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ABSTRACT

To cope with current turbulent market demands, more 
robust inventory policies are needed for distribution 
networks, to lower the inventory cost as well as 
maintain high responsiveness. This paper analyzes the 
inventory policies in the context of complex multi-
echelon distribution networks and proposes an 
optimization and simulation integrating approach to 
robust inventory policies selection for multi-echelon 
distribution networks. Based on the existing 
approximation approaches designed primarily for two-
echelon inventory model, an analytical multi-echelon 
inventory model with an efficient optimization 
algorithm is presented. Through systematic parameter 
adjustment, “optimal” inventory policies are suggested 
by this model. In the next step, a simulation model is 
applied to evaluate the proposed solutions under market 
dynamics, so that the most favorable ones may be 
selected. Finally, a case study is conducted and future 
research directions are suggested. 

1 INTRODUCTION

As collaboration between different supply chain 
echelons gains attention, it is imperative to consider 
inventory policies from a network perspective rather 
than supposing each stage to be a single isolated player. 
Moreover, under current market dynamics, the level of 
customer demand uncertainty itself has significantly 
increased, which immensely aggravates the difficulty of 
demand forecasting. And product trends like larger 
variety and shorter life cycles have intensified 
uncertainty.  

Yet, “optimal” inventory policies obtained through 
traditional approaches are based on deterministic and 
stable conditions. They are not capable of delivering the 
desired results in real situation, or even greatly 
deteriorate the performance of the entire supply chain, 
leading to high stock levels or short sales. Thus, to cope 
with current turbulent market demands, more robust 
inventory policies are needed for distribution networks, 

so as to lower the inventory cost as well as maintain 
high responsiveness. In this paper we propose an 
optimization and simulation integrating approach to 
robust multi-echelon inventory policies selection. 

The paper is organized as follows: Section 2 reviews the 
important multi-echelon inventory models and 
optimization solutions. Section 3 presents our integrated 
approach, which integrates simulation into the 
traditional analytical inventory model. The analytical 
model is presented and discussed in detail in section 4, 
including model formulation, model calculation and 
optimization algorithm. The simulation model is 
described in section 5. The proposed integrated 
approach is then applied to an industrial case in section 
6. Finally, section 7 concludes the current work and 
provides directions for further research. 

2 LITERATURE REVIEW 

An overview of the fundamental ideas about problem 
assumptions, model designs and solution approaches of 
inventory policies for one- or multi- echelon logistic 
networks has been presented by Zipkin (2000), Axsäter 
(2006) and Tempelmeier (2006). For the inventory 
models with stochastic lead time in multi-echelon 
distribution networks, which is also our research 
emphasis, Axsäter (2003b) has provided a quite 
comprehensive review. Starting from the early famous 
METRIC model presented by Sherbrooke (1968), 
numerous literatures have been devoted to this research 
area, among which pioneering research is conducted by 
Graves (1985), Svoronos and Zipkin (1988), Axsäter 
(1990, 1993, 1998, 2000) , Kiesmüller and Kok (2005). 
Apart from the classical multi-echelon model, Dong and 
Chen (2004) developed a network of inventory-queue 
models for the performance modeling and analysis of an 
integrated logistic network. Simchi-Levi and Zhao 
(2005) derived recursive equations to characterize the 
dependencies across different stages in the supply chain 
network. Miranda and Garrido (2009) dealt inventory 
decisions simultaneously with network design decisions 
while Kang and Kim (2010) focused on the coordination 
of inventory and transportation management.  

Although great attention has been paid to the analytical 
model of distribution networks, its application in the 
optimization field is still strongly restricted because of 
the modeling complexity and computational 
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requirement in large scale inventory networks. 
Therefore, various approximation methods and heuristic 
algorithms have been suggested by researchers for real 
world applications.  

Of note in this context is the work of Cohen et al. 
(1990), who developed and implemented a system 
called Optimizer that determined the inventory policies 
for each part at each location in IBM’s complex 
network with assumptions of deterministic lead time 
and ample supply. Caglar et al. (2004) developed a 
base-stock policy for a two-stage, multi-item spare part 
inventory system and presented a heuristic algorithm 
based on METRIC approximation and single-depot sub 
problem to minimize the system-wide inventory cost 
subject to a response time constraint at each field depot. 
Al-Rifai and Rossetti (2007) formulated an iterative 
heuristic optimization algorithm to minimize the total 
annual inventory investment subject to annual ordering 
frequency and backorder number constraints. Their 
approach can be regarded as the further work of Hopp et 
al. (1997), who utilized  policies and presented 
three heuristic algorithms based on simplified 
representations of the inventory and service expressions 
to optimize the same inventory problem in a single stage. 
Axsäter (2003a) used normal approximations both for 
the customer demand and retailer demand to solve the 
general two-stage distribution inventory system. Axsäter 
(2005) considered a different approach to decompose 
the two-stage inventory problems.  Through providing 
an artificial unit backorder cost of the warehouse, its 
optimal inventory policy can be solved first. 

From the above analysis, it may be deduced that multi-
echelon inventory models have been analyzed 
extensively in recent years. However, computational 
scale, integrity and non-convexity make the 
corresponding optimization problem intractable to exact 
analysis and up till now no general approach is accepted, 
which might also explain why two-echelon networks are 
mostly dealt with. In response to such difficulties, an 
efficient optimization solution procedure will be 
presented in this paper, which optimizes inventory 
policies in a general multi-item, multi-echelon 
distribution network.  

3 INTEGRATED APPROACH 

It is one task to develop a multi-echelon inventory 
model for distribution networks and solve 
mathematically. We will present a model of that kind in 
section 4. However, even the most delicate model forces 
abstraction of reality and involves some kinds of 
simplification or approximation. Besides, as mentioned 
above, the computational efficiency decreases 
dramatically with the complexity of the analytical 
model, so the real world application of these 
sophisticated models has been greatly limited in the past.  

Fortunately, these deficiencies can be compensated to a 
large extent by simulation models, as they allow to 

reproduce and to test different decision-making 
alternatives (e.g. inventory policies) upon several 
anticipated supply chain scenarios (e.g. forecasted 
demand development). This allows ascertaining the 
level of optimality and robustness of a given strategy in 
advance (Terzi and Cavalieri, 2004). Nevertheless, 
simulation itself can provide only what-if analysis. Even 
for a small-sized problem, there exist large numbers of 
possible alternatives, making exhaustive simulation 
impossible.   

Thus, a simulation model can and should be integrated 
with analytical models. Through systematic adjustment 
of input parameters, a limited set of “optimal” 
alternatives may be derived from the analytical model. 
After simulating these inventory policies under realistic 
environment (e.g. dynamic and stochastic volatile 
customer demand), their performance level (e.g. 
inventory cost, fill rate) can be evaluated and consulted 
for decision making. The schematic diagram of such an 
integrated approach is shown in Figure 1.  

Figure 1: Integrated Approach to Inventory Policy 
Selection 

However, a problem arises when all the suggested 
alternatives have not fulfilled the desired expectation.  
One of our answers is to reconfigure the input 
parameters of the analytical model based on the 
simulation result (dotted line in Figure 1), and then to 
restart the optimization process and simulation, so that a 
closed feedback loop is formed. Such reconfigurations, 
although feasible, is not quite easy to maintain, because 
the analytical model is an abstraction of real world. No 
matter how sophisticated, the “optimal” alternatives 
obtained from it can act only as a reference or starting 
point. Thus, it is not wise to look for robust inventory 
policies merely through analytical optimization.  Other 
approaches, which integrate optimization and simulation 
more closely, should be introduced to deal with this 
problem, but are not discussed here.  



4 ANALYTICAL MODEL 

4.1 Model Formulation 

The distribution network is represented as a multi-
echelon inventory model comprising several 
warehouses in each stage and multiple stock points in 
each warehouse. Each warehouse is supposed to store 
the same varieties of items and each stock point 
corresponds to only one kind of these items. Let  be an 
arbitrary stock point, be the set of its immediate 
predecessors and be the set of all its immediate 
successors. Next, the number of stages in this network is 
defined as  and the set of stock points at the -th stage 
as , of which  is the set of stock points facing end 
customers while is the set of those supplied directly 
by the outside supplier. A typical multi-echelon 
distribution network is illustrated in Figure 2. 

Figure 2: A Typical Multi-echelon Distribution Network 

Under such a general multi-echelon network, stock 
points at the most downstream stage  are 
assumed to face stationary stochastic customer demand 
which follows a normal distribution; while the demand 
process for the stock point at other upstream 
stages is derived as a 
superposition of the replenishment process from its 
immediate successors . All the stock points are 
continuously reviewed and implement an 
installation inventory policy. This means that when the 
inventory position, expressed as the physical inventory 
plus the stock on order minus backorders, is equal to or 
drops below , a replenishment order of size  is 
placed at its immediate predecessor . After 
placing an order, the actual lead time  elapses 
between placing the order and receiving it. After the 
arrival of the replenishment order, the outstanding 
backorders are satisfied according to a FIFO (first in, 
first out) policy. The outside supplier has infinite 
capacity and no lateral transshipments are permitted 
between stock points at the same stage.  

The list of notations in this essay is defined as follows: 
average demand per time unit at stock 
point 
standard deviation of the demand per time 
unit at stock point 
average demand at stock point  from its 
successor  per time unit 

standard deviation of demand at stock point 
 from its successor  per time unit 

number of orders at stock point  from its 
successor  per time unit 
stochastic inventory level at stock point 
probability density function of standard 
normal distribution  
cumulative distribution function of 
standard normal distribution 
first order standard normal loss function 
second order standard normal loss function 
inventory holding cost per unit and time 
unit at stock point 
“artificial” backorder cost per unit and time 
unit at stock point 

Notice that here can also take negative values, which 
interprets backorders as negative inventories; thus, the 
on-hand inventory is denoted as  while the 
backorder as , where 
and .

4.2 Model Calculation 

To optimize the inventory policy in the distribution 
network, the exact expression of two critical 
performance measures, average on-hand inventory level 
and average backorder level, of each stock point  must 
be solved. A standard approach for inventory level 
calculation is given in equation (1) , which describes the 
relationships among inventory level, lead time demand 
and inventory position (Zipkin 2000). 

(1)

According to Axsäter (1998, 2003a), the inventory 
position of any stock point  at steady state could be 
approximated with a uniform distribution over the range 
of . Besides, because the exact demand 
distribution is intractable in this complex network, 
normal approximation is adopted as Axsäter (2003a). 
For the stock point at the first stage , its 
average  and standard deviation  is already known, 
so a normal distribution can be directly fitted. For stock 
point at other upstream stages, it can be noted that, in 
the long run, the demand of one stock point will finally 
be transferred to its predecessor, i.e. .
Nevertheless due to the effect of batch-order 
replenishment, it is not that easy to identify the closed-
form expression of its standard deviation. To get this 
expression, the random number of orders at stock point 

 from its successor  per time unit  has to be 
analyzed first, the probability of which can be 
calculated as 

(2)



Thus, the standard deviation of order from its successor 
 is  

(3)

Since the different successors are supposed to be 
independent, the average and standard deviation of 
demand at is the sum of all its successors’ order, i.e. 

(4)

(5)

After fitting a normal distribution with parameters 
and , the demand distribution at any stock point 

is ready for use.  

Then, the lead time  will be analyzed for each stock 
point , which is a function of two components, the 
constant transportation times  (including ordering, 
receiving and handling, etc) and the random delay at its 
predecessor due to out of stock , i.e. 

(6)

Due to the assumption of ample supply, the lead time of 
stock point at the most upstream stage consists of only 
constant transportation time, i.e. . For 
stock point at other downstream stages , however, its 
lead time is directly influenced by its predecessor .
The component of lead time due to stock out at its 
predecessor  has to be determined. Here the famous 
METRIC approximation (Sherbrooke 1968) is applied 
which replaces the stochastic lead time by its mean. To 
achieve this, the backorder level of stock point is 
needed, which is  

(7)

According to the Little’s formula (Zipkin, 2000), the 
average delay due to out of stock at its predecessor  is

 (8)

After fitting a normal distribution with parameters 
and  to the lead time demand, the average 

backorder level is now possible to be solved in analogue 
with equation (7), i.e. 

(9)

Meanwhile, the average on-hand inventory level is  

(10)

4.3 Optimization Algorithm 

The target of inventory policy optimization is to find the 
best reorder points that balance the trade-off between 
economical consideration (inventory holding cost) and 
service level (fill rate or inventory backorder cost). 
Since the decision variables (i.e. reorder points) are not 
independent, it is impossible to apply blind optimization. 
Hence, a decomposed concept is introduced so that the 
inventory policy can be optimized item-by-item and 
stage-by-stage. The corresponding optimization 
problem for each stock point is   

(11)

where . Notice that cost function is
convex in decision variable . The search procedure 
presented here is a partial enumeration method that 
exploits the convexity character, implying that the local 
minimum is also the global minimum.  The outline of 
the search algorithm is given as below. 

Step 0: Initialization 
Set , , the lower bound 

, the upper bound , where  is a 
sufficiently large integer. The search step

, where  is the smallest integer larger than or 
equal to .
Step 1: Local search 
For  to , step 

If
Set ,
Else: exit the  loop 

Next
Step 2: Intensified search with smaller granularity 
While 

Set ,
and
Repeat step1 

Step 3: Get final result 
The optimal reorder point  and the corresponding 
inventory cost have been obtained. 

With the above search algorithm for a single stock point, 
a heuristic optimization procedure is designed to 
determine inventory policies for the entire distribution 
network as follows. 
1. Set .
2. For each stock point at that stage, i.e. , use 

the equation (2) and (3) to determine the 
replenishment process from any one of its successor. 

3. Fit a normal distribution for the demand through 
superposing replenishment from its successors, 
shown in equation (4) and (5). 



4. Set  and repeat step 2 and 3 until .

After the demand processes are determined upwardly 
through the distribution network, the inventory policies 
are optimized stage-by-stage downwardly.  
5. Set , lead time of stock point  at this stage 

is .
6. Calculate the mean values of backorder level and 

on-hand inventory level using the equation (9) and 
(10). 

7. Minimize the inventory cost function (11) with the 
above mentioned search algorithm, so that the 
optimal inventory reorder point is obtained. 

8. Set , apply the equation (8) and (6) to 
determine the lead time of each stock point at this 
stage, then repeat step 6 and 7 until .

5 SIMULATION MODEL

To test the robustness of the “optimal” inventory 
policies generated from the analytical model, a 
simulation model is needed to reproduce the real 
dynamics in the distribution network. For this purpose, 
the simulation environment OTD-NET, developed by 
Fraunhofer Institute for Material Flow and Logistics, is 
applied, which introduces a holistic approach for 
modeling and simulation of complex production and 
logistics networks and delivers in-depth insights into 
information and material flows, stock levels, stability of 
the network, boundary conditions and restrictions 
(Wagenitz 2007). 

Having implemented a novel, object-oriented 
methodology of modeling, OTD-NET allows the user to 
map all relevant network elements as well as many 
influencing parameters in selectable level of detail. For 
our problem we are mainly focusing on the network 
elements of distribution channels, buffers, customers 
and dealer and parameters like inventory policies and 
transportation time tables. The discrete-event simulator 
offers adequate recording and processing of simulation 
data on this model, which is essential to conduct 
effective statistical analysis on the simulation results. 
Thus OTD-NET supports the diversity as well as the 
complexity of factors inherent in this research problem. 

By application of OTD-NET with the presented 
analytical model, we benefit from the integrated 
approach as described in section 3. Within the analytical 
step, the input parameters of unit backorder cost are 
varied by decision makers according to the trade-off 
between economical consideration and service level. 
With these different combinations of parameters, 
several inventory policies are proposed by the analytical 
model. Then this limited set of inventory policies is 
examined by application of an OTD-NET model. The 
integrated evaluation is focused on two main 
performance measures (inventory cost and fill rate) here, 
but may also take other KPI into consideration.  

6 CASE STUDY 

In the following an industrial case is studied to evaluate 
the effectiveness of the proposed integrated approach. In 
this distribution network, finished products are 
manufactured by one single plant and sold in selected 
19 European markets. A European distribution center 
(EDC) and 19 regional distribution center (RDC) are 
constructed to deliver the products to end customers. 
The detailed structure of this network is illustrated in 
Figure 3.  

Figure 3: Structure of the Analyzed Distribution 
Network 

The objective is to pursue a high service level while to 
keep inventory cost as low as possible. Since ordering 
costs are negligible due to modern communication 
technologies applied, on-hand inventory cost of 
different distribution centers are focused for the entire 
network. Meanwhile, the service level can be quantified 
by the key figure fill rate, which denotes the proportion 
of demand that can be fulfilled from the available on-
hand stock. The customer demand is derived from 
several demand forecast scenarios to reflect the 
volatility, whose average and standard deviation in each 
regional market is supposed to be known. The order 
quantity of each distribution center is assumed to be one 
day’s demand. Unit holding cost of EDC is supposed to 
be 1 monetary unit while that of RDCs to be 2. In this 
paper results for two RDCs will be presented; One of 
these is Germany (Code: RDC04), the biggest market, 
the other is Italy (Code: RDC09) as a counterpart. The 
basic data of these EDC and RDCs is shown in Table 1. 

Table 1: Basic Data of EDC and RDCs 

Code Ave. 
Demand 

Std. of 
Demand 

Order 
Quantity 

EDC 11,93 22,38 12 
RDC04 6,93 17,91 18 
RDC09 0,69 1,64 2 

While the unit inventory holding cost is held constant, 
the “artificial” unit backorder cost can be varied by 
decision makers in accordance with preferred service 
levels. Four exemplary combinations of these two kinds 
of cost are shown in Table 2. 



Table 2: Combination of Unit Inventory Cost 

Code Unit Holding 
Cost 

Unit Backorder Cost 
(1) (2) (3) (4) 

EDC 1 3 15 100 5000 
RDC04 2 15 50 200 10000 
RDC09 2 15 50 200 10000 

With these data as input parameters of the analytical 
model, four different “optimal” inventory policies are 
being calculated. As given in Table 3, each inventory 
policy (i.e. an alternative) corresponds to one 
combination of the above presented setting of unit 
inventory cost. 

Table 3: “Optimal” Inventory Policies Generated from 
Analytical Mode 

Code "Optimal" Reorder Point 
(1) (2) (3) (4) 

EDC 19 36 51 75 
RDC04 57 73 90 127 
RDC09 6 8 10 14 

After being simulated with OTD-NET under an 
anticipated demand scenario, the results of average on-
hand inventory level and fill rate are documented. The 
on-hand inventory level in alternative (1) is illustrated in  
Figure 4. When it touches the x-axis, backorder occurs. 

To make a comprehensive comparison of different 
alternatives, simulation results of all the four 
alternatives are listed in Table 4. Obviously, alternative 
(1) leads to lowest inventory cost and worst service 
level; while the highest cost and best service levels are 
obtained in alternative (4). With these performance 
measures, decision makers can select the appropriate 
inventory policies from these alternatives according to 
their preferences of economical consideration and 

service level requirements under different future 
demand scenarios so that the best trade-off can be 
acquired.  

7 CONCLUSIONS 

In this paper, an integrated approach is proposed to 
design robust inventory policies for a complex 
distribution network. Firstly, a multi-echelon inventory 
model has been developed to represent such a network. 
Based on that model an efficient optimization algorithm 
has been designed to propose optimal inventory policies. 
To evaluate the robustness of such policies, a simulation 
model is integrated to reproduce real dynamics under 
several demand scenarios. The generated alternatives 
can be assessed by simulation, whose results serve as 
beneficial references for decision makers to select 
among the suggested alternatives.  

However, we believe that simulation is capable of being 
more than just an evaluation tool implementing what-if 
analysis for the presented problem class. As mentioned 
in Section 3, when all of the suggested alternatives fail 
to meet the requirements, an intelligent approach should 
be proposed to enhance the proposed preliminary
solutions. Therefore, we are following two paths in our 
current work: First, we are working on reconfiguration 
of analytical input parameters based on simulation result. 
Yet, our results so far have shown that neither the 
optimality of the solution nor the convergence of this 
approach is guaranteed due to the abstraction of the 
analytical model. Second, we are working on integrating 
the optimization approach within the simulation, so that 
alternatives evolve automatically. Nevertheless, this 
implies to propose dynamic inventory policies, i.e. 
policies that consist of partial policies which are only 
valid under specific dynamic conditions. This so-called 
simulation-based optimization approach is our favored 
approach aimed at robust inventory policies for complex 
multi-echelon distribution networks. 

Figure 4: The On-Hand Inventory Level in Alternative (1) 

Table 4: Simulation Results of All 4 Alternatives 

Alternative No. Alternative (1) Alternative (2) Alternative (3) Alternative (4) 
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1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358

Simulation Day

On-hand Inventory Level

EDC

RDC04

RDC09



Code EDC RDC04 RDC09 EDC RDC04 RDC09 EDC RDC04 RDC09 EDC RDC04 RDC09
Ave. On-hand Inventory 13 39 3 31 56 6 45 73 8 70 110 12 

Ave. Holding Cost 98 155 207 314 
Fill Rate 87, 9% 66,8% 54,0% 93,9% 75,6% 92,5% 95,3% 82,4% 98,0% 95,8% 93,3% 100,0%
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