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ABSTRACT

This paper presents an approach to automatically cre-
ate polygonal maps for environment modeling in simulators
based on 3D point cloud data gathered from 3D sensors like
laser scanners or RGB-D cameras. The input point clouds
are polygonalized using a modified Marching Cubes algo-
rithm and optimized using a pipeline of mesh reduction and
filtering steps. Optionally color information from the point
clouds can be used to generate textures for the reconstructed
geometry.

INTRODUCTION

Simulators play an important role in the development of
algorithms for robotic applications. They allow to test new
procedures on synthetically generated data before they are
evaluated on the real hardware. In simulators, the emulated
data is generated based on physical models and descriptions
of the used hardware and the environment the robot is inter-
acting with. Usually polygonal models are used to represent
robot and environment. Manual modeling is a time consum-
ing and tedious job, especially for complex geometries.

With the rapid development of 3D scanning technology,
real world objects can be scanned faster, more precisely and
at higher resolution. State of the art laser scanners are able
to acquire in the order of a hundred million points with one
single scan. Besides laser scanners, 3D or RGB-D cam-
eras like Microsoft Kinect can be used to digitize complex
scenes using specialized SLAM methods like (Henry et al.,
2010). Compared to a 3D laser scan, an RGB-D point cloud
lacks density and provides a low opening angle; however,
as the cameras deliver up to 30 frames per second, the data
accumulates to very large registered point clouds as well.

For the use in simulation raw point clouds are clumsy for
several reasons. First, large environments would require a
huge amount of points to be represented, and, consequently,
much memory is needed just to store the raw data. This
problem gets worse if search data structures like kd trees
are used to optimize queries like nearest neighbor searches,
needing additional memory. Second, even with optimized
search structures, run time is critical. Third and maybe most
important: Point clouds, by definition, only contain discrete

scan points. Even dense, high resolution point clouds are
no substitute for continuous surface representations that are
needed to use them as environment models for simulators
like Gazebo (Koenig and Howard, 2004).

A common solution to overcome these disadvantages is to
compute a polygonal mesh representation that approximates
the point cloud data. Being a standard data structure for ob-
ject modeling in computer graphics, optimal polygonal ap-
proximations are memory efficient, and efficient algorithms
for rendering and ray tracing are available. In the context
of mobile robotics, polygonal environment maps offer great
potential for applications ranging from usage in simulators,
virtual environment modeling for tele operation to robot lo-
calization by generating virtual scans via ray tracing. How-
ever, creating polygonal environment maps based on laser
scan data manually is a tedious job, hence quite a number of
automatic surface reconstruction algorithms have been de-
veloped over the past years.

The available surface reconstruction algorithms are usu-
ally optimized for special use cases and input data, but
generally deliver acceptable results. However, when using
them in robotic applications, several practical issues arise.
Most general surface reconstruction procedures would rep-
resent sharp features poorly and produce more triangles
than needed to approximate a surface, especially on planes.
Other problems occur when the input data is incomplete
due to scan shadows that yield holes in the reconstructed
meshes. Furthermore, many of reconstruction algorithms
like Power Crust (Amenta et al., 2001) and Poisson Recon-
struction (Kazhdan et al., 2006) rely on closed geometries,
which is generally not the case for arbitrary environments.

In this paper we present a software we call the Las Ve-
gas Surface Reconstruction Toolkit (LVR) (Las Vegas Sur-
face Reconstruction) (Wiemann et al., 2012) to automat-
ically create polygonal environment representations from
point cloud data that can be used for the simulation of typ-
ical environments in robotic applications. The reconstruc-
tion procedure basically consists of three steps: Initial mesh
generation using Marching Cubes, mesh optimization and
texture generation. All steps are performed automatically
without user interaction. The software can use the results of
the provided, efficient Marching Cubes implementations as
input, or, alternatively, can be used together with other sur-
face reconstruction implementations like the ones in CGAL
and PCL (Rusu and Cousins, 2011). We show the practi-
cal usability of the software by demonstrating the whole re-
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Fig. 1. Comparison of standard Marching Cubes (left) and Planar Marching Cubes (right). The contours of the marked areas show considerable discretization
artifacts when the original Marching Cubes algorithm is used. Planar Marching Cubes on the other side produces smooth contours.

construction process from point cloud to a textured polygon
map that is loaded into Gazebo and used to generate simu-
lated laser scan data.

The remainder of this paper is organized as follows: The
next section presents the state of the art in polygonal sur-
face reconstruction from point cloud data. The next part
presents the implemented mesh generation and optimiza-
tion techniques followed by an application example. The
last section concludes.

RELATED WORK

Automatic construction of meshes from point cloud data
has received much interest in computer graphics. The de-
facto standard method to generate triangle meshes is the
Marching Cubes algorithm (Lorensen and Cline, 1987),
which comes in a number of variants. (Newman and Yi,
2006) provides a comprehensive review. Marching Cubes
is an iso surface extraction algorithm, which means, a con-
tinuous mathematical scalar field description of the under-
lying surface is needed. Typically, the iso value of a sur-
face within this field is 0. The first method to approximate
a suitable representation for unorganized point cloud data
was developed by Hoppe et al (Hoppe et al., 1992). It uses
local approximations of so-called tangent planes to repre-
sent a signed distance function that defines a zero surface.
A variant of this method together with a GPU implemen-
tation of Marching Cubes is used in Kinect Fusion (Izadi
et al.) to create meshes of Kinect data in real time, but
this method is limited to a predefined maximum reconstruc-
tion volume. Other methods to create iso surfaces are vari-
ants of Moving Least Squares like APSS (Guennebaud and
Gross, 2007) and RIMLS (Öztireli et al., 2009), which are
both integrated in Meshlab. While there are reconstruc-
tion methods based on Marching Cubes, a number of al-
gorithms exist that directly triangulate point cloud data.
One example is the “Growing Cell Structures” (Annuth and
Bohn, 2010) that uses a neural network together with un-
supervised learning. Other direct methods are based on

Delaunay triangulations (Devillers, 2002) (Amenta et al.,
2001) or generate greedy triangulations like the one imple-
mented in PCL (Rusu and Cousins, 2011). Another suc-
cessful approach for closed geometries is Poisson Recon-
struction (Kazhdan et al., 2006). The drawback of these ap-
proaches is that they are sensitive to the quality of the input
data, since every data point is used in the triangulation, re-
sulting in uneven meshes in the presence of noise.

Surface reconstruction algorithms usually produce more
triangles than strictly needed to represent a surface. There-
fore after creating an initial triangulation of the input data,
meshes are usually optimized. Most of the respective al-
gorithms rely on calculating the cost of removing vertices
or faces (Garland and Heckbert) (Melax, 1998) and itera-
tively remove the elements that cause the lowest geometric
error. (Hoppe et al., 1992) uses a similar approach, but in-
stead of measuring the local error, a global error sum is used
to determine the redundant triangles. These methods work
well for curved models, but in meshes with many sharp fea-
tures, the sharp edges will ultimately blur out. The mesh
optimization steps presented in this paper aim at optimizing
planar patches bounded by sharp edges, to get an improved
triangle mesh.

MAP GENERATION

Our map generation procedure consists of three main
parts: Mesh generation, mesh optimization and texturing.
The details of the single processing steps are described in
the following sections.

Initial Mesh Generation

Many robotic environments are mostly planar. This fact
has to be taken into account when choosing the mesh gen-
eration method. Our experience has shown, that Marching
Cubes based approaches deliver the best results for arbitrary
geometries since they do not rely on special properties like
convexity, can handle holes in the input data correctly and
are very fast and memory efficient. For the task at hand



Fig. 2. Region growing based plane detection in the initial reconstructions. Different colors signal different planes. Note that the regions on the ceiling are
separated in the first clustering step due to noise (left). Applying the algorithm repeatedly, clusters can be fused (middle) until the whole ceiling plane is finally
extracted (right).

we use a modified implementation we call Planar Marching
Cubes, that is optimized for planar reconstructions. It uses
Hoppe’s distance function (Hoppe et al., 1992) together with
an optimized normal estimation procedure (Wiemann et al.,
2012).

The basic idea of Marching Cubes is to calculate the in-
tersection of a surface with a cell within a voxel grid and
use precomputed approximation patterns to generate a trian-
gular approximation of the surface’s course within the cell.
The main problem when approximating planar surfaces is
that the classic Marching Cubes approach cannot detect if a
surface ends within a cell, due to the fact, that interpolation
is only done in one dimension. This results in a noticeable
discretization of the reconstruction of planar regions. Our
Marching Cubes implementation is optimized to represent
the contours of planar objects correctly to create realistic
environment models. To model the ending of a surface cor-
rectly, we project the created vertices in planar configuration
on the nearest data point. This way, we achieve a surface ap-
proximation in two dimensions, which results in noticeably
better reconstruction, as shown in Fig. 1.

Mesh Optimization

The most noticeable drawback when using Marching
Cubes for mesh generation is that the algorithm produces
far more triangles than necessary to approximate planar re-
gions, a fact that can also be witnessed in Fig. 1. Since the
reconstructions shall be used in simulators, it is mandatory
to keep the number of triangles as low as possible to en-
sure a high update rate of the simulated sensor data. On the
other hand, for accurate results, the used polygon map has
to be geometrically correct. The Marching Cubes algorithm
also is very sensitive to noise, too, resulting in unevenness
of the reconstructed planes, which can be seen in the lower
left corner of the presented figure. Another problem is the
approximation of sharp features. These are usually blurred
out due to the used approximation patters. Kobbelt (Kobbelt
et al., 2001) describes a technique to reconstruct sharp fea-
tures, but the used heuristics to identify sharp bends and cor-
ners do not work in noisy data. Therefore we implemented
several mesh optimization steps to make the reconstruction
feasible for the use in simulators.

Fig. 3. Optimization of plane intersections. The left image shows the
original reconstruction of a bend between two walls (red). The right picture
shows the triangle mesh after optimizing the the intersection vertices.

The first step is the optimization of planar regions. To
detect planes, we use a region growing based approach.
Region-growing is done by checking if the surrounding tri-
angles of an arbitrarily chosen start triangle have a similar
surface normal. As long as the normal of a neighbor trian-
gle does not differ more than a user defined threshold from
the start triangle, a new search is started recursively from
this triangle. This process is carried on, until a bend in the
surface is detected. To reduce the noise in the planar re-
gions, we calculate the plane equation using a RANSAC
based fit to all vertices and project them into the common
plane. Since this process changes the initial geometry, we
re-start the region growing afterwards, to fuse regions that
may have been separated due to the normal criterion in the
first place. This process is repeated until convergence. For
the results of this interactive plane detection, see Fig. 2.

After detecting the planes in the mesh, we calculate the
exact intersections between them to approximate sharp fea-
tures between walls, floor and ceiling. To enhance the mesh,
we stretch the vertices of triangles near a calculated straight
line onto it. The effect on the reconstruction is in Fig. 3.

To reduce the number of triangles in the mesh, we ex-
tract and fuse the contour edges of the found planes and
re-triangulate them using the OpenGL tesselator. To create
an optimal 2D polygon representation of the boundary of a
region with a minimal number of vertices we use the Dou-
glas Peucker optimization algorithm (Douglas and Peucker,
1973). Fig. 4 shows an example. The left picture shows the
initial mesh. The right picture displays the effect of intersec-
tion optimization and mesh reduction via re-triangulation.



Fig. 4. Mesh reduction via re-triangulation.

Fig. 5. Exemplary result of the “Hole Filling” function. Before (left) and
after (right) application.

The optimized mesh represents sharp features correctly and
the number of triangles in the planar regions is significantly
reduced, while curved surfaces (bottles) are still represented
with the original geometry.

Another optimization feature is hole filling. The hole fill-
ing algorithm performs a contour tracking on the mesh and
collects all holes up to a certain size which is given by the
number of edges in the contour. In a second step the edges
of each hole are collapsed using an edge collapse operation
until there are only three edges left per hole. The remaining
triangle holes are closed by adding new faces to the mesh
which close those holes. Fig. 5 displays an application ex-
ample.

Besides the presented optimization features, we have im-
plemented a number of several other filters to reduce arti-
facts due to sensor noise and outliers. A full overview of
available features can be found on the LVR website (Las
Vegas Surface Reconstruction).

Texture Generation

If the input data contains any information that can be
mapped to color values, e.g. RGB information, reflectiv-
ity values, thermal data etc., LVR can convert these values
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Fig. 6. Finding the right coordinate system for texture generation. In the
presented case, an axis aligned pixel grid (a) would result in a lot of unused
space (gray). An aligned bounding box would reduce this space (b). The
actual pixel map as calculated as shown in (c).

into textures for the generated polygons. Texture genera-
tion is done by putting a rectangular grid of fixed cell size
t over each polygon. The voxelsize of the grid determines
the resolution of the texture image. For each cell in the grid,
a color value is calculated by averaging the colors of the k
nearest points in the given point cloud. To keep the textures
small, it is necessary to find a grid alignment that maximizes
the used area (cf. Fig. 6). In the presented example, an axis
aligned pixel grid would contain a large amount of unused
pixels (gray) while an image in the green coordinate system
would be significantly smaller (only 70% of the axis aligned
version). To determine the best alignment we compute the
Principle Component Analysis (PCA) of the polygon ver-
tices. The first two eigenvectors of the result deliver a good
estimation for the alignment of the polygon in the global
coordinate system, thus we define the pixel matrix by deter-
mining the bounding box of the polygon in this local system
defined by X ′ and Y ′.

For practical reasons, textures are only calculated for re-
gions above a certain size. Small regions and single trian-
gles are assigned with a single color value to save texture
memory and speed up the meshing process. An example of
a textured reconstruction is shown in Fig. 7. The left picture
shows the input point cloud taken with a Faro laser scanner.
The picture in the middle shows the optimized reconstruc-
tion. The textured mesh is shown on the right. The large
areas on floor, wall and ceiling are textured while the small
regions are represented by single colored triangles. It is ob-
vious, that the colored and textured mesh encodes far more
information than the pure geometry like the representation
of cobblestones on the floor and panels below the ceiling,
which are difficult to model geometrically.

The achievable texture quality strongly depends on the
quality of the input data. Low point densities will cause
blurry textures while dense point cloud data will allow to
choose a high resolution for texture generation. For fast
rendering the texture resolution shouldn’t be too high, since
the planar regions can become quite large after reconstruc-
tion and the maximum texture size is limited by the graphics
hardware.

APPLICATION EXAMPLE

With the methods present above it is possible create high
quality textured reconstructions from point cloud data. To
prove their usability in simulators we will present an actual
application example, where the point cloud data acquired by
a 3D laser is automatically processed into a polygonal map
that in turn is used in Gazebo to simulate the environment.
We will then spawn a robot into the simulation and collect
simulated 2D laser scans. The reconstruction will be fully
automated without any user interaction or manual editing.

Input Data and Environment Description

As input data we will use a point cloud that was taken
at a lecture hall at Osnabrück University called “Reithalle”.
The data set consists of 6 high resolution laser scans cap-
tured with a Leica HDS 6000 laser scanner. The scans were
aligned automatically using slam6d (Nüchter et al., 2012)
using special markers for initial pose estimation. The laser
scanner delivers no color information about the environ-



Fig. 7. Textured mesh generation from colored point cloud data: The input point cloud (left), the optimized mesh (middle) and the textured reconstruction
(right).

Fig. 8. The input point cloud used in the experiment.

ment, but it returns a reflectance value for each point, that
can be used to generate gray scale textures. A rendering of
the point cloud is shown in Fig. 8. The environment was
chosen to demonstrate the ability to handle large data sets
and extensive environments. The geometry of the area is
mostly planar and shows drivable surfaces, so that it makes
sense to use it in a simulation.

Reconstruction Results

Fig. 9 shows the results of the reconstruction process. The
left image shows the initial Marching Cubes reconstruction
from the input data. Please note the unevenness on the floor
plane due to sensor noise and the smooth transitions be-
tween walls and ceilings. The picture in the middle shows
the optimized mesh after plane detection, intersection cal-
culation and hole filling. The reconstructed planes show no
noise, the intersections are sharp. Due to the plane optimiza-
tion, some details have been erased from the initial mesh
like the door on the right front wall. With texturing this is
usually no problem, since these features are represented in
the calculated textures, as the picture on the right shows.

The input point cloud contained about 14 million data
points. The initial Marching Cubes Reconstruction gener-
ated a mesh consisting of 371.640 triangles. This number
was reduced down to 98.464 triangles after mesh optimiza-
tion. The computation time for initial mesh generation was
1:14 minutes on an Intel Core i7 system with 16 GB RAM.
Automatic mesh optimization only took 14 s, texture gener-
ation another 2:23 minutes. The main bottle neck in the

reconstruction is the nearest neighbor search, that has to
be performed to estimate the normals for distance function
evaluation and to calculate the textures. Currently we are us-
ing FLANN (Muja and Lowe, 2009) and OpenMP to paral-
lelize the process. The example demonstrates that our mesh
optimization procedure is very efficient and can reduce the
number of triangles in the reconstructions significantly. We
have tested the optimization with meshes from other mesh
generation software (actually the initial mesh in Fig. 4 was
created with Kinect Fusion) as well and are currently plan-
ning to integrate some algorithms into PCL.

Using the Reconstruction in Gazebo

In our test we have exported the reconstruction into the
Collada file format and loaded the mesh into Gazebo. Via
the ROS connection of this simulation environment we were
able to spawn a model of a Kurt robot (Albrecht et al., 2006)
into the reconstructed environment. In our experiments it
showed that the rendering front end of Gazebo experienced
problems to render the mesh, although the physics simula-
tion was working correctly. The problem here was that the
generated environment model was not generated via CSG
(Constructive Solid Geometry). Models generated using
that technique are always close, i.e. a face is alway point-
ing towards the spectated. Our meshes on the other hand
are single sided, so consequently faces that were not point-
ing the camera were removed by the renderer (“Back Face
Culling”), as can been seen Fig. 10. A quick fix for that
problem was to insert each triangle twice with opposite nor-
mal directions. We admit that this is merely a hack, but for
the time being it solved the rendering problems we experi-
enced.

To check the simulation we navigated the Kurt robot via
a ROS node. The model of the robot included the simula-
tion of the robot chassis with differential drive and a Sick
LMS200 2D Laserscanner. Visualization of the robot posi-
tion and the laser scan were done in RVIZ. Our tests proved
that the simulation behaved as expected including gravity
and collision detection between robot model and environ-
ment. Using the double sided reference model, we expe-
rienced no performance issues while navigating the robot.
An example of an simulated 2D laser scan together with the
corresponding geometry is shown in Fig. 12. The left im-
age shows a rendering of the reconstructed model from the



Fig. 9. Reconstruction of the “Reithalle” data set. The images show the initial reconstruction (left), the optimized mesh (middle) and the textured model
visualized the reflectance values of the laser scanner.

Fig. 10. Rendering of the reconstruction in Gazebo. Without double in-
serting all triangles the ones that point away from the camera are removed
(left). If we double insert the faces with flipped normals the rendering is
correct (right).

point of view of the robot. The red line indicates the height
of the simulated laser scan. The image in the right shows
the visualization of the robot’s pose and the simulated scan
data. From the image it becomes clear that simulated data
and loaded geometry match as expected.

DISCUSSION

The presented experiment has shown that LVR recon-
structions can be used as environment models in robotic
simulation environments. The main problem here is to ex-
port the generated polygon models into a data format that
can be interpreted by the selected simulator. In case of the
Gazebo example we were able to generate a Collada export
that was correctly rendered and handled as expected by the
simulator. Other simulators like USARSim use proprietary
file formats which are not that easy to implement. In prin-
ciple it may be possible to export the generated meshes to
other file formats and re-import them into the proprietary
editors, but there is always the risk of loss of information
when converting file formats.

In the presented experiment we focused on pure geom-
etry, i.e., we did not evaluate the benefits of the generated
textures in the simulator. As shown in Fig. 9, the inclusion
of texture information can add more information about the
environment then bare geometry, namely the position of the
door and signs on the walls. Currently we are not convinced
that the quality of textures is high enough to use simulated
camera data for vision based robotic applications, so we did
not include textures in the simulation. For other purposes
like virtual reality or human robot interaction textured mod-
els can enhance the human perception of the reconstructed
environment significantly.

Fig. 11. Textured reconstruction from a Kinect point cloud. The quality of
the reconstructed geometry is acceptable, the quality of the textures is poor
due to the relatively sparse point density.

The presented reconstruction was created using a high
resolution laser scanner. Since this kind of sensor is not
commonly available on robotic platforms we have also eval-
uated our reconstruction software on other 3D data like ro-
tating and tilted 2D SICK laser scanners and Kinect data.
An example reconstruction for the latter shows Fig. 11. This
demonstrates that in principle these sensors can be used as
well, but noise and the need of registering a lot of frames
make handling uncomfortable. A full evaluation of geomet-
ric precision of the generated models from different sensors
is beyond the scope of this paper and will be subject of forth-
coming publications. For the proof of concept we concen-
trated on high quality data.

CONCLUSION AND FUTURE WORK

In this paper we have presented an application example
where an automatically created polygon model from point
cloud data was used as environment model in an robotic
simulator. The reconstruction was computed automatically
without user interaction. Reconstruction time was less than
4 minutes, which is, especially for complex geometries,
quite small compared to the expected effort that is needed
to build a model manually.

Future research will concentrate on integration of out-of-
core data handling to process even larger data sets. Another
interesting field of research is the improvement of texture
usage. Currently we generate potentially large textures. By
searching for regular patterns it will be possible to reduce
the amount of pixel data needed.
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