
1995, and the Ph.D. degree in Telematics 
(cum laude) in 2001; both at the 
University of Vigo, Spain. He is 

currently an associate professor at the Department of 
Telematic Engineering at the same university. He has 
participated in several R&D projects in the areas of 
Telecommunications and Software Engineering, and has 
published more than one hundred papers in journals and 
conference proceedings. His research interests include 
autonomous agents and multi-agent systems, distributed 
optimization and telematic services. His e-mail address 
is: J.C.Burguillo@det.uvigo.es and his Web-
page is at: http://www.det.uvigo.es/~jrial 
 

PEDRO RODRÍGUEZ-HERNÁNDEZ 
received the M.Sc. degree in 1989 from 
Polytechnic University of Madrid, Spain, 
received the PhD degree (cum laude) 

from University of Vigo, Spain, in 1998. He is currently 
an associate professor at the Department of Telematic 
Engineering at University of Vigo. He has written 
several papers in international journals and conferences. 
He has participated in diverse R&D projects in the areas 
of Telecommunications and Software Engineering. His 
research interests include intelligent agents, distributed 
optimization, real-time and embedded systems. His e-
mail address is: pedro@det.uvigo.es and his Web-
page: http://www-gti.det.uvigo.es/~pedro 
 

ENRIQUE COSTA-MONTENEGRO 
received the M.Sc. degree in 2000 and the 
Ph.D. degree (cum laude) in 2007 from 
the University of Vigo, Spain; both in 
Telecommunication Engineering. He is 

assistant professor at the Department of Telematic 
Engineering, at the University of Vigo, Spain. His 
research interests include wireless networks, car to car 
communication technologies, multi-agent systems and 
peer-to-peer systems. He is author of several articles in 
international journals and conferences and has 
participated in several R&D projects in these areas. His 
e-mail address is: kike@det.uvigo.es and his Web-
page: http://www-gti.det.uvigo.es/~kike 

 

 

 


