Implementation of the genetic algorithm by means
of CUDA technology involved in travelling salesman
problem

Anna Plichta
Tomasz Gaciarz
Cracow University of Technology, Department of Computer Science
31-155 Cracow, ul.Warszawska 24
Email: aplichta@pk.edu.pl
Email: tga@pk.edu.pl

Bartosz Baranowski
Email: bbaranowski@onet.pl

Szymon Szominski
AGH University of Science and Technology
30-059 Cracow, Al. A. Mickiewicza 30
Email: szsz@agh.edu.pl

KEYWORDS

genetic algorithm, CUDA technology, travelling salesman
problem

ABSTRACT

The research was intended to solve the travelling salesman
problem by means of genetic algorithms. The implementation
of the algorithm was by virtue of CUDA technology. The
research was focused on checking how much the system can
improve if instead of classical CPU processors one uses GPU
graphical processors enabled to perform the operations parallel.
The algorithm was implemented in the high level CUDA C
language. Thus, measuring the pure time of performance of the
algorithm could be the single but reliable point of comparison
between two above mentioned types of processors. Making
some operations mutually independent and using CUDA tech-
nology makes the task much faster to execute. Due to it
complex issues can be solved in a shorter time.

INTRODUCTION

Video cards were primarily used to display graphics, but it
was quickly observed that GPU processors may be much faster
than CPU on one condition: the problems to sort out should be
parallel. Hence, more and more supercomputers of the TOP500
list are based on NVIDIA Tesla video cards and many so called
GPGPU technologies were developed (General-Purpose Com-
puting on Graphics Processing Units) which enable for making
general computations by virtue of video card processor. The
most popular of them are NVIDIA CUDA (Compute Unified
Device Architecture), OpenCL (Open Computing Language)
and Microsoft DirectCompute.

Proceedings 28th European Conference on Modelling and
Simulation ©ECMS Flaminio Squazzoni, Fabio Baronio,
Claudia Archetti, Marco Castellani (Editors)

ISBN: 978-0-9564944-8-1 / ISBN: 978-0-9564944-9-8 (CD)

The aim of the project was to verify CUDA technology
and GPU graphic processors in respect of paralell genetic
algorithms. Therefore, the genetic algorithm was implemented
into the traditional CPU processor-based technology and into
GPU graphic processor-based technology in order to compare
the efficiency of both implementations. The travelling salesman
problem was chosen to check the genetic algorithm.

GENETIC ALGORITHM

Genetic algorithm (GA) by John Holland and David E.

Goldberg [4], [2] is the adaptation searching procedure based
on the mechanisms of natural selection and natural genetics.
These paralell algorithms are simple, general and efficient.
Genetic algorithms (GA) can be applied to designing electric
machines and circuits, to optimizing routes, to lofting in
telecommunication or in computer games. Genetic algorithms
can be also used to solve NP problems such as travelling
salesman problem [7], [8], [9]. Travelling salesman problem
(TSP) pertains to the graph theory and it consists in finding
minimal Hamilton cycle in the full weighted graph. Usually,
the issue is represented from the point of view of the travelling
salesman who has to visit N cities (each city once). The
distances between all cities are known. The problem is NP-
difficult [16].
As for GA, points belonging to the search space are repre-
sented as limited-length chains of limited-alphabet symbols. In
order to solve the problem GA (in each generation) transforms
the set of points of search space (called chromosomes). That
particular collection is called population.

Chromosomes within the particular population compete
one another for survival and possibility of reproduction. During
each iterative step of the genetic algorithm called geneara-

tion all individuals are evaluated and undergo recombination
according to their level of usefulness and some “genetic
operators”. As a result, the following populations are growing
better and better. That process is usually suppressed when
the desired number of populations is achieved or when the
population ceases to change [10].

The function evaluating each chromosome which is called
by biologists the fitness function is a measure of benefit or
profit we want to maximize. The first genetic operator called
reproduction works according to the values of the above-
mentioned function. During that process some chromosoms are
selected to undergo the next operation (the more adapted the
chromosome the higher its chance for selection). All selected
chromosomes are coupled randomly. During the crossover
process (the second genetic operator) they exchange some
elements in order to create new offspring. The third genetic
operator called mutation is used in order to avoid premature
convergence to one of the local minima and increase the
diversity of the population. It changes the values of some
content of the chromosome at random consequently making
up its almost identical copy [2].

In order to solve the problem with the genetic algorithm,
the latter should be represented as chromosome. Moreover,
the crossover and mutation should be prepared as well as
the fitness function which measures the usefulness of the
chromosome regarding the issue.

GA AND THE TRAVELLING SALESMAN
PROBLEM

Encoding of the chromosome

For the purpose of travelling salesman problem where each
individual represents one route the most common encoding is
encoding as integers. Each city has its unique number and
appears in the chromosome only once. In the Figure 1 the
route starts in the point (city) 3 and leads through points 1,2,5
and 4. In many cases the route is additionally represented as a
loop. The additional edge from the point 4 to 3 appears [5].

ﬁ -GG i

/

Fig. 1. The example of encoding the chromosome with integers

Genetic operators - selection, crossover, mutation

Two methods of selection were implemented and tested,
namely, the method called roulette wheel and the tournament
one. Practically, the latter proved to be more efficient.

One should modify the standard crossover procedure so
that to take account of the structure of the chromosome
adapted specifically to the travelling salesman problem. Three
crossover methods were implemented and tested: one-point
crossover, two-point crossover and greedy crossover.

However, because in the travelling salesman problem each
gene is represented by the unique integer which cannot appear

in the indivual more than once, one should add some correcting
mechanisms. Just as in the binary representation the first step
is to copy the left side of the first parent into the offspring.
Then only these genes from the right side of the second parent
are copied which the offspring lacks. Finally, one should find
and copy the lacking genes into the offspring. For instance,
the second parent can be searched from its left side until a
lacking gene is found.

Two-point crossover is more advanced version of the one-point
crossover. In two-point crossover both parents are cut in two
random points in order to get left, right and the middle part.
The offspring is joined together from the middle section of
one parent and the extreme parts of the second parent. Just
as in one-point crossover one can simultaneously create two
descendants and the correcting mechanisms should be added
to prevent the descendant from having two or more identical
genes [19].

First of all, the middle part of the first parent is copied into
the descendant. Then, the genes which the descendant lacks
are copied from the extreme parts of the second parent. At
last, the descendant is given the genes which it still lacks. For
instance, the second parent can be searched from its left side
until a lacking gene is found.

Greedy crossover is the method applied specifically to the
travelling salesman problem (or similar ones) as it can be
used only in case each gene in the chromosome in unique
and appears only once within it [1].

For the purpose of the travelling salesman problem muta-
tion is usually changing the places of two random gene of the
descendant. The occurence of the mutation is infrequent (its
probability is about 0,5%).

The aim function

In the project we applied simple adaptation function con-
sisting in computing the length of the route of the individual.
The better (shorter) the route the lesser the value of the
adaptation function. Distances between the cities are stored
in two-dimension table.

Aiding mechanisms

2opt Heuristics
In order to improve the results in many versions of genetic
algorithms one uses also heuristic methods [21]. For instance,
2opt method is often used to solve the travelling salesman
problem. It is a method of local optimization consisting in
reconfiguring two edges so that to achieve locally shorter route.

IMPLEMENTATION INTO CPU PROCESSOR

To implement the algorithm into the CPU processor the

Code::Blocks environment was used together with MinGW
compiler (v.4.6.1) based on GCC. In order to provide mul-
tithreading the OpenMP library was used.
The C language was chosen mainly because such choice
facilitates the implementation of the algorithm into graphic
card in CUDA C language in the second stage of the research.
The implementation of the algorithm underwent many changes.
Initially, it was a simple genetic algorithm provided with
one-point crossover and mutation. The selection method was
roulette wheel.

In the next version the selection method was replaced with
the tournament one and one-point crossover was replaced
with two-point crossover. In the next version greedy crossover
appeared and additional heuristic methods which improved
achieving good results faster. At last, the island model was
provided.

The final version of the algorithm was comprised of tourna-
ment selection, greedy crossover and standard mutation. The
results were also improved by means of the 2opt method.
Multithreading was achieved thanks to adding islands served
by separate threads. In each island there is a separate instance
of the genetic algorithm, served by the separate plot. Instances
communicates one another by means of fixed-frequency mi-
gration. Each island sends and receives some of its best
individuals. The number of migrating individuals depends on
the size of the population.

There are two conditions of ceasing the algorithm in the
implementation. The program ceases to work if the fixed
number of iterations of the main algorithm loop is exceeded.
The second condition checks if in a few hundred generations
the improvement of the results is relevant enough. If not, the
algorithm states that the optimal individual was created and
ceases to work.

IMPLEMENTATION INTO GPU PROCESSOR

In order to implement the algorithm into the GPU processor
the Microsoft Visual Studio 2008 was used together with
NVIDIA CUDA Toolkit 4.0. During the implementation of
the algorithm in the CUDA C language (consequently, into the
graphic card with its architecture) the algorithm had to undergo
some changes. To work efficiently on the GPU processor the
program must have high level of parallelity. According to the
golden rule by CUDA programmists, there should be 24 times
more plots than cores in the graphic card to use the graphic
card efficiently. The algorithm was basically written for the
NVIDIA GeForce GTX 285. graphic card (it has 240 cores).
Hence, the algorithm was transformed to use min. 5760 plots
[13], [19].

In comparison to the version for the CPU processor there was
one significant change: each individual is served by another
thread. The population of 100 individuals results in just 100
threads, which is far too small for CUDA technology. Hence,
to increase the number of threads the additional changes were
introduced. First of all, the number of indivuals reached 5760.
However, the tests the CPU version of the algorithm had under-
gone proved that increasing the number of islands improves the
results more than increasing the number of individals. In order
to divide the *genetic material’ between the islands we used the
standard CUDA technology mechanism splitting threads into
blocks. 60 threads (100 individuals in each) gives 6000 threads
which is suaitable for CUDA technology for GTX 285 graphic
card [6], [18]. To sum up, the entire population was divided
into M islands each having N individuals. Each individual is
served by the separate thread. Blocks communicate one another
by virtue of global memory of the graphic card. Inside the
blocks the population is stored in shared memory which is a
little bit faster.

The code dedicated to the graphic card is encrypted in kernels
which are separate functions. They are executed fully in the
GPU processor. Kernels can use only the data kept in the
graphic card memory. That memory is allocated by means of

cudaMalloc function. cudaMemcpy() function is responsible
for transferring data between RAM and graphic card memory
(and vice versa).

TESTS

Test implemantation dedicated to the CPU processor was

carried out on the processor Intel Core 2 Duo E8400 (3600
Mhz) provided with double physical cores and 6MB second
level cache.
The implementation dedicated to the GPU processor was
carried out on NVIDIA GeForce GTX 285 graphic card
provided with 240 cores and 1024 MB of GDRR3 memory
(702 Mhz). To ensure that the measurements are credible in
both implementations time was measured in milliseconds.

The implementation dedicated to the CPU processor
was run on one thread working on one physical core and
on two threads working on two physical cores. In the
latter case (2 cores) the population was divided into two
islands. Measurement results for the 10,100, 1000 and 10000
individuals are presented below in the Figures: 2,3.4,5.

Each measurement was repeated ten times. The mean of these
ten measurements was taken into account (fig. 6). Regarding
the implementation dedicated to the CPU processor, to
measure the time we use the QueryPerformanceCounter()
function. In the version dedictated to the GPU processor
the cudaEventRecord() function was used. The length of
chromosomes (number of the cities) was the same for both
CPU and GPU experiments (excluding the minimal case of
10 cites) and was equal to 100.

160
140
120
% 100
E HGPU
g 80
£ HCPU
60 W CPU 2 fcores)
40
404
20
0
Fig. 2. Measurement results for: the length of the chromosome 10; size of

the population 10; number of islands 1; number of generations 100

The time the CPU processor needs for computations raise
almost linearly when the amount of data increases but when
the graphic card is used it hardly changes. It proves that the
graphic card needs a vast number of threads to reach its full
efficiency. The GPU processor is not efficient when the number
of threads is small because the majority of the cores is unused.

For the sake of the tests the set of points was created
consisting of 1024 cities. Each city (point) is given the
number from 0 to 1023 as well as carthesian system of

400
0
£ WGP
£ CLedl]
M CPU 2 (cores)
Fig. 3. Measurement results for: the length of the chromosome 100; size of

the population 100; number of islands 1; number of generations 100

3000

2500

2000

HGPU
1500

Time (ms)

ECPU

1000 u CPU 2 (cores)

500

Fig. 4. Measurement results for: the length of the chromosome 100; size of
the population 1000; number of islands 10; number of generations 100

coordinates x and y. Depending on the chromosome length,
always the first N points is used where N stands for the
chromosome length. Additionally, in order to enable for the
comparison of the effects of the working algorithm, three
sets of points taken from TSPLIB library were added. The
following sets were chosen berlin52 (52 points), kroA100
(100 points) and kroA150 (150 points)[17].

According to the tests we carried out, graphic cards can
be a very good alternative to the standard CPU processors
but the problems to solve should be possible to paralell.
Moreover, at the small number of threads the efficiency of
the both above-mentioned methods are barely distinguishable.
Graphic cards require a few dozen of threads to be fully
efficient. Using ten thousend of threads enabled us to achieve
the acceleration 23-times improved in relation to one CPU
core or 13-times improved in relation to two CPU cores.

SUMMARY

The principles of the project were realized. Two versions
of the genetic algorithm were created. The first was dedicated
to the CPU processor and the second to the graphical processor

30000
25000
= 20000
£
v HGPU
E 15000
= HCPU
10000 MCPU 2 (cores)
5000
1167,4
0 —
Fig. 5. Measurement results for: the length of the chromosome 100; size of

the population 1000; number of islands 100; number of generations 100

30000
25000 /
20000
7
E
= 15000
£
i=
10000
5000
o
100 1000 10000
—GPU 237,98 2918 1167,4
— 350,8 26934 26744,2
m—CPU (2cores) 258,4 1748,6 15089,4
Fig. 6. Time algorithms depending on the size of the population

GPU. The algorithm is able to solve the travelling salesman
problem even for 200 cities which is equal to about 7,89
x 103™ possible combinations of the values of genes. The
version dedicated to the CPU processor was made parallel by
virtue of the OpenMP library. The implementation dedicated to
the graphic card was made by means of the CUDA technology.
We succeeded in achieving the acceleration 23-times improved
in relation to one CPU core and the acceleration 13-times
improved in relation to two CPU physical cores. It proves the
dormant potential of the contemporary graphic cards. For the
parallel computations they became the significant alternative
for the traditional CPU processors. Hence, the CUDA tech-
nology is more and more often used in supercomputers.

REFERENCES

[1] Soushil L. J. and Gong L., ,,Augmenting Genetic Algorithms with
Memory to Solve Travelling Salesman Problems”, University of Nevada,
Reno,2007.

[2] Holland J. H., ,,Adaptation in Natural and Artificial Systems”, MA:MIT
Press, Cambridge,1992.

[3] Mitchell M., ,,An introduction to Genetic Algorithms”, A Bradford
Book, Londyn,1999.

[4] Goldberg D. E., ,,Genetic algorithms and their applications”, WNT,2003.

[S] Razali M. N. and Haraghty J., ,,Genetic Algorithm Performance with
Different Selection Strategies in Solving TSP”, WCE,2011.

[6] Sanders J. and Kandrot E., ,,CUDA example”, Helion,2012.

[71 Goldberg D. E., ,,Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison-Wesley Longman Publishing Co.,1989.

[8] Lawrence D., ,,Handbook of genetic algorithm”, Van Nostrand Rein-
hold,1991.

[9] Kim K. and Man F. and Tang and K.S. Kwong and S., ,,GENETIC
ALGORITHMS.: Concepts and Designs Avec disquette Advanced
Textbooks in Control and Signal Processing Series”, Springer,1999.

[10] Sivanandam S.N. and Deepa S.N., ,Introduction to Genetic Algo-
rithms”, Springer-Verlag Berlin Heidelberg, 2007.

[11] Coley David A., ,,An introduction to genetic algorithms for scientists
and engineers”, World Scientific,1999.

[12] Michalewicz Z., ,,Genetic Algorithms + Data Structures = Evolution
Programs. Artificial Intelligence Series”, Springer-Verlag,1992.

[13] NVIDIA Corporation, ,,cuda toolkit documentation”,
http://developer.download.nvidia.com,2011.

[14] Camilo Rostoke, ,,Travelling Salesman Prob-
lems”,http://top500.org/list/2011/11/100,2012.
[15] Camilo Rostoke, . Travelling Salesman

Problems”,http://www.cs.ubc.ca/labs/beta/Courses/CPSC532D-
05/Slides/tsp-camilo.pdf,2012.

[16] GPGPU, ,,General-Purpose Computation on Graphics
Hardware” http://gpgpu.org/developer,2012.

[17] Open MPorg, ,The OpenMP API specification for parallel
programming”’,http://openmp.org/wp/openmp-specifications/,2012.

[18] Marek Obitko, ,,Introduction to Genetic
Algorithms”,http://www.obitko.com/tutorials/genetic-
algorithms/crossover-mutation.php,2012.

[19] Konstantin Boukreev, ,,Genetic Algorithms and the Travelling Salesman
Problem”,http://www.codeproject.com/Articles/1403/Genetic-
Algorithms-and-the-Traveling-Salesman-Prob,2012.

[20] SENGOKU, H. YOSHIHARA, Ikuo, ,,A Fast TSP Solver Using GA on
JAVA” http://www.cs.us.es/cursos/ial-2006/trabajos/arob98.pdf,2012.

[21] Brainz.org, 15 Real-Word Uses of Genetic
Algorithm”, http://brainz.org/15-real-world-applications-genetic-
algorithms,2012.

[22] forums nvidia com, ,,forums nvidia com”,
http://forums.nvidia.com/index.php?showtopic=195749,2012.
[23] cs helsinki fi, ,,CS helsinki fi bresenh”,

http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html,2012.

[24] econ iastate edu, ,,econ iastate edu
7 http://www?2.econ.iastate.edu/tesfatsi.html1,2012.

AUTHOR BIOGRAPHIES

ANNA PLICHTA She studied comparative literature at the
Jagiellonian University and obtained her degree in 2007. She
also studied computer science at Cracow University of Tech-
nology and obtained her degree in 2010. Currently, she works
as a teaching fellow at Cracow University of Technology. Her
e-mail address is: aplichta@pk.edu.pl

TOMASZ GACIARZ was born in Olkusz. He studied
computer science at the AGH University of Science and Tech-
nology. and obtained her degree in 1994. Currently, he works
as a teaching fellow at the Cracow University of Technology.
His e-mail address is: tga@pk.edu.pl

BARTOSZ BARANOWSKI I was born in Cracow. He
studied computer science at the Cracow University of Tech-
nology and obtained his degree in 2010. Currently, he works at
the IT company. His e-mail address is: bbaranowski@onet.pl

SZYMON SZOMINSKI He studied computer science at
the Cracow University of Technology and obtained his degree
in 2010. Currently, he study computer science at the AGH
University of Science and Technology. His e-mail address is:
szsz@agh.edu.pl

