
A DOMAIN-SPECIFIC LANGUAGE FOR SIMULATION COMPOSITION

Steffen Schütte
OFFIS – Institute for Information Technology

Escherweg 2
26121 Oldenburg, Germany

Email: steffen.schuette@offis.de

KEYWORDS
DSL SmartGrid Simulation Composition Scenario Xtext

ABSTRACT
The SmartGrid, the power grid of the future, is com-
prised of a large number of distributed, partially con-
trollable energy consumers and producers that need to
be matched to ensure that generation and consumption
is balanced. Modelling & Simulation is a powerful
approach for analysing and testing such complex sys-
tems. In this paper a scenario specification based on a
domain-specific language (DSL) is presented which can
be used to formally describe simulations and scenarios
using these simulations. This formal description, in com-
bination with a simulation framework that is able to in-
terpret the description, allows the automatic composi-
tion of the simulations.The DSL has been tested with a
lightweight simulation framework developed for a cur-
rent project that analyses the impact of electric vehicles
on the distribution grid. Although this work focuses on
the domain of SmartGrids, the DSL-based approach can
of course also be applied to other domains.

INTRODUCTION
Modelling & Simulation is a powerful approach for
analysing and testing complex systems such as the
SmartGrid – the power grid of the future. In the Smart-
Grid a large amount of distributed energy resources
(DER), such as highly efficient heat and power plants,
wind turbines or photovoltaic modules as well as con-
trollable consumers need to be coordinated to ensure that
generation and consumption are balanced at any time.
This is a challenging task due to the number and restric-
tions of the involved components. Control strategies for
this complex and new task still need to be developed and
in particular evaluated and tested.
In literature different approaches for simulating such
SmartGrid scenarios comprised of markets, distributed
energy resources and controllable consumers are pre-
sented by (Karnouskos and De Holanda, 2009), (Wider-
gren et al., 2004) and others. Whichever approach one
chooses, the scenarios that are to be simulated need to be
defined in some formal way if the overall simulation shall
be composed and parametrised automatically from avail-
able components/models. In this paper a formal scenario

and simulation specification based on a domain-specific
language (DSL) is presented. This approach has been
developed in combination with a small, lightweight sim-
ulation framework that has been developed for the Grid-
Surfer project (BMWi, 2010). In this project, OFFIS de-
velops and evaluates control strategies for electric vehi-
cles (EVs) in combination with other DER, such as pho-
tovoltaic modules. Although this work focuses on the
domain of SmartGrids, the DSL-based approach can of
course also be applied to other domains.

RELATED WORK

Different approaches for simulations in the field of
SmartGrids already exist, e.g. (Widergren et al., 2004),
(Karnouskos and De Holanda, 2009). None of these,
however, describe in detail how to specify the scenarios
which are a major input for the simulation. Those who
do, give a brief description of some kind of XML con-
figuration. This paper wants to show a straight-forward,
alternative approach for a formal description of simula-
tion scenarios using a DSL that is easy to understand,
even to non IT experts.
The presented approach has been developed to meet
the simulation needs of the GridSurfer project and is
not directly based on a solution presented in literature.
The simulation of markets as described by (Widergren
et al., 2004) is not part of the GridSurfer project and
the agent-based approach described by (Karnouskos and
De Holanda, 2009) was considered unnecessarily com-
plex for the requirements of the project.
Besides the domain-specific approaches described above,
there are other approaches that can be found in literature
which are domain independent and could be used as well,
such as (Moradi, 2008) or (Benali and Ben Saoud, 2010).
Again, these were considered too complex as the focus of
these works is placed on how to match the simulation re-
quirements with a large number of components from a
component repository. In the GridSurfer project just a
hand full of simulation models needs to be used in dif-
ferent configurations and combinations so that referring
to concrete simulation models from within the scenario
specification is sufficient. Thus, the matching problem
does not occur. Nevertheless, an easy to understand and
consistent specification of the different scenarios should
be possible.
The approach presented in this paper has been inspired

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

by the works of (Prasanna et al., 2005) that in turn are
based on the approach of Model-Integrated Computing
(MIC) by (Sztipanovits and Karsai, 1997) as described
later. As this approach is based on the creation of a
domain-specific modelling environment, the project do-
main is introduced first.

The Project Domain
The simulation environment that has been developed for
the GridSUrfer project had to provide enough flexibility
to simulate the different scenarios required for the project
evaluation. To meet these requirements the scope of the
environment and the scenario modelling approach pre-
sented in this paper have been limited to the domain of
SmartGrids and in particular to the domain elements that
were required for the GridSurfer simulation. There are
three major types of domain elements (in our case simu-
lation models) that were identified:

• Control algorithms (monitoring the state of the grid
and/or the resources and controlling the resources if
possible)

• Distributed energy resources (DER)

• The power grid (connecting the DER)

Figure 1 illustrates these elements and their relations
as they can occur in a real SmartGrid.

Controller

Resources

Power grid

Figure 1: Types of SmartGrid elements and considered
relations

The DER are represented by simulation models
developed for the GridSurfer project or reused from
earlier projects. The power grid is represented by a
simulation model which has been implemented using
the open-source power-flow analysis Pylon (Lincoln,
2009). The control algorithms and the integration to
the simulation framework are currently being developed
and not within the scope of this paper. While other
approaches for simulation composition try to achieve
arbitrary model couplings, a specific characteristic of the
project domain presented here is that the DER models
are only coupled via the power grid, as can be seen in
figure 1. However, this still allows the specification of a
large number of scenarios while keeping the complexity
low. In the future the DSL shall be extended to support
the specification of submodel relations (e.g. to use a

battery model as submodel for an electric vehicle model
or alone as stationary storage).
In the remainder of this paper, a simple scenario shall
serve as an example to illustrate the approach. This
scenario is shown in figure 2 and contains private homes
that are equipped with photovoltaic (PV) modules. The
homes and their PV modules are connected to different
points (A..D) in a small grid topology and the power
flow analysis shall be used to calculate the voltage and
load conditions at the different nodes of the network as
well as the overall load flow at the transformer.

Pylon

HomeSim

PVSim

3 2/8/2011

?

A B C D

Figure 2: Example of a simulation scenario

THE APPROACH

Model-Integrated Computing

The presented approach follows the three step process
of Model-Integrated Computing (MIC) (Sztipanovits and
Karsai, 1997). First, in the metalevel process, soft-
ware engineers formally specify and configure a domain-
specific environment which is automatically generated.
In a second step, this environment is used by domain en-
gineers to specify domain models. Finally, model inter-
preters synthesize executable programs from the domain
models or generate data structures for tools. Figure 3
shows these steps. In our case the interpreter generates
input for the simulation framework. Compared to other
model based approaches, such as Model-Driven-Design
(MDD), MIC models do not only capture the architecture
of the software but also it’s environment. Information
that is often more comprehensive and likely to change
than the models of the software itself (Sztipanovits and
Karsai, 1997).

This approach has been adopted because the creation
of a domain-specific modelling layer also allows people
without in-depth knowledge of the simulation framework
to use it for modelling their scenarios of interest. This is
in particular beneficial for students and other researchers
who want to use it to evaluate their works, for example
SmartGrid management strategies.

Metalevel process (Software engineers)

•Formal domain modeling

•Model interpreter specification

System development process (Domain engineers)

•Model specification

•Model validation

Usage of the final software

Figure 3: Model-Integrated Computing method accord-
ing to (Sztipanovits and Karsai, 1997)

Xtext
For our project Xtext (Eclipse Foundation, 2010b) was
chosen as implementation for both, metalevel and system
development process. Xtext has an active community
and is quite easy to learn. It has various advantages over
XML based solutions as (Efftinge and Zarnekow, 2010)
demonstrate. Compared to proprietary MIC Environ-
ments such as GME, Xtext is much more lightweight and
common as it is a component of the Eclipse Modelling
Framework and integrates with the Eclipse platform. It
allows easy and straight forward creation of own domain-
specific languages based on a simple EBNF-style gram-
mar. The definition of a DSL corresponds to the MIC
metamodelling level.
For the system development process Xtext automatically
generates a DSL specific editor as Eclipse plugin, which
can be used to define models using the DSL. This ed-
itor includes “the parser, the type-safe abstract syntax
tree (AST), the serializer and code formatter, the scoping
framework and the linking, compiler checks and static
analysis aka validation and last but not least a code gen-
erator or interpreter.” (Behrend et al., 2010) Figure 4 de-
picts our approach based on the three steps of the MIC
approach. The puzzle parts represent the different tech-
nological choices that were made. These parts could also
be implemented using other technologies.

Each metamodel has one or more corresponding in-
stances (models) on the system development level. In
other words, the metamodels define a domain specific
class structure which is instantiated by the simulationist
on the system development level, using the domain spe-
cific language editor that Xtext has generated. For being
able to automatically simulate different scenarios such as
the example shown in figure 2, three different metamod-
els had to be implemented.
The simulation metamodel allows to create formal de-
scriptions of the available simulations. These include the
definition of the simulation’s step size, its inputs and out-
puts and the available configuration parameters. To sum
up, simulation implementations can be described on the
system development level using a domain specific lan-
guage defined on the metalevel. Next, a metamodel for

Figure 4: MIC-based approach for SmartGrid simulation

scenario description has been defined. It allows the simu-
lationist to specify the number and properties of the sim-
ulation models to use within the simulation and in case of
DER models, how these are connected to the power grid.
Therefore the scenario metamodel contains references to
the simulation metamodel. This way, it can be made sure
that in the scenario description only those simulations
and parameters are used that are available. Finally, for
being able to specify to which nodes of the grid the sim-
ulated DERs shall be connected, the scenario metamodel
needs to have references to the metamodel of the power
grid topology. Currently, the resulting topology model is
just a plain list of nodes contained in the topology and not
further elaborated in this paper. It can be generated from
a CIM/XML (IEC, 2008) compatible topology descrip-
tion using a small Python script. In the next chapter all
metamodels are presented in detail and it will be shown
how the definition of the DSL using Xtext looks like.
For generating the input to the simulation framework
Xpand (Eclipse Foundation, 2010a) is used, a template-
based language for generating arbitrary files from EMF-
models, such as the Xtext models. In our case RDF/XML
files are generated, containing all relevant information of
the models and the scenario. This information is inter-
preted by the simulation framework and the simulation
implementations are instantiated and executed accord-
ingly.

METALEVEL PROCESS
During the metalevel process, the domain-specific mod-
elling environment that is to be generated needs to be
modelled in a formal way. The different metamodels that
have been briefly introduced above are now described in

more detail.

Simulation Metamodel
The simulation metamodel describes the simulations that
are to be composed and is shown in figure 5 as UML class
diagram. The metamodel used for the GridSurfer project
contains some more details that have been omitted here
as they are not required for understanding and presenting
the basic idea of the approach.

Listing 1: Definition of the simulation metamodel using
the Xtext-Grammar

enum Role:
DER| grid;

enum DataType:
int | string | float | boolean |

datetime;
enum Meaning:

PowerFlow;

Simulation:
’Simulation’ name=ID ’of ’role=Role
(isContinuous?=’is continous’|
(’has step size from ’minStepSize=INT

’to ’maxStepSize=INT ’minutes’))
(’has Parameters’
(simParameters+=SimParameter)*)?
’containing’ (models+=Model)*;

SimParameter:
name=ID’as ’type=DataType;

Model:
’Model’ name=ID ’with ’

multiplicity=(’one’|’1..*’) ’
instances’

’having’
(’Parameters’
(modelParameters+=Parameter)*)?
(’Inputs’

(inputs+=ModelData)*)?
(’Outputs’

(outputs+=ModelData)*)?;
ModelParameter:

name=ID’as ’type=DataType;
ModelData:

name=ID ’as ’type=DataType(’:’meaning=
Meaning)?;

The metamodel supports specification of continuous
simulations (such as the power flow calculation with Py-
lon) and event-discrete simulations as needed for cen-
tralised DER management approaches. In the latter case
the minimal and maximal step size can be specified. A
simulation can have a certain role according to the clas-
sification in figure 1. This is in particular useful for au-
tomatically determining the execution order of the simu-
lations as described below. Each simulation contains one
or more different models. Each model can have different
input and output data, e.g. the power drawn from the grid
or the battery state of an EV. Also, simulations and mod-

class ECMS2011_paper

ModelDataModel

- multiplicity: int
- name

Role

 grid
 DER

Simulation

- step_min: int
- step_max: int
- name
- isContinuous: bool

DataType

 int
 float
 string
 boolean
 datetime

SimulationParameter

- name: string
- type: DataType

Meaning

 PowerFlow

ModelParameter

- name: string
- type: DataType

+dataType

+dataType

has

0..*

has

output

0..*

has
0..*

input

0..*

1..*

+meaning 0..1

+dataType

Figure 5: Metamodel for simulation description

els can have configuration parameters. The datatypes are
to be specified for each of these elements. The in- and
output data can have an optional meaning, e.g. to let the
framework know which output of a DER model repre-
sents the generated power. For each model the possi-
ble multiplicity can be specified, e.g. how many models
(which represent real entities, such as an EV) can be sim-
ulated. In listing 1 the corresponding Xtext specification
for this metamodel is shown. The classes from the UML
diagram became Xtext entity definitions (e.g. ‘Simula-
tion:’). Aggregations are created by using the entity defi-
nitions and assigning them to a variable name. Enumera-
tions can explicitly be defined using the ‘enum’ keyword.
For mor information about the syntax see (Eclipse Foun-
dation, 2010b). Listing 2 shows how the PV simulation
of the example scenario is described using the domain-
specific language that Xtext has generated.

Listing 2: Excerpt of the PV-Simulation description in
the generated editor

Simulation PVSim of DER
has step size from 1 to 15 minutes
has Parameters
simulationStart as datetime
simulationEnd as datetime

containing Model Photovoltaic with 1..*
instances

having Parameters
PV_maxActivePower as float
PV_Angle as float
PV_IMPP as float
PV_UMPP as float

Outputs
generation as float:PowerFlow

Based on the meaning of the output data and the role
of the simulation model, the simulation framework can
create the dataflow. In our scenario (see figure 2), for
example, the DER simulations need to be stepped first to

!"#$$%&'$()*!'%+#*#,'-'*

./,)"#-/(0

!" #$%&'()*+"")*$
!" #$%&'(,-+"")*$
!" *,(%
!")#./*$)*0/0#+""1//2

1(2'"

!" (02$)&2)3)$4+"")*$
!" *,(%

./,)"#-/(0+#*#,'-'*

!" *,(%+""#$5)*6
!" $4&%+""7,$,84&%

+#*#,'-'*30$-#0!'

!" 9,20%

./,)"#-/(0+#*#,'-'*.'-

!" *,(%

1(2'"+#*#,'-'*.'-

!" *,(%

1(2'"4#*#,'-'*30$-#0!'

!" 9,20%

1(2'"+#*#,'-'*

!" *,(%+""#$5)*6
!" $4&%+""7,$,84&%

:;;<

=,#>;;<

5%2,$%?"$/

=,# >;;<

5%2,$%?"$/

=,#

>;;<

:;;<

=,#
>;;<

!"#$%&'"()*+,'&#(-,%
!.,)&/"(*+,'&#(-,%

Figure 6: Parameter assignment

determine the power values at the four nodes. In a second
step, the data is sent to the power flow simulation that can
be stepped afterwards.

Listing 3: Simulation and model parameter specification

Scenario:
’Scenario’name=ID
(simulationParameterSets+=

SimulationParameterSet)+
(modelInstances+=ModelInstances)*
(modelGroups+=ModelGroup)*;

SimulationParameterSet:
’SimulationParameterSet’ name=ID ’for

simulation’ sim=[Simulation] ’with’
(parameterInstances+=ParameterInst)*
(modelParameterSets+=ModelParameterSet)+;

ParameterInst:
param=[SimParameter] ’= ’ value=STRING;

ModelParameterSet:
’ModelParameterSet’ name=ID ’for model’

model=[Model]
’with parameters’
(parameterValues+=ModelParameterInst)*;

ModelParameterInst:
param=[ModelParameter] ’= ’ value=STRING;

Scenario Specification Metamodel
Next, the scenario metamodel, which needs to reference
the simulation metamodel, can be defined. It shall be a
formal description of the scenario that is to be simulated
to allow an automatic composition of the required sim-
ulations. In our example (figure 2) the scenario needs
to contain information about the type of PV modules to

class ModelGroup

ModelGroup

- cardinality: int

ModelInstances

- cardinality: int

Model

- multiplicity: int
- name

ModelParameterSet

- name

related to

with

defines

1..*

!"#$%&'"()*+,'&#(-,%
!.,)&/"(*+,'&#(-,%

Figure 7: Model instantiation and grouping

simulate (e.g. how the PV simulation is parametrised),
the number of houses and PV modules to simulate and
their connection to the grid.
A separation of the parameter specification from the rest
of the scenario definition is beneficial, as there can be
quite a number of parameters and in this way, a redundant
parameter specification can be avoided. Figure 6 shows
this modelling approach as UML class diagram. A Simu-
lationParameterSet references a simulation and contains
parameter instances, e.g. concrete values for the parame-
ters of the simulation, and one or more ModelParameter-
Sets which contain the parameter instances for a specific
model that the simulation referenced by the Simulation-
ParameterSet contains. The Listing 3 shows how this is
implemented using Xtext. References between the sce-
nario and simulation part of the metamodel are imple-
mented using square brackets.

In our scenario, the PV modules shall only be con-
nected to the same connection point as the simulated
home, as it is assumed that the PV modules are mounted
on top of the houses roof. Therefore model groups are in-
troduced to allow specification of models that physically
belong together. Figure 7 show the according extension
of the scenario metamodel. A ModelGroup allows the
specification of 1 or more model instances that are to
be grouped and a cardinality for the group. The class
ModelInstances specifies how many instances of a spe-
cific model (represented by the desired model parameter
set) are to be created. In our example we have 4 groups
with one home and PV simulation, each.

What is still missing is a possibility for specifying the
connection points of the simulated DERs, e.g. a node in
the electrical power grid to which the DER is electrically
connected (ResourceConnectionPoint, RCP). This con-
nection point is an Xtext reference to a node in the grid
topology metamodel already shown in figure 4. Most of
the DER have fixed connection points (e.g. wind tur-
bines, PV modules, etc...). EVs, however, require a way
to specify a variable connection point as they move be-

tween different charging stations. This can be done by
binding the connection point to a certain property value
of the simulation model (e.g. when the output ‘location’
of the vehicle model has the value ‘home’, the EV is con-
nected to grid node ‘A’ and else to ‘B’). For a better un-
derstandability these extensions are not presented here
and only the parts of the metamodel required for mod-
elling the example scenario are shown. Listing 4 shows
the Xtext definition for the model group and connection
point extensions. In the example scenario only 4 connec-
tion points are to be specified. In larger scenarios, how-
ever, the specification of each connection point becomes
impractical. Therefore, a different connection strategy
called RandomRCP has been introduced. This strategy
connects all specified instances to randomly but repro-
ducibly chosen nodes of the power grid. This will be
used for the example scenario specification shown in the
next section. Currently, only nodes that have not been
connected are returned by the algorithm (no two house-
/PV groups are connected to the same node). However,
additional parameters for specifying the connection be-
haviour could be required. The Xtext metamodel can
be extended easily to incorporate such parameters and
the model editor is automatically updated by the Xtext
framework to support the new elements.

Listing 4: Grouping and grid connection metamodel

ModelGroup:
’Create’ cardinality=INT ’instances of

ModelGroup’ name=ID
’connected to grid ’connectionStrategy=

ConnectionStrategy
(modelInstances+=ModelInstances)+;

ModelInstances:
’Create’ cardinality=INT ’instances of

’ modelParameterSet=[
ModelParameterSet|QualifiedName]

(’connected to grid ’connectionStrategy
=ConnectionStrategy)?;

ConnectionStrategy:
FixedRCP|RandomRCP;

FixedRCP:
//Reference to grid-topology model
’at rcp:’rcp=[RCP];

RandomRCP:
’at random RCP’;

System Development Process

Based on the metamodel specified above, Xtext can gen-
erate an editor plugin for Eclipse which is capable of
syntax highlighting and auto completion. Although ad-
vanced XML editors also offer auto-completion, Xtext
allows to specify additional consistency checks and cus-
tom auto completion enhancements, thus offering sup-
port for the domain-modeller in specifying the scenario
so that it is valid for the simulation framework. Also, ref-

erences are type-safe, while using XML the references
just need to be IDs in a valid syntax, e.g. a check has to
be implemented manually as XML pre-processing step.
The scenario definition for our example is shown in list-
ing 5.

Listing 5: Model of the example scenario

Scenario Example1
SimulationParameterSet default for

simulation GridSim with
ModelParameterSet default for model

Pylon with parameters
csv_file = "<file_path>"

SimulationParameterSet pv_params for
simulation PVSim with

ModelParameterSet private_pv for model
Photovoltaic with parameters

PV_maxActivePower = "900"
PV_Angle = "30"
PV_IMPP = "7.55"
PV_UMPP = "23.8"

SimulationParameterSet homesim_params
for simulation HomeSim with

ModelParameterSet private_home for
model Home with parameters

load_profile = "vdew_h0"

Create 4 instances of ModelGroup Home_PV
connected to grid at random RCP
Create 1 instances of homesim_params.

private_home
Create 1 instances of pv_params.

private_pv

It defines one parameter set for each of the different
simulations (HomeSim, PVSim, GridSim/Pylon) and
defines a group Home PV that represents homes with
PV installation. 4 instances of this group are to be
instantiated during the simulation.

The scenario description and the description of the ref-
erenced simulations is interpreted by our simulation en-
gine during the composition phase and the required sim-
ulations are instantiated and parametrised. The definition
of how to interpret the scenario description based on the
metamodel is obviously as important as the metamodel
itself. However, the interpreter component is not within
the scope of this paper.

CONCLUSIONS & FUTURE WORK
The approach presented in this paper is currently being
used in the GridSurfer project. First scenarios could al-
ready be successfully defined and simulated. It could
be shown that the scenario definition based on the DSL
is easy to understand, even to non IT experts, and is
clearly arranged. Another advantage is the loose cou-
pling between the scenario specification and the simula-
tion framework. When a change in the interface or the
functionality of the simulation framework is made, the

possibly large number of scenario specifications does not
need to be touched but rather only the Xpand generator
needs to be adapted. With all these advantages, the sce-
nario specification acts as a real specification artefact.
In the future more domain-specific extensions are
planned, such as the integration of more roles (besides
‘DER’ and ‘grid’) will be implemented to enable a wider
range of scenarios. Also the DSL shall be extended to
support the specification of submodel relations (e.g. to
use a battery model as submodel for an electric vehicle
model or alone as stationary storage). Currently the sim-
ulations are only coupled via the grid simulation. How-
ever, this is sufficient for the current project and still al-
lows the specification of a broad range of scenarios while
keeping the complexity at a minimum. Finally an elec-
tricity standard conform integration (CIM/IEC61850) of
control strategies is planned to allow reuse of the eval-
uated strategies for a broad range of simulation compo-
nents.

ACKNOWLEDGEMENTS
The GridSurfer project is funded by the German Federal
Ministry of Economics and Technology (01 ME 09 017).

REFERENCES

Behrend, H., Clay, M., Efftinge, S., Eyshold, M., Friese,
P., Köhnlein, J., Wahnenden, K., and Zarnekow, S.
(2010). Xtext user guide. http://www.eclipse.org/
Xtext/documentation/1_0_0/xtext.pdf.

Benali, H. and Ben Saoud, N. B. (2010). Towards a component-
based framework for interoperability and composability in
modeling and simulation. Simulation, 87(1-2):133–148.

BMWi (2010). Gridsurfer - inter-urbane integration von
elektrofahrzeugen in energiesysteme inklusive batteriewech-
selkonzept. 2. February 2011, http://www.ikt-em.
de/de/GridSurfer.php.

Eclipse Foundation (2010a). Xpand website. 2. February 2011,
http://wiki.eclipse.org/Xpand/.

Eclipse Foundation (2010b). Xtext website. 2. February 2011,
http://www.eclipse.org/Xtext/.

Efftinge, S. and Zarnekow, S. (2010). Goodbye
xml - befreiungsakt mit xtext. 10. January 2011,
http://it-republik.de/jaxenter/artikel/
Goodbye-XML-Befreiungsakt-mit-Xtext-3459.
html.

IEC (2008). Iec 61968-13. 7. February 2011,
http://webstore.iec.ch/preview/info_
iec61968-13\%7Bed1.0\%7Den.pdf.

Karnouskos, S. and De Holanda, T. N. (2009). Simulation of a
smart grid city with software agents. 2009 Third UKSim Eu-
ropean Symposium on Computer Modeling and Simulation,
pages 424–429.

Lincoln, R. (2009). Pylon website. 8. February 2011, http:
//pylon.eee.strath.ac.uk/.

Moradi, F. (2008). A Framework for Component Based Mod-
elling and Simulation using BOMs and Semantic Web Tech-
nology. Ph.d. thesis, KTH Stockholm.

Prasanna, V., Orangi, A., Da Sie, W., and Kwatra, A.
(2005). Modeling methodology for application development
in petroleum industry. IRI -2005 IEEE International Con-
ference on Information Reuse and Integration, Conf, 2005.,
pages 445–451.

Sztipanovits, J. and Karsai, G. (1997). Model-integrated com-
puting. Computer, 30(4):110–111.

Widergren, S., Roop, J., Guttromson, R., and Huang, Z. (2004).
Simulating the dynamic coupling of market and physical
system operations. Power Engineering Society General
Meeting, 2004., (6-10 June 2004):748–753.

AUTHOR BIOGRAPHIES
STEFFEN SCHÜTTE studied information technology
in Hannover, Lüneburg and Wolverhampton. He received
his Master degree in 2007 at the Leuphana University of
Lüneburg. After working as a software developer in the
automotive industry for two and a half years he decided
to join the eMobility project GridSurfer at OFFIS in
Oldenburg, Germany as scientific research assistant. His
email is steffen.schuette@offis.de.

