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ABSTRACT

Spatially coherent structures and propagating waves
of neural activity are commonly found throughout the
central nervous system. These activity profiles are rep-
resented in both natural and pathological phenomena.
We explore a two-layer neural field model dually con-
strained by local interactions and a cortical topography
described by a ring topology neural network. We exam-
ine the conditions for the generation of wave solutions.
The constraints on neuronal network computation im-
plied by the dual local constraints may place further
constraints on global cortical network architecture to
achieve physiologically consistent wave behavior.

INTRODUCTION

Spatially coherent activity states are ubiquitous
throughout the central nervous system and in obser-
vations from voltage-sensitive dye imaging (VSDI) and
multi-electrode arrays (Wu et al., 2008). These pat-
terns including localized activity states, spatially ho-
mogeneous oscillations, and wave behavior, may play
important roles in neo-cortical processing and nervous
system development. These behaviors can arise as an
emergent behavior from interacting neural populations
(Amari, 1977; Wu et al., 2008). Recurrent network
connections have long been proposed as a mechanism
for the formation of such patterns observed in many
phenomena including feature selectivity in the visual
system (Somers et al., 1995; Hansel and Sompolin-
sky, 1998), working memory (Amit and Brunel, 1997),
head direction system (Zhang, 1996), motion percep-
tion (Giese, 1998), and in describing EEG rhythms
(Nunez, 1995), local field potential spectra (Pinotsis
et al., 2012), and wave behavior (Coombes, 2005). Un-
derstanding the mechanisms that contribute to the gen-
eration of such patterns is important for understanding
a host of both natural and pathologic neurobiological
behaviors. Propagating waves are observed as sensory
evoked waves in cortex, epileptiform waves underlying
epileptic seizures, and spontaneous waves of cortical
activity, the latter may be of particular import for cor-
tical processing (Wu et al., 2008).

In this report we follow a framework for studying spa-
tially coherent structures and waves of activity in neu-
ral fields introduced by Amari (Amari, 1977). Amari
demonstrated how the predominantly local interactions
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in neural populations give rise to localized activity
states, oscillations, and stationary traveling waves of
activity in a neural field model defined over the real
line. Such neural field models are tissue level descrip-
tions of mean membrane potential. In addition to local
interactions, topographic maps of sensory features are
ubiquitous in cortical sensory systems and some motor
systems and may play fundamental roles in sensory pro-
cessing (Woolsey et al., 1942; Hubel and Wiesel, 1977;
Kass, 1997; Silver and Kastner, 2009; Wilimzig et al.,
2012). These maps provide a functional network archi-
tecture that we explore within the neural field frame-
work presented by Amari. Advances in VSDI have al-
lowed for the in vivo measuring of population responses
in superficial cortical layers at high spatial and tempo-
ral resolution (Grinvald and Hildesheim, 2004). Tak-
ing a cue from the columnar topographic organization
of the topographic map for orientation tuning in pri-
mate cortex (Blasdel and Salama, 1986) we explore ring
topology neural fields.

The interaction of local processing by neural net-
works and stimulus topography places a strong con-
straint on cortical processing. Distributions of pre-
ferred features may maximize sensitivity through-
out the stimulus space (Purushothaman and Bradley,
2004). It has been proposed in primary visual corti-
cal area V1 that the structure of natural stimuli may
well serve to shape the network architecture in area V1
(Simoncelli and Olshausen, 2001; Singh et al., 2008).
For associative learning tasks, the interaction of local
processing and topography may result in a biased dis-
tribution of preferred stimulus (Fitzgerald et al., 2013).
Indeed, the interaction of local processing and compact
topologies implied solely by regular topography of cor-
tical regions for feature selectivity has demonstrated
new results for single layer neural fields (Haskell and
Bressloff, 2003; Haskell and Paksoy, 2011). We provide
a taxonomy of standing wave solutions in two layer
neural fields showing that regions of tri-stability ob-
served in single layer fields are also observable in two
layer neural fields. We point out that the topology of
feature space does not play a factor in homogeneous os-
cillations but owing to the periodic nature of the ring
topology prohibits the formation of traveling front so-
lutions which are observable in single layer neural fields
defined over the real line.



NEURAL FIELD MODEL

Subthreshold level neuronal activity is reflected in
recordings from VSDI that represents local mean mem-
brane potential. From the VSDI measurement a predic-
tion of spiking activity by neurons can be made (Chen
et al., 2012). The local network processing of this spik-
ing activity results in many emergent behaviors includ-
ing localized activity states, oscillations, and propagat-
ing waves of neural activity (Amari, 1977; Coombes,
2005).

For our model, we consider a continuum of neurons
distributed on a ring domain indexed by a stimulus
variable 6 € [—m, 7). Here § may represent for example
the orientation selectivity of a neuron in cortical area
V1 which maps directly by the topography of V1 to a
continuous position variable. The evolution equation
for the mean membrane potential, u;(6,t), for neurons
in a m layer network indexed by ¢ receiving a homoge-
nous external input h; and an inhomogeneous external
input s;(6,t) is of the form:

Ou; (93 t)
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where w;;(0]6") is a connectivity function representing
the mean synaptic efficacy from a neuron at a position
6" in layer j to a neuron at position 6 in layer 4, flw]isa
transduction function from the mean membrane poten-
tial, u;, to the mean rate of spiking activity or activity
level and 7; > 0 is the time constant for the dynamics
of the type of neuron represented in layer 4, f[u] should
be a non-decreasing saturating function. The simplest
choice that exhibits non-trivial dynamics is a Heavi-
side function where the neuron is fully active when the
mean membrane potential is above a firing threshold
and inactive otherwise (Amari, 1977; Coombes, 2005;
Haskell and Bressloff, 2003; Haskell and Paksoy, 2011).
As such, we choose such a function for the analysis
presented below:

f={ § He ®

0 otherwise

Experimental evidence suggests that local circuits
operate with neurons connecting to most of their neigh-
bors in a manner that is approximately isotropic and
homogeneous (Douglas et al., 1995) as such, we con-
sider a connectivity function wij(9\9/) that depends
only on the relative distance in the case of a position
variable or feature dissonance in the case of a feature
variable between neurons. In the ring topology this
is measured as angular separation, 6 — 6 (Ben-Yishai
et al., 1995; Somers et al., 1995; Haskell and Bressloff,
2003). As well, experimental evidence in orientation
preference maps suggests that intracortical excitatory
and inhibitory synaptic currents are distributed with
differences in preferred orientation (Roerig and Chen,
2002). This homogeneity of the neural field implies

a rotational symmetry for the connectivity function
that is invariant to the O(2) symmetry group of co-
ordinate rotations and reflections in the ring. Thus
w;;(0]6") with w;;(#) a 2n-periodic even function of 6,
w;;(0) = w;i; (0 + 2m) = w;;(—0) . Any such connectiv-
ity function can be written as a cosine series expansion:

w;;(8) = Wi+ Z W,zj cos(k0)

k>0

Considering only the first two terms of the expansion,
wi; (0) = W + W7 cos(6),

is sufficient for non-trivial results (Ben-Yishai et al.,
1997; Haskell and Bressloff, 2003; Haskell and Paksoy,
2011). Single layer neural fields (m=1) of lateral in-
hibition type and ring topology with only first two
components of the weighting kernel have previously
been demonstrated to exhibit stable localized activity
states where only a local region of the neural field is
active (Haskell and Bressloff, 2003; Haskell and Pak-
soy, 2011). Lateral inhibition type neural fields cor-
respond to a local connectivity where neurons in close
proximity are mutually excitatory while those more dis-
tal are mutually inhibitory requiring Wit > Wit and
Wit + Wit > 0. When Wt > Wit > 0 for a layer i,
the layer is self excitatory.

The discrete layers can be used to represent the
heterogeneity of neurons collocated in a cortical tis-
sue. Differences in effective membrane properties
and synaptic filtering and latency would be encap-
sulated respectively in the membrane time constant,
7; , and time-dependent synaptic efficacy function,
w;;(0;,0;,t). Studies of the general properties of cor-
tical networks commonly pool neurons into two lay-
ers representing excitatory cells and inhibitory cells
respectively (Wilson and Cowan, 1973; Amari, 1977;
Haskell and Bressloff, 2003; Haskell and Paksoy, 2011;
Ben-Yishai et al., 1997; Pinto and Ermentrout, 2001;
Blomquist et al., 2005). To study the formation
of spatio-temporal patterns in a topographically con-
strained network with local interactions, we consider
the system (1) with m = 2 as a two layer neural field
(Amari, 1977; Ben-Yishai et al., 1997; Salomon and
Haskell, 2012).

For the two layer neural field we utilize the Amari
type connectivity where the excitatory neurons (layer
1) receives input from both layers 1 and 2; while, in-
hibitory neurons (layer 2) receive only excitatory input
from neurons in layer 1 that share the same position
variable 6 (W2 = 0). Thus the two layer version of
system (1) may be written as:

’
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Ty = —ug(0,t) + W flua(6,t)] + ho (3)



In order to prevent layer 2 from being persistently fully
active (i.e. wug(f,t) > 0,V0 t ) we require hy < 0;
however, for layer 2 to be able to provide feedback to
layer 1 we must have W&l > —hs.

A segregation of the collocated neurons into a layer
of excitatory (layer 1) and inhibitory (layer 2) neurons
corresponds to Wit > Wl and Wj? > W% Note
that for the description of the connectivity function
the excitatory and inhibitory interactions are maximal
for neurons with similar feature preference consistent
with experimental findings (Roerig and Chen, 2002).
In the visual cortex of ferret it has been demonstrated
that the overwhelming majority of cortical inputs are
local with excitatory inputs being very narrowly tuned
to the orientation preference of the cells and inhibitory
inputs showing a broader tuning with excitatory post-
synaptic currents being dominant from cells with simi-
lar orientation preference and inhibitory post-synaptic
currents dominant for cells with dissimilar orientation
preference (Roerig and Chen, 2002). This is modeled
in the two layer neural field (3) by setting Wil + Wil >
We2 + Wi2 and Wit — Wit < W2 — W2, Note that
in the ferret study the excitatory connections are lo-
calized to stimulus feature but not physical location.
That is, the connections span across the cortical hy-
percolumn to the next patch of neurons with similar
orientation preference. As such, from a computational
perspective, the periodic boundary conditions provide
an extension to a periodic media. That is, the travel-
ing wave solutions we find are traveling periodic pulses
in sense that u;(0,t — to) = u;(0 + vig,t) where v is
an unknown wave velocity and 6 + vty is understood to
be appropriately shifted by a multiple of 27 (Shigesada
and Kawasaki, 1997).

STANDING WAVES

Standing waves manifest as equilibrium solutions,
u;(0,t) = U;(0), with continuous regions where the field
is active within a given region and inactive outside that
region. The active region of the field is characterized
by the set function:

R[U] = {0|U:(0) > 0}

Two layer Wilson-Cowan equations have been shown to
present paired pulse solutions over the real line (Pinto
and Ermentrout, 2001; Blomquist et al., 2005) and in
ring topologies (Ben-Yishai et al., 1997). For single
layer neural field models with compact network topolo-
gies and connectivity functions modeled by first order
harmonics, a full taxonomy of the localized activity
states demonstrates parameter regimes of tri-stability
and ability to form localized activity states with ho-
mogenous excitatory input (Haskell and Bressloff, 2003;
Haskell and Paksoy, 2011). In this section we extend
that discussion to the two layer ring topology setting
and show regimes of tri-stability and paired pulse solu-
tion with homogeneous excitatory input.

Following the Amari analysis for the formation of lo-
calized activity states in a single layer, we construct

a pair of standing pulse solutions (Amari, 1977; Pinto
and Ermentrout, 2001; Blomquist et al., 2005). With-
out loss of generality we consider the standing pulse in
layer 1 to be centered at # = 0 with an unknown width
2a < 2m,that is, R[U1] = (—a,a) . For Wit > —hy we
find R[Us] = (—a,a) otherwise R[Us] = 0. The time
independent solution for layer 2 is:

[ Wi+ hy —a<f<a
U2(0) = { ho otherwise

and layer 1:
[71(9) 1 <(’”711 VV12)(I
s 0 0

+ (Wit — W?) sin(a) cos(@)) + hy. (4)

The unknown value a is then found by solving the re-
lation U;(+a) = 0. As U;(#) is an even function, it is
sufficient to consider only 8 = a and seek solutions of

W(a)+hi =0
where,

1 Wll _ W12
Wia) = = (W3 =Wg?)at+———1

sin(2a)). (5)
We extend to two layer neural field setting our pre-
vious found implications of (5) for single layer neu-
ral fields in compact topologies (Haskell and Bressloff,
2003; Haskell and Paksoy, 2011).
Theorem 1: In the absence of inhomogeneous input:
a) There exists a quiescent state if and only if hy < 0.
b) There exists a fully active state if and only if

Wi > W2 — hy.
¢) There exists a standing wave if and only if

W (a)+h =0 for some a € (0,7) and Wil > W2 .
Proof:
a) The quiescent state corresponds to no activity in
layer 1 or 2 so that R[U;] = 0, R[U2] = 0 implying
Ui(0) = hy and Us(f) = hy. This requires h; < 0.
From the model assumptions hy < 0. If hy < 0 then
U1(0) = hy yields a quiescent state to the system.
b) A fully active state corresponds to R[U;] = [—m, 7).
This implies that Ui(f) = Wg' — W32 + hy and
Uz(9) = WE' + he. This requires the mean drive a
neuron receives from recurrent connections in layer 1
to be greater than the net mean input the neuron re-
ceives from layer 2 and the homogeneous drive, that
is, Wgt > W42 — hy. Note that W@l + hy > 0
by model assumption. If Wil > Wd2 — hy then
Ui(0) = Wt — W2 + hy is a fully active state.
c) For R[U;] = (—a,a),i =1,2,U1() > 0for —a < 6 <
a,U1(0) <0 for a < |0 <, and Uy(8) =0 for § = +a
. Such a solution with U;(#) = 0 for § = +a occurs if
and only if W(a)+h = 0. Noting that (4) is a monoton-
ically decreasing (increasing) function for Wit > Wi?
(Wi < W2) then U;(0) < 0 for a < || < 7 requires
Wit > W2,

A taxonomy for the standing wave solutions summa-
rized in figure 1 derives from the existence requirement
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Fig. 1. Equilibrium solutions for various values of hj. The ex-
istence of quiescent (0), fully active (7), and localized activity
states (a;,a1 < a2 < asz) are indicated with the corresponding
range of hi indicated. Unstable localized activity states are in-
dicated with a tilde.

that the modulation of the mean input a layer 1 neu-
ron receives from recurrent connections within layer 1
exceed that received from layer 2 (Wil > W}2). These
solutions can be separated into two distinct cases where
the mean input from recurrent connections within layer
1 exceeds or is exceeded by that received from layer 2.
Respectively these two cases are represented by case 1
where Wit > W2 and case 2 where W1 < W32
Case la:Wj!' + Wil < W2 + W% In this case
W (a) has no stationary points and is a monotonically
decreasing function. There is a standing wave when
0<hy <Wg' =W

Case 1b:Wjt+ Wit > W2+ W2 W(a) has two sta-
tionary points with Wi,a > 0 > Wi where Wi ae
and W,,;, indicate the maximum and minimum val-
ues of W(a) respectively. There are two regions of bi-
stability with the standing wave and either the quies-
cent or fully active state both stable.

Case 2a: 0 < W' — W2 < Wil — W% W(a) has
no stationary points and is a monotonically increasing
function. There is no stable standing wave; however
there is a region with an unstable standing wave sepa-
rating a stable quiescent and all active state.

Case 2b: Wl — W2 < W — Wi < (Wil — W)
W (a) has two stationary points with Wy, > 0. We
find not just regions of mono- and bi-stability with the
quiescent or all active state but also a region of tri-

stability when —W,,4 < h1 < Winin where stable qui-
escent and all active states are found along with a stable
standing wave. The value v ~ 4.6 separates the region
where Wy, > 0 and Wy, < 0 is found numerically
(Haskell and Paksoy, 2011).

Case 2c: y(Wg'=W(?) < W —W{?: Asin 2b W (a)
has two stationary points with W40 > 0 > Wiy, We
again find regions of mono-, bi-, and tri-stability. We
note that there is a region of bi-stability between the
localized activity state and the fully active state for
some positive h; values.

In the development of the two-layer field model, we
required both hy < 0 and W@t > —hy > 0. Relax-
ing either of these requirements reduces the question
of standing pulses in layer 1 to the case we previ-
ously studied for single layer neural fields with com-
pact topology (Haskell and Bressloff, 2003; Haskell
and Paksoy, 2011). In the case where hy < 0
and W@l < —hy we find R[Us] = 0 and W(a) =
%(Woha + W2111 sin(2a)>. In the case where hy > 0
and WZ' > 0 we find R[Us] = S! and W(a) =
%(Wolla + W2111 sin(2a) — W2
case finding solutions to W (a)+hy = 0 effectively shifts
the values of hy that separate different equilibrium be-
haviors found for a given parameterization previously
found by W2.

>. In this latter special

OSCILLATIONS

Oscillations are defined here as spatially homoge-
neous solutions where every neuron in a given layer is
either active (u; > 0) or inactive (u; < 0 ) independent
of the feature or position variable, i.e. u;(0,t) = u;(t).

For the ring topology, the connectivity function,
w(#), was expressed as a cosine series. More gener-
ally, any integrable function f(Z) can be expressed in
an infinite series expansion using a set of orthonormal
basis functions, By, 4,....i, (%) , for the function space:

.
Y " Girinin Bivin.oin ()

11,82,0-0y0n

f(@) =

where By, i,....i, (¥) satisfies the orthogonality relations

J Bisiz..osin () Biy o, (£)D(E)
| 0 if 4 #jr for some k
1 1 if 4 =g foreachk

and D(Z) is the integration measure on the space.
Given the orthogonality of the basis functions we have
[ F(@)D(Z) = ao,,....0- As such the oscillations are not
influenced by the topology of the feature space.

Integrating over 6, the system (3) reduces to the sys-
tem of ordinary differential equations:

n G = () + W e (0]~ Wi S fua0)] +
R = ua(t) + W s (0] + g (



We summarize the conditions for monostable, bistable,
and oscillatory behavior in a spatially homogeneous
network given in Amari (Amari, 1977). Depending on
the sign of u; and us the system will seek to move to
a corresponding equilibrium point in the (u1, u2) phase
plane which is shifted between the quadrants by the
value of hy and hs. Thus depending on the value of hy
and hy when Wit > W32 the system (6) exhibits either
monostable or bistable behavior. When Wit < W2,
the system (6) can exhibit monostable, bistable, or os-
cillatory behavior depending on the values h; and ho.

TRAVELING WAVE SOLUTIONS

Pairs of propagating pulses in the Wilson-Cowan equa-
tions with ring topology are obtained for networks
where the excitatory layer receive isotropic excitatory
external input (Ben-Yishai et al., 1997). We demon-
strate the existence of pulse pairs when the excitatory
layer receives isotropic inhibitory external input. Single
layer neural fields over the real line may demonstrate
traveling front solutions (Coombes, 2005). However, in
the ring topology such traveling front solutions can not
occur.

When the two layer neural field (3) exhibits a pair
of propagating pulse solutions, we can express the so-
lution in terms of the stationary waveforms:

ui(evt) = 91(0 - ’Ut),i =1,2

Where ¢g; and go are the wave forms in layers 1 and 2
and v is the unknown wave velocity. Introducing the
new variable y = 6 — vt we rewrite the system (3):

dy.

“ong == 0@+ [enl-y)lnw )5

’
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~vTagy = —ga(y) + W5 flgr(y)] + ho (8)

Where g; (y) = (ilgy". Without loss of generality we as-
sume that the wave form in layer 1 is centered at y = 0
and the unknown width of the excited region is 2a. The
excited regions of the field for layer 1 and 2 are:

R[gl] = (_a7a)7 R[QQ] = (y1,92)

where y; < yo denote the unknown boundaries of the
excited region of layer 2. Under the boundary condition
g2(—7) = go(m) reflecting the periodic nature of the
ring topology we find explicit solution to (8):

92(y) =
ngweﬂ + hy —r<y<-a
sinh (11:2) B
ngsi“h(?v?;)e%+wgl+h2 —a<y<a
sinh (“’;2)
WO21 sinh (";2) eyu:; + ho a<ly<m
sinh (v:z) h

As the waveform in layer 2 trails layer 1, 0 < yo < a.
From go(y2) = 0, yo is found:

— 021 — ho
w2l sinh (%)
O\ sinn (5z;)
However, given the periodic nature of the ring topol-
ogy y1 could lie in either the region —m < y; < —a or
a < y; < 7 depending on the layer 2 membrane prop-
erties (72), strength of the drive from layer 1 to layer
2 (WZ1), the width and velocity of the wave in layer 1

(2a,v), and the level of homogeneous input to level 2
(h2). When —7 < y; < —a then y; = y, where:

—hy

21 sinh (%)
WO (sinh (;7: ) >

Yo = vToIn

9)

Yo = VT2 In - (10)

Otherwise, y; = y, + 27 admissible regions.

The expressions for y; and y, imply two necessary
conditions for the existence of traveling wave solutions
with non-zero wave velocity for the two layer neural
field model. These conditions are he < 0 from (10)
and WE! > —hy from (9). Violation of either of these
necessary conditions could potentially lead to a stand-
ing wave solution in layer 1 previously described. Note
that the values for y; and y, depend upon the unknown
values a and v.

Given R[g2] we solve for g;(y). Rewriting (7) as:

—Uﬁg; =-q1(y) + K(y) +

a , d ’ , d ’
K = [ w95~ [ w15
—a g2
ZQL <2aW011 — Wol2Ay + 2W 1 sin(a) cos(y)
™
A
— 2W{%sin (Ty) cos(y — gj))

and Ay and g are the width and center respectively of
the layer 2 waveform. When v > 0 and —7 < y; < —a,
_ e
Ay =y —y1 and y = L7
With boundary condition gi(—m) = gi(7), an ex-
plicit solution to (7) is found:

a A
nly) = Wi = 2w v
™ 2

1 sin(a)

1T (o (m0)? - wit ( cos(y) — v sin(y))
N
_ 1 sin () Wiz
14 (11v)? T !

(cos(y — ) — mvsin(y — p))

From the relations g;(£a) = 0 we numerically find
the width of the active region in layer 1, 2a ~ 0.727rad,
and wave velocity, v &~ 0.197rad/7 for the parameter
set:

Wyl =3, Wit =2, W2 =2, W?=1,Wg' =1,
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Fig. 2.  Waveforms for traveling wave solution with positive
wave velocity. Shown are g1(y) (black line) centered at y = 0
and corresponding g2(y) (grey line).

hl :h2 = —0.].,’7'1 =T = 1.

The corresponding stationary waveforms are shown in
figure 2. For layer two, the boundaries for the pulse
are Yo ~ 0.34nrad and y; =~ —0.797rad resulting in a
width of the waveform in layer 2 of Ay = 0.887rad.

The symmetry of the connectivity function allows for
pulses to propagate with either a positive or negative
velocity. For the analysis of propagating pulses, it was
sufficient to study just the waves with positive veloc-
ity as the symmetry of the problem will yield a “mir-
ror” result for the waves with negative velocity. That
is,whenever a pair (a,v) is found that permits a trav-
eling wave solution, the pair (a, —v) will also permit a
traveling wave solution.

Traveling front solutions

In both the single layer and two layer neural field
models (1) under certain parameter regimes the field
has two stable stationary homogeneous states. How-
ever, the boundary condition of the ring topology,
u(—m,t) = u(m,t), prohibits the formation of a travel-
ing front solution. For example, a disturbance g(6 —vt)
of the quiescent state with non-zero velocity v, whose
width is not such that the field enters the fully active
state would necessarily have a homoclinic orbit in the
(g(y),g/ (y)) phase-plane where y = 6 — vt. That is,
owing to the periodic nature of the boundary condition
u(f,t) = u(t‘),t + 27”), any point where u(6,t) < 0 will
return to this state within a time period of 27” from the
disturbance. Situations where a quiescent state could
be carried to a stable all active state may be highly un-
desirable as in a stable all active state it is very difficult
to return network to a quiescent state where neurons
could be responsive to new input.

DISCUSSION

Cortical neurons receive most of their input locally
through synaptic interactions with other neurons that
are in close physical proximity. Amari utilized this idea

to develop a model for neural tissue that exhibited
both spatial and dynamic pattern formation (Amari,
1977). However, VSDI and other experiments have
demonstrated that cortical neurons also organize topo-
graphically on the cortical surface properties of stimu-
lus features (Blasdel and Salama, 1986; Grinvald and
Hildesheim, 2004; Hubel and Wiesel, 1977; Woolsey
et al., 1942). The dual constraints of local process-
ing and topographic representation of stimulus features
have strong influence on neural computation and cor-
tical processing. Utilizing compact topologies implied
by topographic maps in cortex have shown new results
in spatial pattern formation in single layer neural fields
of lateral inhibition type (Haskell and Bressloff, 2003;
Haskell and Paksoy, 2011). In this study a mechanism
through the network interactions that generates and
sustains standing and traveling waves in a two layer
ring topology neural field has been explored. To what
respect the ring topology is an appropriate network
topology depends on the cortical area of study. How-
ever, given the dual constraints of local connectivity
and network topology it is important to understand
the influence that topology may have in generating the
dynamic behaviors that are observed in a host of nat-
ural and pathological cortical conditions.

While the model presented takes into account both
the nature of local processing and topography in cortex,
the symmetry of the connectivity functions places no
constraint on whether the wave velocity will be posi-
tive or negative. Traveling waves of spontaneous ac-
tivity are ubiquitous in developing nervous systems,
default mode fMRI studies, and evoked cortical re-
sponses. The direction of these waves may indicate
an order to information flow through the nervous sys-
tem that may be important in development and main-
tenance of normal brain function. Using the orienta-
tion tuning example, an experiment where a researcher
measures the response in primary visual cortex area
V1 to a rotating bar would result in a directed wave
of excitation through the hypercolumn following the
direction of the orientation. This is a locking of the re-
sponse to the stimulus that is known to occur in popula-
tions of neurons from both experiments (Sirovich, 2012)
and from theoretical considerations (Ben-Yishai et al.,
1995; Knight, 1972; Sirovich, 2012). While stimulus
locking can provide directionality in evoked responses,
spontaneous responses may require an alternate mech-
anism. In area V1 it has been observed experimentally
that long-range lateral connections can serve to mod-
ulate neural activity (Hirsch and Gilbert, 1991). This
modulation of the local drive of the neural population
could serve to provide an imbalance to the local activ-
ity that gives the wave a specific direction. The ability
of the local network to support waves in any direc-
tion provides a strong constraint to the global network
structure.
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