

SINCITY: A PEDAGOGICAL TESTBED FOR CHECKING
MULTI-AGENT LEARNING TECHNIQUES

A.M. Peleteiro-Ramallo, J.C. Burguillo-Rial, P.S. Rodríguez-Hernández, E. Costa-Montenegro

Department of Telematic Engineering
University of Vigo
36310, Vigo, Spain

E-mail: jrial@det.uvigo.es

KEYWORDS
Multi-agent learning, urban traffic models, NetLogo.

ABSTRACT

In this paper we present SinCity, a pedagogical testbed
to compare multi-agent learning strategies. SinCity has
been developed in NetLogo and it can be considered as
an extension of the simple predator-prey pursuit
problem. In our case, we model a police/thief pursuit in
an urban grid environment where several elements
(cars, traffic lights, etc.) may interact with the agents in
the simulation. SinCity allows to model, in a graphical
friendly environment, different strategies for both, the
Police and the thief, also implying coordination and
communication among the agent set. SinCity is oriented
mainly as a pedagogical testbed for learning techniques.
The main contributions of the paper are a graphical
simulating environment in NetLogo (distributed as open
source), a pedagogical testbed for simulating multi-
agent learning strategies, and the results concerning the
simulations performed.

INTRODUCTION

The predator-prey pursuit problem (Benda et al. 1985)
is one of the first and well-known testbed for learning
strategies in multi-agent systems. Basically it consists in
a set of agents, named predators, that aim to surround
another agent, named prey, that must escape from them.
This problem has been addressed many times by the AI
Community. Initially, (Korf 1992) proposed a solution
without multi-agent communication. A great number of
alternatives have emerged since Korf’s one, involving
genetic programming (Haynes and Sen, 1995), Petri
nets (Chainbi et al. 1996), reinforcement learning (Tan
1997), blackboard architectures (Jim and Giles, 2000),
profit sharing (Katayama et al. 2005), and many more.

Many other learning simulations have appeared in
multiple domains (social sciences, economy, biology, e-
commerce, etc.) and with much more complex
scenarios. Presently one of the most popular ones are
the Robocop Simulation Leagues for Soccer and Rescue
(Robocop 2006). The simulators and techniques used
for these two competitions are brand new approaches
but usually very complex to be managed as a

pedagogical testbed for comparison of new learning
techniques.

In this paper we propose a simulator named SinCity,
modeling a city, and a new pursuit problem, which is a
more complex version of the predator-prey. SinCity is
developed in an open source, simple, popular and user
friendly environment (Netlogo) that may be used as a
testbed for checking multiple multi-agent learning
techniques.

The rest of the paper is organized as follows. First we
introduce multi-agent systems and the Netlogo
environment for multi-agent simulation. Then we
describe the simulation scenario developed. Next, we
introduce our police-thief pursuit model. In next section
we describe the learning techniques used in our
simulations and the results we have obtained. Finally,
we present the conclusions and future research work.

MAS AND NETLOGO

In this section we introduce Multi-agent Systems
(MAS) and Netlogo, which are the basic elements used
to build the SinCity simulator.

Multi-agent Systems

Before introducing Multi-agent Systems (MAS), we
need to define what we understand by an agent.
Unfortunately, there is no general agreement in the
research community about what an agent is. Therefore
we cite a general description (Wooldridge and Jennings,
1995), and according to it, the term agent refers to a
hardware or (more usually) software-based computer
system characterized by the well-known properties:
autonomy, social ability, reactivity, and pro-activeness.
There are some other attributes that can be present, but
usually they are not considered as a requisite: mobility,
veracity, benevolence, rationality and adaptability (or
learning); see (Wooldridge 2002) for more details. A
system consisting of an interacting group of agents is
called a Multi-agent System (MAS), and the
corresponding subfield of Artificial Intelligence (AI)
that deals with principles and design of MAS is called
Distributed AI.

Proceedings 23rd European Conference on Modelling and
Simulation ©ECMS Javier Otamendi, Andrzej Bargiela,
José Luis Montes, Luis Miguel Doncel Pedrera (Editors)
ISBN: 978-0-9553018-8-9 / ISBN: 978-0-9553018-9-6 (CD)

Netlogo

We implemented our city model using NetLogo
(Wilensky 2007), a multi-agent modeling environment
for simulating natural and social phenomena. It is
particularly well suited for modeling complex systems
that evolve. Modelers can give instructions to hundreds
of agents operating independently. This makes possible
to explore the connection between the micro-level
behavior of individuals and the macro-level patterns
that emerge from the interaction of many individuals.

NetLogo is an easy-to-use development environment. It
allows to launch simulations and play with them by
exploring their behavior under various conditions.
Custom models can be created easily for quick tests of
hypotheses about self-organized systems.

NetLogo has extensive documentation and tutorials. It
also comes with a Models Library, which is a large
collection of pre-written simulations that can be used
and modified. These simulations address many areas in
natural and social sciences, including biology and
medicine, physics and chemistry, mathematics and
computer science, and economics and social
psychology.

NetLogo is a 2D world made of agents that
simultaneously carry out their own activity. There are
three types of agents:
• Patches: stationary agents that make up the

background or “world”. They have integer
coordinates.

• Turtles: mobile agents that move around on top of
the patches, not necessarily in the center, so they
have decimal coordinates and orientation.

• The observer: oversees everything going on in the
world. It can create new turtles and has read/write
access to all the agents and variables.

An agentset can be created using a subset of the agents.
There is also the possibility to create breed, a “natural”
agentset of turtles, which come with automatically
derived primitives.

NetLogo uses a simple scripting language to define the
systems, and it also has a user-friendly graphical
interface to interact with the system. The graphical
interface consists of three elements:
• Controls: they allow to run and control the flow of

execution. There are two types: buttons and
command center. The buttons are used to initialize,
start, or stop the model, and step through it. They
can be either “once”, which execute one action (a
piece of code) or “forever”, which repeat the same
action (the same piece of code) until pressed again.
The command center allows to ask observer,
patches or turtles to execute specific commands “on
the fly”, while the model is running, so it is

possible observe how these modifications alter the
model.

• Settings: they allow to modify parameters. There
are sliders (to set a quantity from a minimum to
maximum by incremental steps), switches (to set a
boolean variable true or false) and choosers (to
select a value from a list).

• Views: they allow to display information. There are
monitors (to display the current value of variables),
plots (to display the history of a variable in a
graphic), output text areas (text log information)
and graphics window (main view of the 2D
NetLogo world).

As common programming languages, NetLogo has
variables, i.e., value containers. There are global
variables (a single value for the variable that every
agent can access it), turtle and patch variables (each
turtle/patch has its own value for every turtle/patch
variable), local variables (defined and accessible only
inside a procedure) and built-in variables (already
defined in NetLogo for turtles and patches).

To model the behavior of the agents, NetLogo has
different procedures: commands (actions for the agents
to carry out, i.e. “void” functions), reporters (to report a
result value, i.e. functions with return type), primitives
(built-in commands or reporters, i.e. language
keywords), procedures (user-made custom commands
or reporters) and “ask” (to specify commands to be run
in parallel by a set of turtles or patches).

CITY MODEL

Previous models

The first approach to traffic models, which is included
in the NetLogo distribution, is Traffic Basic (Wiering et
al. 2004) (figure 1). It models the movement of cars on
a highway. Each car follows a simple set of rules: it
slows down (decelerates) if it sees a close car ahead,
and it speeds up (accelerates) if it does not see a car
ahead. It demonstrates how traffic jams can form even
without any “centralized cause”.

Figure 1: Traffic Basic Model

Using the movement of the cars in the previous model,
a small city with traffic lights is modeled in Traffic Grid
(Wilensky 2005) (figure 2, left), also included in the
NetLogo distribution. It consists of an abstract traffic
grid with intersections between cyclic single-lane
arteries of two types: vertical or horizontal. It is possible
to control traffic lights, speed limit and the number of
cars, creating a real-time traffic simulation. This allows

the user to explore traffic dynamics and develop
strategies to improve traffic and to understand the
different ways to measure the quality of the traffic.

Figure 2: Traffic Grid (left) and SOTL (right) Models

Using the Traffic Grid model as a starting point, a more
complex model is presented in (Gershenson 2004),
called Self-Organizing Traffic Lights. Cars flow in a
straight line, eastbound or southbound by default. Each
crossroad has traffic lights that only allow traffic flow
in one of the arteries that intersect it with a green light.
Yellow or red lights stop the traffic.

The light sequence for a given artery is green-yellow-
red-green. Cars simply try to drive at a maximum speed
of a “patch” per time step, but they stop when a car or a
red or yellow light is in front of them. Time is discrete,
but space is continuous. A “patch” is a square of the
environment with the size of a car. The environment is
shown in figure 2 (right). The user can change different
parameters, such as the number of arteries or cars.

Different statistics are shown: the number of stopped
cars, their average speed, and their average waiting
times. In this scenario, the author presents three self-
organizing methods for traffic light control
outperforming traditional ones, since the agents are
“aware” of changes in their environment, and therefore
they can adapt to new situations.

City Model Improvements

Our model is a more realistic city scenario, as we will
explain in this section. To model the 2D scenario,
different agentsets for the patches are used. The main
ones are:
• intersections: agentset containing the patches that

are intersections of two roads.
• controllers: agentset containing the intersections

that control traffic lights. Only one patch per
intersection.

• roads: agentset containing the patches that are
roads. The rest of the patches are buildings. There
will be four sub-agentsets, depending if the road is
southbound, northbound, eastbound or westbound.

• exits: agentset containing the patches where cars
will go when leaving the simulation.

• gates: agentset containing the patches where cars
will sprout from.

Given the previous model of the traffic in a city,
described in [10], we have made some improvements to
represent a more realistic scenario. In the previous
model, the roads have a single lane and direction, and
there are only two directions by default, south and east,
although they can be changed to four, by adding north
and west. A car only changes road or direction
depending on a probability prob-turn, which means that
the cars move at random. Also, in the previous model a
torus was used by default, which means that when a
given car coming from the west to the east arrives to the
end of the scenario at the east, the same car will appear
at the beginning of the scenario at the west.
To increase realism, we remove the torus and impose
four directions (north, east, south and west), and we are
able to shape traffic thanks to sliders vertical,
southbound and eastbound. Also, a by-pass road is
created to improve traffic, which is the outermost in the
scenario.

We have also changed the car creation and elimination
scheme. Now, for every car, we define a source (a
random road patch) and a destination (another random
road patch), such that every car is created at a source,
and it moves (following the shortest path) to its
destination, where it is eliminated. The sources and
destinations may be outside the world, depending on the
value of the sliders origin-out and destination-out,
leading to some cars appearing and disappearing at the
borders of the world.

We have added the possibility of bidirectional roads,
which are controlled with slider bidirectional, and roads
with two lanes in the same direction, controlled with
slider 2-lane.

We have modified all the control methods so that,
instead of just one yellow light cycle, now there are as
many yellow light cycles as patches in the intersection,
i.e. if the traffic light protects a bidirectional road, with
two lanes in each direction, there will be four yellow
lights cycles. In order to try to correct deadlocks at the
intersections, a deadlock algorithm has been
implemented. If a given car at an intersection after a
given time has not moved, it tries to change direction in
order to keep moving and to try to exit the deadlock.
This movement could affect other cars and help
finishing the current deadlock.

Figure 3: The SinCity Model

Due to all these improvements, specially the possibility
of an origin and a destination and bidirectional roads, a
complex algorithm to guide the cars is needed.
Whenever a car is in a patch that is an intersection (it
belongs simultaneously to a horizontal and a vertical
road), it runs the guiding algorithm in order to know if a
change of direction is necessary, before moving on. If
not, the car will keep the same direction, at least until
the next intersection.

As seen in figure 3, with these changes we obtain a
more realistic scenario where we can notice the
different widths of the streets, depending if they are
bidirectional and single or dual lane streets. We can also
see the distribution of the traffic lights, and the by-pass
road surrounding the city.

THE SINCITY PURSUIT MODEL

Our SinCity simulation is an extension of the predator-
prey pursuit problem, where the prey is substituted by a
thief car and the predators by a set of police cars.

On every challenge, the thief car starts driving at normal
speed to a city bank. It stops in front of the bank, does
the theft and getaway to its hideout at double speed. On
the other hand, police cars patrol the city before the
theft is done. When the thief car robs the bank an alarm
is triggered, and police cars double their speed and
patrol along the city trying to identify the thief’s car.

The chase begins when any police sees the thief, before
it arrives to its hideout, in the same road and at a
distance of two blocks or less. On the one hand, if the
thief’s car is seen, then all police cars know its position.
On the other hand, if it is lost, we keep the point where
the thief was last seen. If any police car arrives to that
point but the thief car is not in sight, then the chase
stops, prevent the others to go to that place and the
patrol continues.

We consider that the thief is captured if it is surrounded
by police in a road (two police cars) or in an
intersection (4 police cars). We consider that the thief
escapes when it reaches its hideout and enters into it
without to be seen by any police car. Besides, there are
more cars in the city that cause thief or police cars to
reduce their speed in the prosecution, from double to a
normal one, if they are in front of the car.

Figure 3 shows a snapshot of the SinCity map and data
with the thief car is highlighted. The bank is marked in
red at the upper right and the hideout is marked in green
at the center. At every challenge the position of the
bank and hideout changes but they must have a distance
greater than the 25% of the map size. At the bottom and
the right of the map we can see a graphic display, some
outputs related with the simulation, and also configure
several parameters; related with the algorithms
explained in next sections.

ALGORITHMS AND LEARNING TECHNIQUES
In this section we describe the learning techniques
implemented in the SinCity simulator to compare their
results. We have implemented the non-learning Korf’s
Algorithm, a self-organizing neural network (SOM) and
two reinforcement learning algorithms: Learning
Automata and Q-Learning. All these techniques are
described next.

Korf’s Algorithm
(Korf 1992) approach was to use a fitness function that
combined two forces: each predator was ”attracted” by
the prey and ”repelled” from the closest other predator.
This solution kept predators away from other predators
while they got closer to the prey; the idea was to chase
the prey arranging predators in an stretching circle. Korf
concluded that the pursuit domain was easily solved
with local greedy heuristics.

Self-Organizing Maps Algorithm
A Self-Organizing Map (SOM) (Kohonen 2001) is a
type of artificial neural network that is trained using
unsupervised learning to produce a low-dimensional
(typically two dimensional), discretized representation
of the input space of the training samples, called a map.
We use the formula:

Wn(t + 1) = Wn(t) + Θ (t) . α(t) . (I(t) - Wn(t))

where α(t) is a monotonically decreasing learning
coefficient and I(t) is the input vector. The
neighborhood function Θ(t) depends on the lattice
distance between the winner neuron and neuron v.

Learning Automata Algorithm
The Learning Automata (Narendra and Thathachar,
1989) is a type of reinforcement learning algorithm that
uses two very simple rules:

P (s,a) = P(s,a) + α . (1 – P(s,a)) (1)
P (s,b) = (1 – α) . P (s,b) (2)

In these equations (α) is a small learning factor. If case
of success, rule (1) is used to increase the probability of
action (a) in state (s), while rule (2) is used to decrease
the probability of the rest of actions.

Q-Learning Algorithm
The Q-Learning algorithm is another type of
reinforcement learning algorithm (Kaelbling et al.
1996), which works with the well-known formula:

Q(s,a) = Q(s,a) + α (R(s) + γ max b Q(s’,b) – Q(s,a))

Where (s) is the previous state, (s’) the next state, (a)
the action previous chosen, (α) the learning factor,
(R(s)) the reinforcement, (γ) the discount factor, Q(s,a)
is the value of Q for the present state and action chosen,
and Q(s’,b) for the next state (s’) and action b.

SIMULATION RESULTS
In this section we present our simulation conditions and
results. The simulations have been performed on a
superserver with 8 processors Intel(R) Xeon(R) CPU
X5460 at 3.16GHz and with 6 MB of cache memory per
processor taking less than an hour for the whole set. We
use a 65% of bidireccional roads and we generate a new
city for every challenge.

For implementing the learning techniques described in
the previous section we took several decisions. First,
police cars and the thief car take decisions about what
road to take only at every intersection. This reduces the
number of states and speed up the simulations.

The thief has two different learning systems. The first is
used to go from its particular location to the hideout
when there is no police car at sight. The other learning
system is used in the chase to escape from the police.
The police car only have one learning system which is
used to go from its present location to a destination, for
instance, to pursue the thief during the chase.

For the LA and QL techniques, when going to a
destination, the input for every learning system
considers the possible configurations of the road
intersection (16 – 1 = 15 posibilities, as one has all
roads blocked) depending if a certain road is blocked or
not. We also consider the 8 possible locations of the
destination point around the car. Therefore we have 8 x
15 = 120 input states for LA and QL.

In the thief case, using LA and during the chase, we
consider only what is the closest police car. Therefore
we have 4 inputs x 15 possible road intersections = 60
input states. For the QL case, we consider the discrete
distance in blocks (0, 1 or 2) of every police car when
they are closer than two blocks. Then we have 81 inputs
x 15 road intersections = 1215 states. Finally, the SOM
neural network is only used by the thief during the
chase. First we identify the type of intersection we have
(15 possibilities) and for each one we set a SOM with 4
real valued inputs (the 4 directions) with a number
describing the exact distance to a police car (if anyone if
less than 2 blocks, or zero if there is no one). We used a
lattice of 16 x 16 = 256 neurons. Therefore, we have
256 x 15 = 3840 neurons with 4 inputs each one. The
output of every neuron is one of the four possible roads
to take and it is based in a probability distribution of
those possible exits, and trained as the LA case.

The learning parameters we used in the simulations are:
α=0.1 for the LA, QL and the probability distribution of
every neuron in the SOM. Besides, in QL we set
R(s)=±0.25 and γ=0.2. Finally, for the SOM case we
have �(t)= 1 / (1 + 0.01*t) and Θ (t) = �(t)= 1 / (1 +
0.01*t), where t is the learning iteration. Of course, as
there are several SOMs, each one has its own �(t) and
�(t) parameters.

Figure 4: % of thief victories using LA (2 police cars)

Figure 4 shows the evolution of the absolute percentage
of thief victories along 1800 challenges in a city of 5x5
blocks; with the thief using the LA technique. We see
how it starts low and it grows as soon as the automata
learns the best options in every situation. After 1000
challenges, this percentage remains stable around 28%.

Now we compare the results using the learning
techniques in a run. A run (set of challenges) stops
when the average standard deviation of the thief wins in
last 500 challenges is lower than a 3%, provided than at
least 1000 challenges have taken place.

Figure 5: 10x10 map results with Police using Korf

Figure 5 shows the results obtained with a city of 10x10
blocks. We set the Korf’s algorithm for the police cars
and then we change the algorithms for the thief car.
Korf’s algorithm does not learn and may be used to
compare thief success when using the learning
techniques. As we may see in figure 5, the best results
are obtained in average by the LA algorithm, followed
by the Korf, SOM and the QL algorithms. This is even
more interesting considering that the LA algorithm only
uses less states and considers if there are police cars in a
direction, but without determining their precise
distance. We are still considering this curious result as

we see how sometimes an excess of information can be
a disadvange, and simple solutions are good enough for
complex problems; (Korf, 1992; Gershenson, 2004)
exemplify it. As it was expected (figure 5) the
percentage of thief victories decreases when the number
of police cars increases.

We present in table 1 a comparison among the 3
learning strategies. LA is clearly the winner in all cases,
and on the other side, QL obtains the worst results. We
point out that SOM is only used by the thief.

Table 1: % of thief victories among the learning
strategies: LA, QL and SOM (used only by the thief)

Thief
Algorithm

Police
Algorithm

Police
Cars

% Thief
Wins

LA QL 2 81,4
SOM QL 2 76,6
SOM LA 2 59,4
QL LA 2 48,2
LA QL 4 77,2

SOM QL 4 46,8
SOM LA 4 34,2
QL LA 4 20,4
LA QL 6 60,2

SOM QL 6 29
SOM LA 6 18,2
QL LA 6 10,4

CONCLUSIONS AND FUTURE WORK

In this paper we have presented SinCity, a simulating
testbed that has been created to obtain a highly flexible
and efficient testbed for MAS. SimCity has been
developed in NetLogo and it can be considered as a
more complex version of the predator-prey pursuit
problem. In our case, we model a police/thief pursuit in
an urban grid environment where other elements (cars,
traffic lights, etc.) may interact with the agents in the
simulation. SinCity allows to model, in a graphical
friendly environment, different learning strategies for
both, the police or the thief.

The main contributions of the paper are a graphic city
simulator in NetLogo (distributed as open source),
which serves as a testbed for simulating multi-agent
learning strategies. We also present the results of the
simulations performed.

As future work we plan to extend the model of the
traffic in the city and to allow more complex
interactions among the normal traffic and the police-
thief cars. We also plan to implement more complex
learning techniques and consider evolutionary
programming techniques for generating the agents
decision rules.

REFERENCES

Benda M., Jagannathan, V. and Dodhiawalla, R. 1985. On
Optimal Cooperation of Knowledge Sources, Technical
Report BCS-G2010-28, Boeing AI Center.

Chainbi, W., Hanachi, C. and Sibertin-Blanc, C. 1996. The
Multi-agent Prey-Predator problem: A Petri net solution. In
Proceedings of the IMACS-IEEE-SMC conference on
Computational Engineering in Systems Application
(CESA’96), Lille, France, 692–697.

Gershenson, C. 2004. Self-organizing traffic lights. Complex
Systems 16, No 29.

Haynes T. and Sen. S. 1995. Evolving behavioral strategies in
predators and prey. In Sandip Sen, editor, IJCAI-95 Workshop
on Adaptation and Learning in Multi-agent Systems,
Montreal, Quebec, Canada, 20-25 Morgan Kaufmann, 32–37.

Jim, K. and Giles, C.L. 2000. Talking helps: Evolving
communicating agents for the predator-prey pursuit problem.
Artificial Life 6, No 3, 237–254

Kaelbling, L.P., Littman, M.L., Moore A.W. 1996.
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research 4, 237–285

Katayama, K. Koshiishi, T. and Narihisa, H. 2005.
Reinforcement learning agents with primary knowledge
designed by analytic hierarchy process. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied
computing , New York, NY, USA, 14–21

Kohonen, T. 2001. Self-Organizing Maps. Third, extended
edition. Springer.

Korf, R.E. 1992. A simple solution to pursuit games. In
Proceedings of the 11th International Workshop on
Distributed Artificial Intelligence. Glen Arbor, MI.

Narendra, K., and Thathachar, M. 1989. Learning Automata:
An Introduction. Prentice-Hall, Englewood Cliffs, NJ.

RoboCup 2006. Robot Soccer World Cup X. Lakemeyer, G.,
Sklar, E., Sorrenti, D.G., Takahashi, T. (Eds.). Vol. Springer-
Verlag 4434.

Wiering, M., Vreeken, J., van Veenen, J., and Koopman, A.
2004. Simulation and optimization of traffic in a city. IEEE
Intelligent Vehicles Symposium, 453–458.

Wilensky, U. 2005. NetLogo Traffic Grid model. Web site:
http://ccl.northwestern.edu/netlogo/models/TrafficGrid

Wilensky, U. 2007. NetLogo: Center for connected learning
and computer-based modeling, Northwestern University.
Evanston, IL. Web site: http://ccl.northwestern.edu/netlogo

Wooldridge, M. and Jennings, N. R. 1995. Intelligent agents:
Theory and practice. Knowledge Engineering Review, 10, No.
2, 115–152.

Wooldridge, M. 2002. An Introduction to multi-agent systems.
John Wiley and Sons, Ltd., London.

AUTHOR BIOGRAPHIES

ANA M. PELETEIRO-RAMALLO is
presently finishing her M.Sc. Thesis in
Telecommunication Engineering at the
University of Vigo, Spain. She currently
has a grant to serve as assistant

researcher in the Department of Telematic Engineering
in the University of Vigo, Spain. Her research interests
include autonomous agents and multi-agent systems.
Her e-mail is: Ana.Peleteiro@det.uvigo.es

JUAN C. BURGUILLO-RIAL
received the M.Sc. degree in
Telecommunication Engineering in
1995, and the Ph.D. degree in Telematics
(cum laude) in 2001; both at the
University of Vigo, Spain. He is

currently an associate professor at the Department of
Telematic Engineering at the same university. He has
participated in several R&D projects in the areas of
Telecommunications and Software Engineering, and has
published more than one hundred papers in journals and
conference proceedings. His research interests include
autonomous agents and multi-agent systems, distributed
optimization and telematic services. His e-mail address
is: J.C.Burguillo@det.uvigo.es and his Web-
page is at: http://www.det.uvigo.es/~jrial

PEDRO RODRÍGUEZ-HERNÁNDEZ
received the M.Sc. degree in 1989 from
Polytechnic University of Madrid, Spain,
received the PhD degree (cum laude)

from University of Vigo, Spain, in 1998. He is currently
an associate professor at the Department of Telematic
Engineering at University of Vigo. He has written
several papers in international journals and conferences.
He has participated in diverse R&D projects in the areas
of Telecommunications and Software Engineering. His
research interests include intelligent agents, distributed
optimization, real-time and embedded systems. His e-
mail address is: pedro@det.uvigo.es and his Web-
page: http://www-gti.det.uvigo.es/~pedro

ENRIQUE COSTA-MONTENEGRO
received the M.Sc. degree in 2000 and the
Ph.D. degree (cum laude) in 2007 from
the University of Vigo, Spain; both in
Telecommunication Engineering. He is

assistant professor at the Department of Telematic
Engineering, at the University of Vigo, Spain. His
research interests include wireless networks, car to car
communication technologies, multi-agent systems and
peer-to-peer systems. He is author of several articles in
international journals and conferences and has
participated in several R&D projects in these areas. His
e-mail address is: kike@det.uvigo.es and his Web-
page: http://www-gti.det.uvigo.es/~kike

