KEYWORDS
Active power filter, brushless DC motor, control, simulation

ABSTRACT
Recently, BLDC motors have become very popular in wide application areas. The BLDC motor does not have a mechanical commutation, and is, consequently, more reliable than the classic DC motor. In recent years, with the increasing number of nonlinear loads drawing nonsinusoidal current, power quality has become a serious problem; hence an optimal control scheme must ensure the desired motor behavior and an undistorted current waveform in the network. This paper presents a new simplified control scheme for the BLDC motor, eliminating the disadvantages of the classic control scheme, and in addition keeping the source currents waveforms near sinusoidal, according to the standards.

INTRODUCTION
Considering the wide range of different types of motors, the choice of a specific motor type for a particular application generally is determined by performance and cost. Of all these, the brushless DC (BLDC) motor is gaining widespread use in various consumer and industrial applications. The BLDC motor features high efficiency and good controllability due to their linear speed/torque characteristics, giving predictable speed regulation.

A BLDC motor is a rotating electric machine where the stator is a classic 3-phase wound stator, like that of an induction motor, and the rotor has surface-mounted permanent magnets. When the wound stator is energized by a 3-phase alternating current, it creates a rotating magnetic flux that causes the rotor to rotate synchronously with it.

In a BLDC motor, the position of the rotor (and hence its permanent magnetic field) is sensed with respect to the stator coils (phases), and the supply current is switched electronically (commutated) to the appropriate phases. BLDC motor control systems often incorporate either internal or external position sensors to sense the actual rotor position. Alternatively, the rotor position can be detected without sensors by measuring the back-EMF in each stator winding (Cyan Technology 2007).

The torque and the speed of the BLDC motor depend on the magnetic field of the windings, consequently on the

CLASSICAL BLDC CONTROL SCHEME
The classical BLDC control scheme is shown in figure 1. Typically it contains two power electronics bridges – first one is an uncontrolled rectifier with diodes and the second one is a three phase controlled PWM inverter. Usually, between the two bridges is a capacitor (King et al. 2008).

Figure 1: Classical BLDC Control Scheme
currents. Thus, for maintaining the torque and the speed constant at a desired value, one need to measure the current through the motor and generates the command for the PWM inverter. But, because of the uncontrolled rectifier, this type of control scheme draws from the network a nonsinusoidal current, thus distorting the current waveform, as seen in figure 2. The total harmonic distortion is 144.95%.

PROPOSED BLDC CONTROL SCHEME

Figure 3 shows the proposed BLDC control scheme. The scheme contains two controlled power bridges, one PWM controlled inverter and one PWM controlled rectifier.

The advantages of the proposed control scheme over the classical scheme are due to the introduction of the controlled rectifier over the uncontrolled rectifier, and are as follows:
- the current waveform of the source is kept near sinusoidal, due the controlled rectifier, in the range of the imposed (IEEE STD. 519-1992);
- the DC voltage on the capacitor is filtered and kept constant to the reference value provided by the regulated speed error;
- a quick response to load variations;
- robustness against uncertainties in component values and operations conditions;

The speed and the torque of the BLDC motor depend on the currents in the stator windings. To control the speed or the torque of the BLDC motor is sufficient to control the voltage of the inverter, possible by commanding the rectifier.

Figure 4 shows the Matlab Simulink model of the proposed BLDC control scheme, according to figure 3. The power supply is a single phase 220V/50Hz source and the BLDC motor has three phases, with the back EMF waveform sinusoidal and rotor type with salient poles. The mechanical input of the BLDC motor is the torque, set to 1 N\(\cdot\)m. The reference of the system is the desired speed, \(\omega^*\), first set at 2000 r/min, then after 0.5s is set to 3000 r/min.

The inverter provides the commutation for the creation of the rotation field. For proper operation is necessary to keep the angle between the stator and rotor flux close to 90\(^\circ\), thus the stator flux vector must be changed at a certain rotor position. The rotor position is sensed with Hall sensors, which generates three signals comprising six states, according to figure 5 (Musil 2006).

Using the correspondence between each of the Hall sensor states and stator flux vectors, a truth table can be assigned to control the each of the IGBT of the inverter, as shown in table 1.

Table 1: Truth Table for Inverter Command

<table>
<thead>
<tr>
<th>Ha</th>
<th>Hb</th>
<th>Hc</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: Matlab Simulink Model of the Proposed BLDC Control Scheme
While commutation ensures proper rotor rotation of the BLDC motor, the motor speed depends on the amplitude of the applied voltage. The amplitude of the applied voltage is adjusted by the controlled rectifier. The required speed and voltage are controlled by two PI controllers. The difference between the actual and required speed (and voltage) is the input of the PI controller. Using the difference, the PI controller controls the duty cycle of PWM pulses fed to the controlled rectifier, corresponding to the voltage amplitude required to keep the desired speed. In addition, it needs to keep the source current harmonics free. The proposed control algorithm is presented in figure 6.

![Figure 6: Proposed Algorithm for BLDC Control](image)

SIMULATION RESULTS

The overall model of the proposed BLDC control is presented in figure 4 and the results were obtained using Matlab Simulink SimPowerSystems. The parameters of the chosen BLDC is seen in table 2.

Table 2: Motor parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>220 V/50 Hz</td>
</tr>
<tr>
<td>Number of phases</td>
<td>3</td>
</tr>
<tr>
<td>Rotor type</td>
<td>Salient-pole</td>
</tr>
<tr>
<td>Back EMF waveform</td>
<td>Sinusoidal</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>18.5 Ω</td>
</tr>
<tr>
<td>Inductances Ld and Lq</td>
<td>0.02682 H</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 7 shows the reference and the obtained speed using the proposed BLDC control, under two reference speeds, 2000r/min and 3000r/min. It can be seen that the actual speed follows its reference speed very good, with a transient of 0.1s for the first reference, and with a transient of 0.05s for the second reference, thus proving the proposed BLDC control algorithm is very effective.

![Figure 7: Reference and Actual Speed](image)

Figure 8 shows the DC capacitor reference and actual voltage. Once the transient is over, the DC capacitor voltage is recovered to its reference value. It can be seen that its value follows up its reference, thus the objective of the proposed BLDC controller is achieved.

![Figure 8: Reference and Actual DC Voltage](image)

Figure 9 shows the simulation results of the source current obtained using the proposed BLDC control algorithm.

![Figure 9: Source Current Waveform](image)

Figure 10 shows the harmonic analysis of the source current. By using the proposed BLDC control algorithm, the source current has a total harmonic distortion of only 1.06%, thus meeting the limit of the harmonic standard of (IEEE STD. 519-1992).

![Figure 10: Harmonic Analysis](image)
CONCLUSION

From the simulation results, it can be seen that the proposed BLDC control algorithm is a good alternative over the conventional BLDC control scheme, because not only that the motor operates as desired, but also the source current waveform is kept sinusoidal and with a harmonic distortion less than 5% according to the standards.

Still, this algorithm can be improved, by using it in three-phased systems, so that the controlled rectifier can also provide the reactive power to the motor. In addition, it can act as a filter to the network, because it can balance unbalanced three-phase systems.

REFERENCES

Cyan Technology, 2007, “3-Phase PMSM Control with Sensor Feedback – Version 1.0”

ACKNOWLEDGEMENTS

This paper was realized with the support of POSDRU CUANTUMDOC “DOCTORAL STUDIES FOR EUROPEAN PERFORMANCES IN RESEARCH AND INOVATION” ID 79407 project funded by the European Social Found and Romanian Government.

AUTHOR BIOGRAPHIES

GEORGE ADAM was born in Romania in 1984. He received the B.S. and M.S. degrees in electrical engineering from Technical University of Iaşi, Romania in 2009 and 2010 respectively. He is currently a Ph.D. student under the supervising of Professor Gheorghe Livinț. His research interests include power electronics, active power filters and hybrid vehicles. His e-mail address is: yojorj@yahoo.com.

ALINA GEORGIANA STAN (BACIU) was born in Romania in 1980. She received the B.S. and M.S. degrees in electrical engineering from Technical University of Iaşi, Romania in 2005 and 2010 respectively. She is currently a Ph.D. student under the supervising of Professor Gheorghe Livinț. Her research interests include hybrid vehicles, power electronics and Fuzzy logic. Her e-mail address is: alinutza_222000@yahoo.com.

GHEORGHE LIVINȚ was born at 20 December 1949 in Vashui, Romania. He is a Professor in Technical University of Iaşi, Romania, Faculty of Electrical Engineering since 1996, head of department since 2000 and Ph.D. mentor since 2004. His research interests include systems theory, automatic control, power electronics, electric motor control and hybrid vehicles. His e-mail address is: glivint@tuiasi.ro.