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ABSTRACT

We study numerically the Berry phase in semiconductor
quantum dots (QDs) that is induced by letting the dots to
move adiabatically in a closed loop in the 2D plane along the
circular trajectory. We show that the Berry phase is highly
sensitive to the Rashba and Dresselhaus spin-orbit lengths.
Based on the Finite Element Method, we solve the Schrödinger
equation and investigate the evolution of the spin dynamics
during the adiabatic transport of the QDs in the 2D plane
along circular trajectory. Results of numerical simulations are
discussed in detail, indicating that this work might be used for
the realization of solid state quantum information processing.

INTRODUCTION

Manipulating the single electron spins in QDs through
the non-Abelean geometric phases has attracted considerable
attention since the pioneering work of Berry (Aleiner & Fal’ko
2001, Wang & Zhu 2008, Yang & Hwang 2006, Eric Yang
2006, Yang 2007, Berry 1984). For a system of degenerate
quantum states, Wilczek and Zee showed that the geometric
phase factor is replaced by a non-Abelian time dependent
unitary operator acting on the initial states within the sub-
space of degeneracy (Wilczek & Zee 1984, Prabhakar et al.
2010). Since then the geometric phase has been measured
experimentally for a variety of systems such as quantum states
driven by a microwave field (Pechal et al. 2012) and qubits
with tilted magnetic fields (Berger et al. 2012, Leek et al.
2007). Manipulation of the spin qubits through the Berry
phase implies that the injected data can be read out with
different phase that can be topologically protected from the
outside world (Das Sarma et al. 2005, Hu & Das Sarma 2000,
Loss et al. 1990, Tserkovnyak & Loss 2011, San-Jose et al.
2008). Several recent reviews of the Berry phase have been
presented in Refs. (Xiao et al. 2010, Nayak et al. 2008). One
of the promising research proposals for building a solid state
topological quantum computer is that the accumulated Berry
phase in QD system can be manipulated with the interplay
between the Rashba-Dresselhaus spin-orbit couplings (San-
Jose et al. 2008, Aleiner & Fal’ko 2001). The Rashba spin-
orbit coupling arises from the asymmetric triangular quantum
well along the growth direction and the Dresselhaus spin-
orbit coupling arises due to bulk inversion asymmetry in the
crystal lattice (Bychkov & Rashba 1984, Dresselhaus 1955). A

recent work by Bason et al. shows that the Berry phase can be
measured for a two level quantum system in a superadiabatic
basis comprising the Bose-Einstein condensates in optical
lattices (Bason et al. 2012).

The geometric phase induced on the wavefunctions of
quantum states during the adiabatic movement of the physical
system plays an important role in numerous quantum com-
puting and quantum information processing. When the state
vector of a quantum system undergoes in a cyclic evolution
and returns in its initial physical state then its wave function
can acquire a geometric phase factor in addition to the familiar
dynamic phase (Berry 1984, Prabhakar et al. 2010, Wang &
Zhu 2008). If the cyclic change of the system is adiabatic then
after one complete rotation of the physical system acquire an
additional phase factor which is known as Berry phase (Berry
1984). Recently, it has also been shown that the geometric
phase can be induced on the electron spin states in QDs by
moving the dots adiabatically in a closed loop in the 2D plane
with the application of gate controlled electric field (Prabhakar
et al. 2010, San-Jose et al. 2008). Furthermore, the authors in
Refs (Bednarek et al. 2012, 2008, Bednarek & Szafran 2008)
have recently proposed to build a QD device in the absence
of the magnetic fields that can perform the quantum gate
operations (NOT gate, Hadamard gate and Phase gate) with the
application of the externally applied gate potential modulated
by a sinusoidal varying potential. All these problems can be
studied efficiently with the tools of mathematical medeling,
once an adequate physical model is constructed. In this paper,
we focus on modeling of transport of the electron spin states
in QDs in presence of the externally applied magnetic fields
along z-direction in a closed loop in the 2D plane with the
application of time dependent distortion potential. Based on
our model, we investigate the interplay between the Rashba
and the Dreeselhaus spin-orbit lengths on the scalar Berry
phase (Yang & Hwang 2006, Wu et al. 2011). The transport
of the dots is carried out very slowly so that the adiabatic
theorem can be applied on the evolution of the spin dynamics.
We show that the Berry phase in QDs can be engineered
and can be manipulated with the application of the spin-orbit
couplings through gate controlled electric fields. We solve
the time dependent Schrödinger equation and investigate the
evolution of spin dynamics in QDs. Details of the correspond-
ing mathematical model and computational methodology are
provided.

MATHEMATICAL MODEL
The model construction starts from the two band Kane

Hamiltonian of an electron in QDs in the plane of a 2 Di-
mensional Electron Gas (2DEG) in the presence of an external
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Fig. 1. Modeling results for four lowest states of the wavefunction squared
in GaAs quantum dots. Here we chose B = 1T and E0 = 5x103 V/cm. Note
that the spin split wavefunctions shown in the left and right columns look
identical. However, their energy eigenvalues are different which can be used
for the design of quantum dots with different g-factors and Berry phases (see
Figs. 2 and 5).
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Fig. 2. g-factor (absolute value) vs applied electric fields with no time depen-
dent distortion potential. We chose g0 =−0.44, m = 0.067, γR =−0.044 nm2

and γD =−0.0026 eV. nm3.

Fig. 3. Contour plots of the realistic electron wave function of GaAs QDs that
are adiabatically transported along the circular trajectory under the influence
of externally applied time dependent gate potential. We choose the amplitude
f0 = 5×103 V/cm, electric field E = 105 V/cm, B = 1T and QD radius `0 =
20 nm.
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Fig. 4. Evolution of spin dynamics during the adiabatic transport of the GaAs
quantum dots. We chose E = 5×105 V/cm and the rest of the parameters are
chosen the same as in Fig. 3.
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Fig. 5. Berry phase vs SO lengths on spin state |0,0,+1〉. Here we chose
`0 = 20 nm, B= 1 T and total enclosed adiabatic area is considered as πd2/4=
7.85×10−7eV2/nm2.

magnetic field B, along the z-direction in III-V semiconductor
QDs can be written as (Prabhakar & Raynolds 2009, Prabhakar
et al. 2011)

H = Hxy +HR +HD, (1)

where the Hamiltonians HR and HD are associated with the
Rashba and the Dresselhaus spin-orbit couplings and Hxy is
the Hamiltonian of the electron along the lateral direction in
the plane of the 2DEG. Hxy can be written as

Hxy =
~P2

2m
+

1
2

mω
2
o (x

2 + y2)+ f (t)+
h̄
2

ωzσz, (2)

where ~P = ~p + e~A is the kinetic momentum operator, ~p =
−ih̄(∂x,∂y,0) is the canonical momentum operator and ~A is
the vector potential in the symmetric gauge, ωz = g0µBB/h̄
is the Zeeman frequency and g0 is the bulk g-factor. Here,
−e < 0 is the electronic charge, m is the effective mass of the
electron in the conduction band, µB is the Bohr magneton, σz
is the Pauli spin matrix along z-direction. Also, ω0 =

h̄
m`2

0
is a

parameter characterizing the strength of the confining potential
and `0 is the radius of the QD. The time dependent function
f (t) is the distortion potential that can be used to let the
dot to move adiabatically in a closed loop in the 2D plane
without disturbing the spin splitting energy difference. We use
the functional form of f (t) in our theoretical model as (Yang
& Hwang 2006)

f (t) = eFx(t)x+ eFy(t)y, (3)

where Fx = f0 cos(ωt), Fy = f0 sin(ωt), f0 is the amplitude and
ωt varies from 0 to 2π .

The Hamiltonians associated with the Rashba-Dresselhaus
spin-orbit couplings can be written as (Bychkov & Rashba
1984, Dresselhaus 1955)

HR =
αR

h̄
(σxPy−σyPx) , (4)

HD =
αD

h̄
(−σxPx +σyPy) . (5)

The strength of the Rashba-Dresselhaus spin-orbit couplings
is characterized by the parameters αR and αD which are given
by

αR = γReE, αD = 0.78γD

(
2me
h̄2

)2/3

E2/3. (6)

Finally we write the two coupled Schrödinger equations
as:

−ih̄∂t

(
u1
u2

)
=

(
h11 +

∆

2 h12
h21 h22− ∆

2

)(
u1
u2

)
, (7)

where ∆ = g0µBB/2 and

h11 = − h̄2

2m

(
∂

2
x +∂

2
y
)
+

1
2

mΩ
2 (x2 + y2)+ f (t)

− ih̄ωc

2
(y∂x− x∂y) , (8)

h12 = h̄αR (∂x− i∂y)+ h̄αD (i∂x−∂y) . (9)

Also, h11 = h22 and h21 = hermitian conjugate of (h12). Finally
we define the g-factor of electron in quantum dots by the
expression

g =
ε1− ε2

µBB
, (10)

where ε1 and ε2 are the ground and first excited states
eigenvalues of the corresponding two coupled Schrödinger
equations (7). In principle, one can design GaAs/AlGaAs
quantum dots and vary the g-factor of the dots by letting
the wavefunction of electrons to penetrate from one mate-
rial (GaAs) into the other material (AlGaAs) (Prabhakar &
Raynolds 2009).

We now turn to the calculation of the Berry phase in
QDs. According to works of Berry, if parameters contained in
the Hamiltonian of a quantal system are adiabatically carried
around a closed loop, an extra geometric phase (Berry phase)
is induced in addition to the familiar dynamical phase (Berry
1984, Prabhakar et al. 2010). A slow variation of such parame-
ters along a closed path C will return the system to its original
energy eigenstate with an additional phase factor exp{iγn(C)}.
More specifically, the state acquires phases after a period of
the cycle T as

|Ψn(T )〉= exp
{
− i

h̄

∫ T

0
εn(t)dt

}
· exp{iγn(C)} |ψn〉, (11)

where the coefficients γn(C) can be written as

γn(C) = −Im
∮

C
ds· ∑

m 6=n

< n|∇RĤ(R)|m >×< m|∇RĤ(R)|n >

(εm(R)− εn(R))2 ,

(12)

where R=(Fx(t),Fy(t)) and ds is the total area enclosed by the
dots in one complete adiabatic rotation in the 2D plane at the
heterojunction. Here εm and εn correspond to the eigenvalues
of (7) associated to the quantum states |m〉 and |n〉.



COMPUTATIONAL METHOD

We suppose that a QD is formed in the plane of a two
dimensional electron gas of 400×400 nm2 geometry. The in-
plane oscillating fields Fx(t) and Fy(t) is varied in such a way
that the QD is transported in a closed loop of circular trajectory
(see Fig. 3). To find the Berry phase by an explicit numerical
method, we diagonalize the total Hamiltonian H(t) at any
fixed time using the Finite Element Method. In particular, We
utilize the UMFPACK solver in the COMSOL multiphysics
package ( n.d.) to find the eigenvalues and eigenfunctions of
the two coupled eigenvalue partial differential equation (7).
The geometry contains 24910 elements. Since the geometry
is much larger compared to the actual lateral size of the QD,
we impose Dirichlet boundary conditions. Error vs iteration
number shows the convergence of simulations is good.

RESULTS AND DISCUSSIONS

In Fig. 1, we have plotted the modeling results of ground
and first excited states wavefunctions squared of GaAs quan-
tum dots with no magnetic and no time dependent distortion
potential. In Fig. 3, we use the distortion potential ( f (t))
as a time dependent function and allow the dot to move
adiabatically in a closed loop in the 2D plane. Realistic
electron wavefunctions of the dots at different locations (θ =
0,π/2,π,3π/2) in the 2D plane are shown.

Based on FEM ( n.d.), we solved the two coupled time
dependent Schrödinger equations (7) with the initial con-
dition H(x,y,0)ψ(x,y,0) = εψ(x,y,0) in the fixed time in-
terval θ = [0 : 0.1 : 2π]. The adiabatic theorem guarantees
that ψ

′
θ
(x,y,θ) = 0. We plotted the evolution of the spin

dynamics during the adiabatic movement of the QDs in the
2D plane in Fig. 4. Even in the presence of Zeeman energy,
where the magnetic field is applied along z-direction, the spin
components in the ground state of the QDs are not well defined
due to the presence of spin-orbit couplings (Bednarek et al.
2008, Bednarek & Szafran 2008). It means, < σz > is either
1 or −1 depending on the g-factor of electron in QDs and the
components of σi(i = x,y) varies during the adiabatic move-
ment of the QDs in the 2D plane. Fluctuations in <σz > can be
made at degenerate sublevels where g-factor exactly vanishes.
In this case, rather than finding a scalar Berry phase, one
needs to find the matrix Berry phase acting on the initial states
within the subspace of degeneracy. (Prabhakar et al. 2010)
Since the motivation of the paper is to investigate the influence
of electric field on the scalar Berry phase, we choose the
parameters in Fig. 4 in such a way that the g-factor is negative
and < σz >=+1 (Prabhakar & Raynolds 2009). For g-factor
control in quantum dots, see Refs. (Prabhakar & Raynolds
2009, Prabhakar et al. 2011). If one choses `0 = 40 nm, it
can be found that the g-factor is positive and < σz >= −1.
Depending on the choice of the parameters, one can construct
the quantum gates (Hadmard, OR, Controlled NOT gates) with
the application of the gate controlled electric fields (Bednarek
et al. 2012). For example, when all the spin components
are equal to unity, one can have Hadmard gates. Since spin
components decay with different phase (see Fig. 4) but they
all vanishes at certain degree of orientation in the Bloch sphere,
one can find the controlled NOT gates. (Bednarek et al. 2008,
Bednarek & Szafran 2008) Also, the transport of the QDs
are carried out adiabatically, one can find the similar type of

evolution of the spin dynamics (Fig. 4) in each cycle of rotation
which is another efficient way to construct the quantum gates
from QDs. Since the periodicity of the propagating waves is
different for the pure Rashba and for the pure Dresselhaus case,
we see the superposition effect in the x- and y-components of
the electron spin in QDs (see Fig. 4).

We now turn to the results associated to the Berry phase
that is accumulated during the adiabatic transport of the dots
in the 2D plane.

In Fig. 5, we plot the characteristics of the Berry phase vs
spin-orbit coupling length. As can be seen, the Berry phase for
the pure Rashba and pure Dresselhaus cases are well separated
at smaller values of the SO lengths due to the presence of the
Rashba case and the Dresselhaus spin-orbit coupling case. At
large values of spin-orbit lengths λR = λ > 1.8µm, the Berry
phases for the pure Rashba and for the pure Dresselhaus spin-
orbit coupling cases meet each other because extremely weak
spin-orbit coupling coefficients are unable to break the in-
plane rotational symmetry. Note that the spin-orbit length is
characterized by the applied electric field along the z-dicrection
( see inset plot in Fig. 5) (Prabhakar et al. 2013).

CONCLUSIONS

To conclude, based on the developed mathematical model,
we have analyzed the wavefunctions of electrons in QDs
during the adiabatic movement of the dots along the circular
trajectory. By using the Finite Element Method, we have
calculated the evolution of the spin dynamics and shown that
the superposition effect can be observed during the adiabatic
movement of the QDs in the 2D plane. We have shown that the
Berry phase for the pure Rashba and pure Dresselhaus cases
are well separated at smaller values of the SO lengths due to
the presence of large Rashba-Dresselhaus spin-orbit coupling
coefficients.
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