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ABSTRACT
Agent-based simulations of science that account for the
linkage between micro-level behavior of scientists and
macro-level results of scientific competition are rather
scarce. The approach of this simulation model is to link
the motivation and behavior of scientists to knowledge
growth and scientific innovations via the emergence of
new knowledge fields. A new knowledge field is con-
sidered both to be a result of scientific competition and
a representation of scientific advancement. This paper
takes a closer look at the scientists’ motivation and how
they coordinate and add to scientific progress as utility-
driven agents. Accounting for stylized facts of scientific
competition, selected simulation results show how deep
the processes of knowledge generation, reputation and
scientific innovations are intertwined. As scientists are
assumed to be of different utility types and have differ-
ent aspiration levels, this approach is able to account for
adaptive behavior of agents.

INTRODUCTION
The aim of the ABM is to show how scientists as utility-
driven agents coordinate scientific competition. Coordi-
nation implies that even though science may exhibit bi-
ased results as reflected in the Matthew effect, the rules
of scientific competition have nevertheless proved to be
self-enforcing and well-designed in that they align the
individual ambitions with the social purpose of scientific
advancement (Vanberg, 2010). Individual scientists may
follow the counter-norms of ”emotional commitment,
particularism, solitariness, interestedness, and organized
dogmatism” (Mitroff, 1974), but after all, the social sys-
tem of scientific competition remains robust in Merton’s
sense (Merton, 1973) as long it enhances the overall stock
of knowledge. There is a long-standing debate among
philosophers of science on how an individual epistemol-
ogy can be aligned to a social epistemology. If one adopts
the naturalist view that one has to account for the sci-
entists’ motivation and behavior in practice (Downes,

2001), it is generally agreed that scientists are in fact
subject to different individual practices, (non-epistemic)
motives and social influences (e.g., Bloor, 1991; Kitcher,
1993; Latour, 1987). The crucial question, however, re-
mains a subject of discussion. How can consensus prac-
tices of scientific communities be derived from individ-
ual practices? The Naturalists’ approach to align a rich
cognitive conception of individual scientists with a scien-
tific consensus building that heavily depends on neoclas-
sical microeconomics and Bayesian decision theory has
been subject to a lot of criticism (e.g., Downes, 2001;
Mirowski, 1996; Sent, 1996).

The approach adopted here is to regard scientists not as
utility maximizers of neoclassical economics who con-
sistently base their reasoning on Bayesian decision the-
ory. Rather, scientists are conceptualized as satisficing
agents who are occasionally prone to biased reasoning
and behavior. Thus, this paper follows a ”thick” con-
ception of individual agents, i.e. a claim about a rich
psychological makeup of the agent and the relevance of
context (Downes, 2001). Recently, research has been car-
ried out in ABMs on science to account for biased be-
havior of scientists. Thurner and Hanel (2011) discuss
biased behavior of agents in the coordination process of
science, in particular how self-interested scientists affect
the efficiency of the peer review mechanism. They show
that referees who tend to reject better papers than their
own and accept worse quality considerably reduce the
average quality of accepted papers. This result is con-
firmed in a model by Squazzoni and Gandelli (2012).
They also examine the effects of institutional factors on
the quality and efficiency of peer-review. For instance,
they show that increasing competition in a fragmented
scientific community tends to foster evaluation bias and
inefficiencies in the peer review process.

While these ABMs focus on the effects of motivational
bias and institutional settings on the efficiency of the co-
ordination mechanism, the model presented here intends
to explain how individual scientists, who are prone to
motivational and cognitive bias, are able via the coor-
dination process of scientific competition to add to sci-
entific advancement. The approach relates to the find-
ings of Solomon (1992), who argues that a cognitive bias
of scientists, in particular belief perseverance, leads to a
distribution of research effort and thus contributes to the
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advancement of scientific debate. Especially when sci-
entific problems are ”ill-defined”, a scientist is expected
to support his special community of interest and to ”(...)
believe in his own findings with utter conviction while
doubting those of others (...)” (Mitroff, 1974, p.592).

Scientific advancement is reflected in a growing body
of scientific knowledge and its development by means
of emerging knowledge fields and scientific innovations.
To model this micro-macro-link is the intention of the
model. It is an abstract simulation model which is based
on plausible micro-level agent behavioral rules (Gilbert,
2008), yields stylized facts of scientific competition at
the macro level and feeds back to the behavioral rules
of micro-level-agents. To the knowledge of the author,
so far there is no such model to link utility-driven micro
behavior with the macro level of scientific advancement.
This papers thus contributes to research that accounts for
micro-macro interdependencies in scientific competition
and the social embededdness of science (Edmonds et al.,
2011). At first, this paper focuses on the motives and be-
havior of agents that drive the most important processes
on the micro level. The mechanisms are simple, though
powerful, and are able to reproduce a number of stylized
facts of scientific competition. They are thus considered
to be a suitable starting point for modeling the feedback
processes between the macro and micro level.

COORDINATION MECHANISMS IN SCIENCE

Stylized facts and characterization of a scientist
Scientists are presumed to gain utility from scientific in-
sight (intrinsic motivation) and scientific reputation (ex-
trinsic, non-monetary motivation). To achieve this, scien-
tists are supposed to produce scientific output, i.e. pub-
lications. The distribution of publications per author is
approximated by the Lotka distribution, saying that in a
specific knowledge field the number of authors generat-
ing n scientific papers is proportional to 1/n2. This styl-
ized fact has been verified in a number of papers, e.g.
for economics (Cox and Chung, 1991). This effect is
augmented by the law of decreasing returns, which in
the context of scientific progress (Rescher, 1978) states
that the more is already known in a scientific field, the
smaller the scientific insights that are achievable. It is
hypothesized that these two effects may lead to a consid-
erable share of unsatisfied scientists, either in regard to
scientific insight or reputation. One solution to the scien-
tist’s problem might be to initiate a new knowledge field,
publish innovative articles and as the priority rule sug-
gests, achieve disproportionally more credit than before.
But a scientist might also choose to stick to one field of
knowledge with only small scientific returns. In a nut-
shell, scientists are considered as heterogeneous as they
have differing goals concerning scientific insight and rep-
utation. They do not pursue lifetime utility maximization
(Diamond, 1988), but have an aspiration level which they
strive to achieve Simon (1955). The aspiration level may
be defined in terms of private goals and/or determined by

observable properties of other agents. After all, scien-
tific advancement is rooted in the individual disposition
of scientists who do not achieve their aspiration level.
The concept of satisficing explicitly accounts for adap-
tive behavior of agents, for instance modeled in Brenner
(2006) and Chang and Harrington Jr. (2006).

The present paper concentrates on heterogeneous sci-
entists who are endowed with some basic rules of be-
havior and who coordinate their behavior in a social pro-
cess, it abstracts from aspects of how scientists create
and evalute new ideas (Gilbert, 2007; Watts and Gilbert,
2011), form networks of ”invisible colleges” or adjust
their lifecycle-productivity (Carayol, 2008; Levin and
Stephan, 1991).

The scientist’s utility function
As a scientist strives for scientific insight, he gains utility
from his accumulated knowledge. The intrinsic utility of
a scientist uinti,t is assumed to be a function of his accumu-
lated knowledge w driven by his cumulative productivity
pr. The latter is a function of his publication activities
pub exhibiting diminishing marginal returns. The func-
tion is assumed to have the following properties:

uinti,t = f(w(pr(pub))) (1)
∂f/∂w > 0

∂w/∂pr > 0, ∂2w/∂pr < 0

∂pr/∂pubi > 0, ∂pr/∂pub−i < 0

The accumulation of knowledge is a private disposi-
tion and thus unaffected by the accumulated knowledge
of other scientists. However, for scaling purposes in the
simulation model, the accumulated knowledge wi,t of
scientist i is multiplied with a factor γ = max(w−i,t).
This yields a value uinti,t in the interval ∈ [0, 1].

uinti,t = γ ∗ wi,t (2)

Utility from reputation uri,t is considered a social dis-
position and assumed to decrease with the scientist’s po-
sition according to his scientific output. Utility uri,t is
defined by the ranking of scientists. The ranks ra are
better (i.e. converge to a value of one) for those scientists
who have many publications. To account for persistent
ranking positions, a parameter of organizational inertia
(1 − δ) ∈ (0, 1) is added. Rankings do not change if δ
yields a value of 0. The closer δ converges to 1, the more
ranking positions are proned to change and truly reflect
the current publication activities. Utility from reputation
is given by

uri,t = f(ra(pub, δ)) (3)

∂f/∂ra < 0, ∂2f/∂ra < 0

∂ra/∂pub < 0

∂ra/∂δ > 0



As related works account for an evaluation bias in the
review process on the micro-level of scientific compe-
tition (e.g., Squazzoni and Gandelli, 2012; Thurner and
Hanel, 2011), the parameter δ in this model can be in-
terpreted as an evaluation bias on an aggregate level, i.e.
how quick a scientific discipline credits new publications
with corresponding ranks. It points to the fact that some
disciplines are ”tightly knit in terms of their fundamen-
tal ideologies, their common values, their shared judg-
ments of quality, (...) and the level of their agreement
about what counts as appropriate disciplinary content”
(Becher and Trowler, 2001, p.59). Following Loch et al.
(2001), utility from reputation yields a value in the inter-
val ∈ [0, 1] and specifies to:

uri,t = 1− (rai,t − 1)2

nj,t
(4)

with nj,t in (4) as the number of rank classes of
scientists belonging to one community of scientists.
Weighted utility from accumulated knowledge and repu-
tation yields the overall utility function of a scientist. As
Equation (5) shows, it is assumed that utility from knowl-
edge and reputation are partial substitutes, with utility be-
coming zero when one of the terms is zero.

ui,t = (uinti,t )α ∗ (uri,t)
1−α (5)

α ∈ [0, 1]

It should be noted that although both utility from ac-
cumulated knowledge and from reputation are driven by
publication activities, the interpretation is different. In-
trinsic utility only aims at utility derived from signifi-
cantly new findings which increase the stock of knowl-
edge (outcome), whereas utility from reputation may also
comprise ”normal science” and equivalent types of out-
put (Rescher, 1978).

Types of agents
According to the scientists’ motivation reflected in their
specific utility weights, it is assumed that scientists can
follow three types of individual disposition. Scientists
may

• put relatively more emphasis on reputation com-
pared to scientific insight.

• put relatively more emphasis on scientific insight
compared to reputation.

• be indifferent between reputation and scientific in-
sight.

Apparently, the assignment of utility weights does not
depend on a scientist’s actual publication activity. The
rationale for this is that there may be scientists who do

initialize scientists and knowledge fields
link scientists to knowledge fields
initialize parameters
while simulation time < termination time
scientists

publish
update their knowledge stock
update their ranks
calculate utility from knowledge and reputation

if subgroup of scientists does not reach
utility threshold and conditions are met
scientists

hatch a new knowledge field
and link to it

end
plot graphics
calculate statistics

Table 1: Pseudocode of the simulation model

appreciate knowledge enhancement more than reputa-
tional concerns, yet are not successful publishers. It im-
plicitely asssumes that there are scientists who are will-
ing to pay (with a low number of publications) for de-
viating from the prevailing norm, i.e. the model allows
for non-conforming behavior (Brock and Durlauf, 1999).
It is argued that scientists who show non-conforming be-
havior reveal a motivational and cognitive bias. Scientists
who deviate from the prevailing scientific paradigm are
assumed to constitute a group with a common focus. This
common focus allows a new knowledge field to emerge.

Scientists cannot observe the individual disposition of
other scientists. However, a scientist takes notice of the
output of the scientific coordination process, concretely
the number of publications and ranking of other scien-
tists. This is the primary information that influences a
scientist’s strategy. Moreover, two parameters that reflect
the context of a scientific discipline are considered: the
degree of organizational inertia and the parameter of half
life of scientific knowledge. While scientists can observe
both parameters ex-post, they can act upon organizational
inertia and adapt their strategies, whereas the parameter
of half life is considered to be an exogenous parameter as
explained in the next section.

The scientist in action: outline of the simulation
model
The pseudocode in Table 1 summarizes the simulation.

To initialize, n scientists are randomly assigned to one
of j knowledge fields. In the current model, a scientist
is never assigned to more than one knowledge field. It is
assumed that separate knowledge fields may be incom-
mensurable (Brock and Durlauf, 1999). Accordingly, the
scientist has to decide which school of thought he wants
to belong to, i.e. he makes an ”investment” decision.
Changing to other fields of knowledge is possible but
costly.



All scientists who are assigned to one knowledge field
constitute a scientific community. The fundamental ac-
tivity to attain intrinsic and extrinsic non-monetary util-
ity is to conduct research, i.e. to publish articles in the
correspondig field. To model this process, Rauber and
Ursprung (2008) used the hurdle model (see also Watts
and Gilbert (2011) who used the Weibull distribution for
related processes). As this model does not focus on the
publication process itself and to keep the simulation as
tractable as possible, publication activities are modeled
as an adapted version of the lottery example borrowed
from the Netlogo Models Library (Wilensky, 2004).

As a convention, a scientist is defined as someone who
publishes at least one scientific paper. In the first period,
each scientist produces a minimum of 1, and a maxi-
mum of 2 publications pub. The accumulated output a
scientist produces yields the scientist’s cumulative pro-
ductivity pri,t and is related to the maximum accumu-
lated output of one of his fellows in his scientific com-
munity. In the following periods -according to the lottery
example- the propensity to generate additional publica-
tions is higher for those scientists who already have a
high cumulative productivity. Unless a scientist does not
win the lottery, he will maintain his number of publica-
tions for the following periods. This assumption can be
justified as one simulation run in the model does not in-
tend to reflect a scientist’s lifecycle-productivity (Levin
and Stephan, 1991) but considers fluctuations within a
lifecycle of scientific competition and thus accounts for
the fact that no clear evidence exists for an increasing or
decreasing overall average publication output per scien-
tist (Wagner-Doebler, 2001). Since only a limited num-
ber of scientists will ever win the lottery, the number of
publications per author approximates a skewed distribu-
tion (Lotka, 1926). Publication activities serves as the
intrinsic motivation in that they enhance the scientist’s
accumulated scientific knowledge. Equation (2) can be
specified for the simulation in that knowledge w of a sci-
entist i grows according to

wi,t+1 = θ ∗ wi,t +
√
pri,t ∗ pubi,t (6)

While there is consensus that publications serve as an
indicator of scientific output, measuring knowledge is not
only a problem in ABM models, but it is also a problem
in the real world (Payette, 2011). The approach in (6) is
justified as follows: The first term accounts for the fact
that any scientific knowledge is subject to depreciation.
Previous knowledge is thus multiplied with a constant
half-life factor θ ∈ (0, 1). For instance, a half-life fac-
tor of .93 means that after a period of approximately 10
years, the scientific knowledge has lost half of its value
in terms of topicality. The specification of θ is subject to
the scientific discipline under consideration. As publica-
tions can be interpreted as the documentation of knowl-
edge development, the second term describes the effec-
tiveness of a scientist to transform scientific output (pub-
lications) into outcome (knowledge). pri,t is calculated

from the cumulated publications of a scientist in field j,
normalized for the interval [0,1]. The higher his cumu-
lated productivity pri,t, the higher the propensity to win
the lottery in the next period and the more effective out-
put is transferred into outcome. The square-root func-
tion represents the assumption that efforts to increase the
knowledge stock in a specific knowledge field are subject
to diminishing marginal returns (Koelbel, 2001).

Besides knowledge growth, publication activities
serve to attain scientific reputation. Following Hopkins
and Kornienko (2004) and Loch et al. (2001), ranks are
the result of sorting the scientists’ status weighted with a
factor of organisational memory (1− δ) ∈ (0, 1).

rai,t = (1− δ) ∗ sti,t−1 + δ ∗ sti,t (7)

Status st in (7) simply counts a scientist’s fellows with
less or strictly less publications and adds a minimum sta-
tus value of 1 for each scientist. For each community
of scientists, the status values are sorted in ascending or-
der which yields rank ra = 1 for the scientist with the
highest status. For scientists of one community who may
have the same number of publications, it is allowed that
they are assigned to the same rank. (1 − δ) reflects the
organisational memory of a scientific discipline, i.e. it is
defined for all knowledge fields of one discipline. The
smaller δ is, the more a scientist benefits from his last
period status and the harder it is for other scientists to
achieve a higher status respectively.

Selected results on the influence of organizational in-
ertia
Some simulation experiments have been conducted to
test how δ influences the distribution of ranks in one spe-
cific knowledge field over one lifecycle (run) of scientific
competition (35 periods). From the intuition it is sensi-
ble to believe that the more successful scientists group to
the higher ranks while the scientists who do not stand out
constitute the group with the lower ranks.

Figure 1: Frequency distribution of ranks for 50 scientists
in period 35 based on 100 simulation runs

As can be seen in the upper row of Figure 1, the distri-
bution of ranks is bipolar when there is a high degree of



organizational inertia. In this case, the histogram shows
that on the aggregate level, scientists stay pretty sepa-
rated over the periods of time, and the rank they take at
the beginning is rarely prone to change. As δ rises, the
frequency disribution converges to a normal distribution,
i.e. the ranks change over time and their distance tends to
get smaller. However, as the size of a scientific commu-
nity slightly changes in each simulation run, the results
can only show some basic mechanism which prevail on
an aggregate level.

The implication of using a factor of organisational in-
ertia (1 − δ) is to show that even though a scientist may
achieve a high number of publications, this does not nec-
essarily imply an equivalent ranking value. For instance,
if (1 − δ) is close to 1, in the case of two scientists both
of whom have a certain number of publications, only the
one with the higher rank in previous periods gets rank
1. This was verified in a simple correlation analysis. As
the increasing (negative) correlation coefficients show in
Table 2, the smaller the parameter for organizational in-
ertia, the closer the ranking reflects the scientists’ current
publication activities. It should be noted that the negative
signs of τ are attributed to the fact that the smallest rank
number represents the best rank.

δ τ z-value
0.01 -0.6831274 -59.03
0.5 -0.7906952 -69.79
0.99 -0.8133727 -69.86

p-value < 2.2e-16 in all cases

Table 2: Kendall’s rank correlations

The aspiration level of scientists and scientific ad-
vancement
Looking at the scientists’ aspiration level in terms of the
knowledge stock, a scientist is said to be satisfied if his
knowledge stock grows. In the reference model, the over-
all amount of publications rises faster than the individual
amount of publications, indicating that there is a natural
crowding of knowledge fields over time. Thus the cumu-
lated productivity pri,t decreases for all scientists who do
not win the lottery. This again leads to decreasing returns
of knowledge growth ∆w =

wi,t−wi,t−1

wi,t−1
.

In general, knowledge growth becomes zero when the
depreciation of the accumulated knowledge stock as de-
fined in the first term of Equation (6) is faster than new
output is transferred to knowledge (second term in Equa-
tion (6)). This process reflects the fact that the more
that is already known in a specific knowledge field, the
more effort has to be spent to attain substantially new
findings (Rescher, 1978). As mentioned before, unsatis-
fied agents have the possibility to initiate a new knowl-
edge field. Scientists who engage in a new knowledge
field do not necessarily have to stem from the same com-
munity of scientists. At first, a new knowledge field is
expected to be smaller than existing ones. With a lower

number of competitors, they tend to attain a higher cu-
mulated productivity and rank as defined in Equation (6)
and Equation (7). As their cumulated productivity and
knowledge increases, the propensity to win the lottery
for additional publications rises as well. This process re-
flects two stylized facts of scientific competition: First,
when a knowledge field is young, the scientific insights
that are achievable are greater (Rescher, 1978) and sec-
ond, scientists being the first to publish in a specific field
attain higher reputation due to the priority rule (Merton,
1957).

For a new knowledge field to emerge, (1) there must be
a minimum number of scientists who did not reach their
aspiration level in regard to knowledge growth, (2) this
state must have lasted for a minimum number of periods,
and (3) the agents need a minimum capacity, i.e. knowl-
edge, to engage in scientific search. The rationale for the
latter condition results from the fact that scientific inno-
vation is costly in terms of effort and risk and requires
a minimum amount of scientific capital to successfully
initiate a new field after all.

So far, the simulation model accounts for the first two
conditions (see Table 3). The minimum number of un-
satisfied agents is set to ten scientists, i.e. 10 per cent
of the population of one scientific discipline. This refer-
ence value follows a study by Fagerberg and Verspagen
on the emergence of the field of innovation studies in the
1960s which finds that the number of influential authors
to engage in this new field can be traced back to a group
of this size. The rationale for a minimum group size
is that some degree of shared knowledge and common
focus among unsatisfied scientists has to be developed
before a new knowledge field is able to thrive (Fager-
berg and Verspagen, 2009). This process takes time and
therefore, a number of periods is necessary to let unsatis-
fied agents adjust their research efforts. In the simulation
model, this start-up time is defined as periods with zero
growth of knowledge for the scientists under considera-
tion. The number is set to four, spanning a maximum
period of two successive scientific evaluations. Taking
the values as noted in Table 3 as input parameters for a
test run, a simulation has shown that out of 100 runs, 71
times one new knowledge field emerges in a lifecycle of
35 periods. Subsequent analysis will test the sensitivity
of the parameters used here.

DISCUSSION AND OUTLOOK
The utility-driven approach presented in this paper is a
fruitful approach to unfold the mechanism on the micro
and macro level. Two basic processes that drive the sci-
entist’s utility have been presented in this paper: At first,
the process of knowledge generation that accounts for the
depreciation of accumulated knowledge and diminishing
marginal returns of efforts, and secondly, the process of
how organizational inertia influences the scientists’ rep-
utation. Since it is argued that different utility types of



Parameter description Example values
Initialization
No. of knowledge fields within one scientific discipline 2
No. of scientists 100
No. of time steps 35
Parameter for half life of scientific knowledge θ 0.93 (≈ 10years)
Parameter for organizational inertia (1− δ) 0.5
Assignment of parameter α in utility function random ∈ [0, 1]
Maximum no. of additional publications
for ”lottery winner” in each period 2
Emergence of new knowledge field
Minimum no. of scientists to engage in new knowledge field 10
No. of periods (start-up time) until a new knowledge field can emerge 4
No. of times a new knowledge field emerges within 100 runs 71

Table 3: Parameters for the simulation model

scientists exist, some of them engage in new knowledge
fields and add to the advancement of science. This is ex-
plicitly accounted for in the simulation model. In the pre-
vious section the point was made that the attainment of
knowledge growth or reputation is costly since any kind
of effort (time, money, etc.) has to be spent on these ac-
tivities. This effort represents a disutility that has to be
accounted for. From what has been said so far, two as-
pects have to be considered. For some scientists, it may
be worth sticking to a specific knowledge field. They
are able to take advantage of scale effects in that each
additional publication is less costly and reduces the disu-
tility of effort. On the other hand, as a specific knowl-
edge field grows and tends to get more crowded, each
additional publication yields smaller returns. Scientists
consider this as a trade-off decision. Accordingly, as
scientists represent different utility types, they are pre-
sumed to differ in their decisions and willingness to take
the risk of engaging in new knowledge fields. The ex-
tent of disutility is determined by the resources that each
scientist is endowed with. On the macro level, the bud-
get allocation is a special representation of the institu-
tional setting within which the process of scientific co-
ordination unfolds. As budget allocation policies have
recently been subject to change, enforcing the competi-
tive or market-like character of science, considerable ef-
fects are expected concerning the coordination result of
scientific competition. In the context of the simulation
model, budget allocation policies are interpreted as a se-
lection environment that not only affect the decisions of
scientists, but implicitly act on the motives of scientists
(utility types). It is hypothesized that a growing share of
risk-averse utility types and imitative behavior emerges.
This is argued to have a negative effect on the coordina-
tion results, in particular the scientists’ propensity to en-
gage in innovative research and, by means of emerging
knowledge fields, contribution to the stock of scientific
knowledge.
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