ecms_neu_mini.png

Digital Library

of the European Council for Modelling and Simulation

 

Title:

LQ Control Of Heat Exchanger – Design And Simulation

Authors:

Vladimir Bobal, Petr Dostal, Marek Kubalcik, Stanislav Talas

Published in:

 

 

(2015).ECMS 2015 Proceedings edited by: Valeri M. Mladenov, Grisha Spasov, Petia Georgieva, Galidiya Petrova, European Council for Modeling and Simulation. doi:10.7148/2015

 

 

ISBN: 978-0-9932440-0-1

 

29th European Conference on Modelling and Simulation,

Albena (Varna), Bulgaria, May 26th – 29th, 2015

 

Citation format:

Vladimir Bobal, Petr Dostal, Marek Kubalcik, Stanislav Talas (2015). LQ Control Of Heat Exchanger – Design And Simulation, ECMS 2015 Proceedings edited by: Valeri M. Mladenov, Petia Georgieva, Grisha Spasov, Galidiya Petrova  European Council for Modeling and Simulation. doi:10.7148/2015-0239

DOI:

http://dx.doi.org/10.7148/2015-0239

Abstract:

Heat exchangers are devices whose primary responsibility is the transfer (exchange) of heat, typically from one fluid to another. However, they are not only used in heating applications, such as space heaters, but are also used in cooling applications, such as refrigerators and air conditioners. Heat exchange processes often contain time-delay. This paper deals with design of universal and robust digital control algorithms for control of great deal of processes with time-delay. These algorithms are realized by the digital Smith Predictor (SP) based on polynomial approach – by minimization of the Linear Quadratic (LQ) criterion. For a minimization of the LQ criterion is used spectral factorization with application of the MATLAB polynomial Toolbox. The designed polynomial digital Smith Predictors were verified in simulation conditions. Simulation model for a verification of the designed control algorithms was realized using experimental measured data on the laboratory heat exchanger. The program system MATLAB/SIMULINK was used for simulation of the designed algorithms.

 

Full text: