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ABSTRACT

A common feature of mapped crime patterns is
a strong spatial and temporal clustering into crime
“hot spots”. In this paper we explore a social inter-
action model for the evolution of the attractiveness
of the crime environment for criminal activity. We
see how hot spots may arise when the idiosyncratic
attractiveness of the environment is not encouraging
for criminal activity. The stability of these hot spots
is determined to depend on both the size of the hot
spot and the social interaction function itself.

INTRODUCTION

Criminal activities ranging from homicides to bur-
glaries are unevenly distributed within an environ-
ment and amongst victims and offenders (Johnson
et al., 2007; Johnson, 2010). The strong clustering
of elevated levels of crime in space and time is of-
ten referred to as a crime “hot spot”. The environ-
ment in which the crime occurs may play a role in
the generation and accessibility of crime opportuni-
ties and may even provoke criminal activity. Studies
of the influence of the role of these opportunities in
crime occurrence date back to the nineteenth century
(Weisburd et al., 2009; Johnson, 2010); yet, system-
atic studies of the interaction between the offender
and the environment is a relatively recent pursuit
in what has been coined environmental criminology
(Brantingham and Brantingham, 1981).

While much focus has been placed on the map-
ping of crime hot spots, and sociological theories de-
veloped to account for potential causes of the for-
mation of crime hot spots; mathematical modeling
to aid in understanding the mechanisms of the gen-
esis, spread, and dissipation of crime hot spots is
in the nascent phase. Mechanistic models have ex-
plored agent based simulation and reaction diffu-
sion approaches to the risk of victimization(Short
et al., 2008, 2010), social interaction models of the
propensity of the criminal agent to act(Berestycki
and Nadal, 2010), and incorporating Levy flights to
describe non-local movement of offenders (Chatu-
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rapruek et al., 2013).

We develop and explore a model for the nonlocal
aggregation of environmental attractiveness for crim-
inal activity. The model brings together the ideas
of routine activity theory, crime pattern theory, and
rational choice theory to explore how social inter-
actions amongst recent and potential victims and
offenders influence the aggregation of environmen-
tal attractiveness for criminal activities and the for-
mation of crime hot spots. Routine activity theory
asserts that societal organization from the routine
activities of victims to placement of ‘guardians’ im-
pacts the attractiveness of the victim for victimiza-
tion (Felson, 2008). Crime pattern theory asserts
that the spatial organization of crime concentration
reflects the collective awareness of offenders to suit-
able crime opportunities (Brantingham and Brant-
ingham, 2008). Rational choice theory asserts that
the decision to continue or desist from criminal activ-
ity by the offender is based on an assessment of the
relative risks and potential rewards of the criminal
act as perceived by the offender (Cornish and Clarke,
2008). The model uses these theories to present a re-
alization of the "broken windows theory’ that signs of
disorder attract more disorder and diminishing those
signs will diminish the attraction of disorder (Keizer
et al., 2008).

The model presented is based on considerations
taken in the Berestycki and Nadal model (Berestycki
and Nadal, 2010); however, we perform an analysis of
the equilibrium solutions when an opinion dynamic
for criminal activity is formed through a social in-
teraction of environmental factors that influence the
continuance or desistance of crime at a location. The
resultant model that we analyze is a reformulation of
the seminal model of Amari for the formation of lo-
calized activity states in lateral inhibition type neu-
ral fields (Amari, 1977). We follow the analysis of
Amari to present the necessary and sufficient condi-
tions for the potential equilibrium solutions including
hot spots and provide the corresponding taxonomy
of equilibrium solutions based upon an idiosyncratic
attractiveness of the environment to crime. In the
Amari analysis the stability of equilibrium solutions
is exhibited through considerations of the stability
of the width of the equilibrium solution. Departing
from Amari’s analysis, we will present the stability
analysis by a standard linearization technique of the



model system. The mechanisms we incorporate in
this model are generic mechanisms that could apply
to many different criminal activities and we do not
specialize to any one crime type. However, the model
should be considered as describing the attractiveness
for one crime type as the description of social interac-
tion given here is representative of a ‘communication
of risk’ about areas where crime has occurred.

MODEL

The object of interest in developing maps of crime
hot spots is the level of criminal activity, u (x,t), at
some position z in the domain 2 and time ¢t. We
assume the level of criminal activity to depend on
the typical perceived attractiveness of a given lo-
cation, x, in the environment for criminal activity,
A(xz,t). That is, A (x,t) represents a coarse grained
view of the environment that can be thought as de-
scribing a typical reward (A > 0) or risk (A < 0)
for committing a criminal act at location x on time
t. In line with routine activity theory, the dynamics
of this attractiveness will depend on the presence of
potential offenders, targets, and deterrent forces (Co-
hen and Felson, 1979; Felson, 2008; Berestycki and
Nadal, 2010) This attractiveness variable is analo-
gous to the risk of victimization modeled by Short
et. al. (Short et al., 2008, 2010) and is an alternative
interpretation of the propensity to act modeled by
Berestycki and Nadal(Berestycki and Nadal, 2010).
The spatio-temporal field A (x,t) may represent, for
example, general environmental cues or specific of-
fender knowledge about the vulnerability of the area
for criminal activity(Short et al., 2010).

The crime level is considered to be a non-linear
function of the attractiveness of the environment

u(z,t) = AA(z,1)]] (1)

where the ‘acting out’ function A [A] is a monoton-
ically non-decreasing, saturating function satisfying
AJA] =0 for A <0. That is, for relatively unattrac-
tive environments there is no crime and as attrac-
tiveness increases so will the crime level, approaching
some maximal crime level normalized to a value of
1. For simplicity in the proceeding analysis we will
consider the acting out function to be a step function

0 ifA<0
A[A]{ 1 ifA>0 @

This choice reflects the binary nature of the decision
to act out, or, perform the criminal activity.

We model the time evolution of the attractive-
ness of the environment incorporating an opin-
ion dynamic represented as a social interaction
term similar to that presented by Berestycki and
Nadal(Berestycki and Nadal, 2010):

T%? = — Az, ) + W (z,1) +/ j (o) u (' t) d'.

Q
3)

W (x,t) describes the inherent level of attractiveness
for criminal activity at a location = and ¢ in the ab-
sence of criminal activity. While the inherent attrac-
tiveness of a location could be modified over time, we
consider this timescale to be long relative to the dy-
namics of hot spot formation and consider Wz, t) to
be time independent. Furthermore, we will make the
simplifying assumption that the environment we are
considering is uniform in the inherent attractiveness;
that is, W(z,t) = w where w is the average value
of W (x,t) over the spatial domain. We consider the
field to be homogeneous; that is, the weighting func-
tion depends only on the distance between locations
z and 2 and not the specific locations in the environ-
ment; that is, j (z,2’) = j (| — 2’|). Furthermore,
the crime hot spots that we consider are stable persis-
tent elevations of the crime level which is tantamount
to an equilibrium solution of (3). Therefor in this de-
scription of the social interaction we neglect any time
lag between crime events reflected in the crime level
and the corresponding impact on the attractiveness
of the environment. Both the temporal and spatial
scale for the dynamics of attractiveness represented
by 7 and description of j (|z — ’|) respectively, are
not clear from available data. As such we rescale our
time units to be in terms of the attractiveness time
scale, t — f With this normalization 7 is set to
unity in equation (3). Additionally, spatial location
x is given in terms of the attractiveness spatial scale.

Knox analysis of data for various types of crimes in
numerous locations demonstrate an ubiquitous fea-
ture of co-occurrences of criminal events that are
proximal in time and space that are significantly
more common than would be expected if the oc-
currence of criminal activities were random events
(Johnson et al., 2007; Johnson, 2010). This near
repeat victimization may reflect a foraging strategy
where offenders utilize knowledge from previous ac-
tivities to assist in future targeting decisions (John-
son, 2010). Thus there is a communication of risk
that is reflected by the weighing function for social
interaction j (|;z; — xl|) The Knox analysis suggest
that the strengthening of the attractiveness for fu-
ture crime events is strongest at the same location
as where an event has occurred and decreases as the
proximity decreases. Just as knowledge of routine ac-
tivities of victims in an area may increase the attrac-
tiveness of the area, so would knowledge about deter-
rents against criminal activities in an area decrease
the attractiveness of the area. Given the information
from the Knox analysis it is reasonable to assert that
in areas where crime has occurred these deterrents
are not as strong as the factors that would increase
the attractiveness; however, at a sufficient distance
from an area where crime has occurred elevations in
co-occurrence of criminal activities diminish suggest-
ing that the extent of deterrent forces to the attrac-
tiveness of an area is broader than those that would



enhance the attractiveness for a criminal activity. In
fact, the presence of a guardian or deterrent force
in response to elevated crime levels does not neces-
sarily displace crime to an adjacent setting (Keizer
et al., 2008; Short et al., 2010) indicating a poten-
tial greater distal impact of the deterrent force rela-
tive to an attractive force. Alternatively, the broader
extent could represent an optimal foraging behavior
whereby offenders concentrate towards areas of high
attractiveness. The opportunity for crime to occur
requires the presence of both victims and offenders;
hence, an absence of offenders creates a decreased
attractiveness for crime to occur.

A social interaction function, j (|z|), that encom-
passes near-repeat victimization via foraging behav-
ior of criminals and the same mechanisms for the
spread of deterrent information through the environ-
ment should have a positive local maxima at |z| = 0,
one root preceding a local minima which is negative,
and lim|;| 00 j(|2]) = 0. An example of such a func-
tion is given by the difference of Gaussians function

- ()il )
x) = exp | —=—5 | — exp | — =
J 2moq P 20% 2mo9 P 20%
where j; > jo > 0 and g9 > o1 > 0.
Previous work (Berestycki and Nadal, 2010) con-

siders a social interaction weighting function of the
form

Ja,2') = jo + ji(z,2') (4)

where ji(x,2') is positive for “close” locations = and
2’ and zero otherwise. Under such assumptions the
integral term in (3) is well approximated by a diffu-
sive form:

/ j(z, 2 (', t)da' ~ jou(t) + DV23u(z,t)
Q

where @ is the average crime level over the domain.
Additionally in that work social deterrence is incor-
porated as a separate field that modulates an effec-
tive cost to the propensity to commit a crime at a
location where there is a non-zero crime level. Sep-
arate analysis are provided in that work for the case
where there is no social interaction term and deter-
rence is purely local (i.e. no influence on deterrence
level at position x from any other location in the en-
vironment) and the case where there is no deterrence
and social interaction is global providing an equal in-
fluence at all locations (i.e. ji(x,2) = 0 in (4)).

In the subsequent analysis we will consider the do-
main Q@ = R!. With this domain, the model pre-
sented here is a reinterpretation of Amari’s seminal
model for describing neural fields with lateral inhi-
bition (Amari, 1977) to describing crime dynamics.
We use techniques developed for analyzing this neu-
ral field model and reformulate the results for the
given application in crime dynamics.

EQUILIBRIUM SOLUTIONS

Hot spots are characterized as relatively stable lo-
calaized areas where persistent criminal activity is
concentrated. As such to determine necessary and
sufficient conditions for the existence and stability of
hot spots we gglalyze equilibrium solutions of (3). At

equilibrium %3 = 0 and corresponding equilibrium

solutions satisfy

A(a;)=w+/ﬂj(|x—x’|)u(x')dx/. (5)

From the description of the ’acting out’ function
(1), u(x) =0 for A(x) < 0 so we define the opportu-
nity sets for criminal activity from the set function:

R[A] = {z]A(z) > 0}

which is the region of the field that is considered
attractive for a criminal act and hence has a non-
negative crime level. With this notation we rewrite

(5) as
Az) =w+ / j (|x - x/|) dx'. (6)
RIA]
Any equilibrium solution with R[A] = 0 (i.e.

A(x) < 0 for any x) will be termed a ‘quiet’ or (-spot.
Any equilibrium solution with R[A] = (—o0, 00) (i.e.
entire field is attractive to criminal activity) will
be termed a ‘rampant’ or oo-spot. A hot-spot is
a localized region of elevated (non-zero) crime level
which is represented here as a finite interval for which
A(x) > 0. that is, R[A] = (hi1,h2). Given the
homogeneity of the field, without loss of generality
we can consider a hot spot of length h to satisfy
R[A] = (0,h) and will refer to such equilibrium so-
lutions as h-spots.

Before identifying the necessary and sufficient con-
ditions for the existence of (-, co-, and h-spot solu-
tions we define some pertinent features of the integral
term in equation (6),

From this definition, J(0) = 0 and J(—z) = —J(z).
We further define the quantities:

Joo = lim J(z)
Tr— 00

Jm = maxJ(x).
>0

Theorem 1: Necessary and Sufficient conditions for
equilibrium solutions.

a) There exists a (-spot if and only if w < 0.

b) There exists a co-spot if and only if 2J. > —w.
c¢) There exists a h-spot if and only if w < 0 and
h > 0 satisfies w 4+ J(h) = 0.

Proof:

a) If there exists a (-spot then A(z) = w and R[A] =
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Fig. 1. Finding h-spot widths from J(x): h-spots are found
from the intersection of the graphs for J(x) (solid line) and —w
(dotted line). In this example we find two h-spots with widths
h1 < ha. Parameters: j; = 7.5,01 = 1,j2 = 8.3,02 = 1.65

() requires w < 0. Conversely, if w < 0 then A(z) = w
is a (-spot solution.

b) If there exists a co-spot then A(z) = w+ [~ j(z—
2)dx' = w+ 2Jy > 0. Conversely, if 2J,, > —w
then A(x) = w + 2J, is a co-spot solution

c) If there exists a h-spot then

Alz) = w—l—/ohj(x—xl)dx,

= w+J(x) - J( (7)

x —h).
From the continuity of A(x), A(0) = A(h) = 0 im-
plying w+ J(h) = 0. Conversely if w4+ J(h) = 0 then
a solution defined by (7) satisfies A(0) = A(h) = 0.
Furthermore 22 = j(z) — j(z — h) which is positive
at = 0 and negative at * = h so A(x) > 0 for
0 < x < h and provided w is sufficiently negative,
A(x) < 0 outside this interval. O

From the theorem 1 we note that the existence
of the various types of equilibrium solutions depend
on the interaction of the idiosyncratic attractiveness
of the environment and the properties of the social
interaction function. For example, to have a zero
crime level requires the idiosyncratic attractiveness
of the environment to reflect an expected risk to en-
gaging in criminal activity. However this alone does
not guarantee a zero crime level environment, if the
net social interaction is large enough relative to the
idiosyncratic attractiveness, then there is potential
for rampant crime where there is a non-zero crime
level throughout the environment. Theorem 1 al-
lows us for a given social interaction function, j(|z|),
to develop a taxonomy of hot spot equilibrium based
on the idiosyncratic level of attractiveness of the en-
vironment for criminal activity. Figure 1 shows an
example of finding the width h of an h-spot from
J(x) and a given value for w.

To obtain a taxonomy of equilibrium solutions for
varying idiosyncratic attractiveness levels of the en-
vironment we note that there are three cases to con-

sider. In the following diagrams for each of the cases
we show the sets of equilibrium solutions for var-
ious levels of idiosyncratic attractiveness w. Those
equilibrium values which are not stable are indicated
with a”symbol above the spot width. Stability is of
these solutions is shown in the next section.

Case I1: 2J > Jp;, >0

i e
@ {f} P {h} o}
= w
37, ~I. ~J 0
Case In: J,, > 2J5 >0
o ﬁj 2
@} h ; i oo}
h, 1'1 Lc
- w
- —37, ~J. 0
Case 2: Jo <0
@
@ oo |
h,
w
~Ju 0 -2J,

We note for certain choices of w in all cases the field
admits a bi-stability where both the quiet spot and
hot spot solutions are stable. When J,, < 0 and
0 < w < —2J there is a multi-peak solution and no
localized solution.

As noted in theorem 1, a quiet spot required w <
0. We can see from the taxonomy that if the idiosyn-
cratic attractiveness is sufficiently negative a quiet
spot is the only equilibrium solution. This would
correspond to an environment where there is a high
risk for committing a criminal activity. Achieving
such an environment would be potentially resource
intensive and likely too expensive to implement. As
w is increased from these high risk values stable hot
spot solutions become possible. Once the idiosyn-
cratic attractiveness promotes crime, we find cases
where the only equilibrium is one where crime per-
sists everywhere in the environment. For stable hot
spot solutions, it is required that the idiosyncratic at-
tractiveness of the environment represent a risk for
committing a criminal act. A risk that is enough to
discourage crime without creating an environment
where no crime exists may be accomplished through
many guardianship mechanisms ranging from neigh-
borhood watch programs to the criminal Justice sys-
tem.

STABILITY

Hot spots of criminal activity are persistent in time
implying that the A-spot solutions we have found
should be stable equilibrium solutions. In this sec-
tion we establish the stability of equilibrium solu-
tions of (3) against perturbations of these equilib-
rium. The stability analysis performed by Amari de-
veloped a differential equation to described the evo-



lution of the width of an equilibrium solution. Then
the stability of the width of an equilibrium solution is
used as a proxy for the stability of the equilibrium so-
lution of the original system. Here, we establish the
stability of the equilibrium solution by a linearization
of (3) around an equilibrium solution adapting the
analysis of Blomquist et al (Blomquist et al., 2005) to
a single state variable. Before engaging this analysis
we note that for quiet spots A(z) = w are consid-
ered stable. Additionally, solutions can only grow to
oo-spots if Jo, +w > 0; while such solutions can not
be properly perturbed, infty-spots with Jo, < —w
are not considered stable.
Let Ac(z) denote an equilibrium solution of (3)

A (z) = /00 jlx—2")A (A () da'.

—00

We consider a perturbed state of Ag(x)
A(Ivt) = Ae(x) +X(xvt)' (8)

For the form of the acting out function given in (2)
a Taylor expansion about the equilibrium solution
yields

A(Ac+x) = A(Ae) +6 (Ae) X + - (9)

where §(z) denotes a Dirac delta function and it is
assumed |x| < |Ae| so we may keep only the first
two terms of the Taylor expansion. Plugging the per-
turbed state (8) into (3) and using the Taylor series
approximation (9) we deduce a non-local evolution
equation for the perturbation x(z,t)

%@+ | 7 (@ — )5 (A(a')) x(a')de!

ot .
(10)
We seek solutions of (10) of the form

x(z,t) = e’\txl(ac) (11)

where the eigenvalues A determine the the distur-
bance is growing (A > 0) or decaying (A < 0) indi-
cating an unstable or stable equilibrium respectively.
Plugging (11) into (10) we find

o0

(14 M (@) = / 5 (Au(a')) xa (o).
Noting that for a h-spot [-LA.(0)| = |-LA.(h)| =
5(0) — ()],

[i(2)x1(0) = j(z = h)xa (h)]
15(0) = 5(R)]

We refer the reader to appendix B of Blomquist et al
(Blomquist et al., 2005) for details of this computa-
tion. Evaluating (12) at the end points of the h-spot
xz = 0 and x = h, achieves the system of homoge-
neous linear equations, My = 0

(1+2) = M M, Hxlw)} _q
—M, (L+A)+ M| xa(h)]

(1+Xxa(z) = (12)

where,
i) )
LSO s Mo -

As we consider non-trivial perturbations x1(z), we
find the A by solving det(M) =0

NV O
4+, - = - -

’ 17(0) — (R
The root A_ is always negative while the root Ay is
negative when j(h) < 0 and positive when j(h) >
0. This means that h-spot solutions with j(h) >
0 exhibit a saddle point instability and those with
j(h) < 0 are stable. Unstable solutions are noted
in the equilibrium solution taxonomy tables by a ~
symbol over the corresponding spot width.

The stability of an h-spot solution depends on
both the width h, and the social interaction func-
tion j(z). For example we see from figure 1 that in
cases where we find two h-spot equilibrium, the nar-
rower h-spot corresponds to j(h) > 0 and is unsta-
ble while the broader h-spot corresponds to j(h) < 0
and is stable. The lack of stability of a narrow h-spot
means that these spots can be dissipated by a small
deterrence; whereas, dissipation of a broad h-spot
would require a significant deterrence effort.

-1

DISCUSSION

The routine activity theory makes micro and
macro level assertions. On the micro-level the the-
ory states that the convergence of potential victims
and offenders in the absence of capable guardian-
ship against the crime may lead to the emergence
of crime. At a macro-level the theory asserts that
features of the larger society and community or en-
vironment, may make these convergences more likely
(Felson, 2008). The model presented here quantifies
the capability of the guardian against the crime by
an idiosyncratic attractiveness level w. In this case
a lack of capable guardianship would be quantified
be a positive idiosyncratic attractiveness that could
potentially lead to rampant crime equilibrium solu-
tion consistent with the routine activity theory. The
presence of a guardian is important to deter the oc-
currence of crime events; however, the presence of a
guardian may not be sufficient to ensure that there
is no crime. The level of capability of the guardian
to deter the crime is quantified by negative idiosyn-
cratic attractiveness. The presence of the hot-spot
solutions that emerge from our model require the
presence of a level of guardianship that can deter
rampant crime; yet, is not so strong a deterrent as
to prohibit all crime. Guardianship against crime
acts can take many forms ranging from policing to
alarm systems to the implementation of the crim-
inal justice system for example. The ubiquity of
hot-spots of criminal activity would imply that cur-
rently implemented levels of such guardianship are in



this range of deterring rampant crime solutions while
not quieting all crime. A dissipation of the hot spot
would require a temporary increase in the guardian-
ship to decrease the width of the hot-spot to below
the narrow width or unstable width hot-spot solution
for the idiosyncratic background level. However, to
protect against the resurgence of hot-spots of crimi-
nal activity would require maintaining a high level of
guardianship. Such high levels of guardianship may
be cost prohibitive to implement and require levels of
guardianship that are socially unacceptable. While
the success of the implementation of a surge and
maintain strategy to dissipate and protect against
the re-emergence of crime hot-spots remains to be
seen in practice, Brazil appears to be implementing
such a strategy in its preparation for the 2014 World
Cup (Associated Press, 2014).

In this paper we have presented a model for the
non-local aggregation of environmental attractive-
ness for criminal activity via a social interaction
mechanism. This social interaction takes the form
of an opinion dynamic mimicking a voter model. In
a voter model a binary decision or vote is made by
one agent and neighboring agents may be influenced
to change their vote based on this vote (Xia et al.,
2011). In this case the vote is for the occurrence of
crime based on local attractiveness that is influenced
by non-local votes for crime. The influence to vote
for or against crime in this manner is distance de-
pendent via a social interaction weighting function.

We build on earlier work considering a social in-
teraction model (Berestycki and Nadal, 2010) for the
communication of risk in influencing the propensity
of the offender to commit a crime activity. Rather
than considering local costs for repeat victimization
for a particular location, decreases in the attractive-
ness of the environment or deterrence for criminal
activity at a location are communicated through the
social interaction function. The decrease in attrac-
tiveness could be a consequence of, for example, the
presence of guardians owing to the crime level or an
attraction of offenders to a more attractive location
for criminal activity. We analyze the existence and
stability of hot spots of criminal activity as equilib-
rium solutions of the model when deterrent forces
are non-local and attractive forces are non-constant
across the whole domain. We find that hot spots
exist so long as the there is an overall risk in the
environment for committing a criminal activity and
that a bi-stability can occur between quiet and hot
spot environments.

The model studied is a reformulation of Amari’s
seminal model for studying lateral inhibition type
neural fields (Amari, 1977). We followed Amari’s
analysis to give necessary and sufficient conditions
for the existence of different types of equilibrium so-
lutions including hot spot solutions and provided a
taxonomy of equilibrium solutions such as provided
by Amari for neural fields. However, we departed

from Amari’s approach in consideration of the sta-
bility of the equilibrium solutions. Our approach of
a direct analysis of perturbations of equilibrium so-
lutions for (3) provides more information about the
nature of the instability that arises than Amari’s ap-
proach of considering the stability of the spot width
itself.

In this model we considered an environment where
the inherent attractiveness of the environment is ho-
mogeneous W (x,t) = w. Amari considered for neu-
ral fields a stationary input stimulus, W(z,t) =
W(z) > 0, and found that the localized activity
states would be centered at local maxima of the in-
put stimulus. In this context we could think of W (z)
as a function that has negative minima at areas of
strong guardianship and potentially positive at ar-
eas where the environmental cues suggest a low risk
for criminal activity such as in the broken windows
theory (Keizer et al., 2008). We would expect in fol-
lowing the Amari analysis that hot spots would form
around a positive local maxima of this stationary in-
herent attractiveness.

Additionally we have only considered the proper-
ties of one hot spot. Typically crime maps show
a patterning of distinct separated crime hot spots.
Amari considered the interaction of localized exci-
tation patterns in neural fields. Following Amari’s
analysis we would expect in this model that for two
crime hot spots that are sufficiently close the two
crime hot spots will attract each other to form one
crime hot spot. At a more intermediate distance the
two hot spots will repel one another until they are
sufficiently separated to have no influence on each
other. The exact distance that hot spots separate
will depend on the social interaction function.

A common policing strategy known as “cops on
the dots” is to send police to the crime hot spots to
provide a strong deterrence. The result of this strat-
egy may be to either dissipate crime or locate it to
another location (Braga, 2001). Recently using this
strategy to dissipate a hot spot in a reaction diffusion
model (Zipkin et al., 2013) and existence for travel-
ing wave solutions in a reaction diffusion model for
criminal propensity to act (Berestycki et al., 2013).
Amari introduced a “two layer” version of his neural
field model that mimics the cops on the dots strategy.
In this extension the deterrent force would be con-
sidered a separate field variable that is excited only
at the location of the crime and provides a spread of
deterrent to the attractiveness field. Amari exhibited
that such a two layer network can exhibit traveling
wave solutions. The social interaction function pre-
sented here can be derived from such a two layer
network when the deterrent layer is considered to be
in a quasi-steady state with the description of the
level of attractiveness.

An additional feature of crime hot spots for future
consideration in this modeling framework is the in-
fluence of the topology of the environment on the for-



mation of crime hot spots. If an offender is unaware
of a target location then the offender can not com-
mit a crime at that location. The topology of crime
concentration reflects a communication of potential
targets and risks (Brantingham and Brantingham,
2008; Johnson, 2010) that may be reflected in the
social interaction function. Explorations of neural
field equations like that of Amari that incorporate
the topology of the neural network have shown new
non-trivial equilibrium and traveling wave solutions
(Haskell and Bressloff, 2003; Haskell and Paksoy,
2011; Salomon and Haskell, 2012, 2013). It would be
interesting to further study these field equations in-
tegrating a topology that arises from environmental
criminology for continued comparison and advance-
ment of the understanding of the influence of network
topology on crime hot spots.
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