SHORT ANALYSIS OF IMPLEMENTATION AND RESOURCE
UTILIZATION FOR THE OPENSTACK CLOUD COMPUTING PLATFORM

Daniel Grzonka*, Michat Szczygiet, Artur Bernasiewicz,
Andrzej Wilezynski and Marek Liszka
Institute of Computer Science

Faculty of Physics, Mathematics and Computer Science

Cracow University of Technology
Warszawska st 24, 31-155 Cracow, Poland
E-mail: grzonka.daniel@gmail.com
*Corresponding author

KEYWORDS
Cloud Computing, OpenStack, Virtualization, High
Performance Computing, Parallel Environments,

Resource Utilization Analysis.

ABSTRACT

The problem of efficient use of computer resources is
the actual challenge for many years. Huge progress in
the hardware development has left behind the
development of software techniques. One of the most
popular solutions for this problem is the idea of
virtualization, which a natural continuation is cloud
computing. Cloud computing is an innovative concept,
where the resources are virtualized, dynamically
extended and provided as highly personalized services.
In this paper, we present a short analysis of open-source
cloud technology - OpenStack. We described
OpenStack architecture, requirements, setup process,
and related problems. We also conducted a thorough
analysis of resource utility - both at full load and
without. In our experiments we have analyzed the
performance depending on the allocation of virtual
resources. Through our work we pointed out aspects
which deserve attention by choosing an OpenStack
platform. Additionally, we draw attention to the burden
on the use of technologies such as OpenStack cloud.

INTRODUCTION

Over the decades, the rapid development of broadly
defined computer technologies is observed. In the 60s of
the twentieth century, when the first integrated circuit
(IC) has been developed the revolution in the computer
hardware started. The advancement of microelectronic
technology resulted in increase of number of transistors
placed on microprocessors. Regularity in the
development of digital technology was discovered in
1965 by co-founder of Intel Corporation - Gordon
Moore. In 1975, Moore formulated statement, named
the Moore’s law, concerned the rate of density doubling.
He observed that “circuit density-doubling would occur
over 24 month” [1]. The statement has been generalized
for many IT areas like size of RAM and HDD or
bandwidth of computer networks. The most popular

Proceedings 29th European Conference on Modelling and
Simulation ©ECMS Valeri M. Mladenov, Petia Georgieva,
Grisha Spasov, Galidiya Petrova (Editors)

ISBN: 978-0-9932440-0-1 / ISBN: 978-0-9932440-1-8 (CD)

example is the increase of the number of transistors on
integrated circuits.

With the increase in available resources the problem of
efficiency occurred. In extreme cases, an increase in the
available resources can have opposite effects to what
was expected. The reason for this may be overhead
associated with more complex communication or
misapplied parallelization technologies [2]. Therefore,
despite the fact that the development of computer
hardware and programming languages has enabled the
creation of a much more complex systems, the
development of software techniques doesn’t keep up
with the technological development. This phenomenon
is called "software crisis", and is continued to this day.
E. Dijkstra summed up this situation as follows [3]:

“The major cause of the software crisis is that the
machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as there
were no machines, programming was no problem at all;
when we had a few weak computers, programming
became a mild problem, and now we have gigantic
computers, programming has become an equally
gigantic problem.”

The main cause of this state is that increase in
computing power had outperformed the ability of
programmers to effectively utilize those capabilities.
Despite the development of many methods and
methodologies supporting the use of available resources
(like new paradigms, programming approaches or
hardware solutions), the problem is still actual.

One of the proposed solutions is virtualization
technology. Virtualization is wide issue refers to
abstraction in many computer areas (like computer
hardware, storage devices, operating systems, computer
networks, operating memory). It allows effective
utilization of available physical resources by any
adaptations of the virtual features to the user’s needs.
Computing power of modern computers is so huge, that
one physical server can held a few operating systems
adapted for many purposes. The main advantage of

Virtual Machines

Virtualization Server

e —

Physical Server 1

Virtual Machines

Virtualization Server

—_—f L=

PhysicallServer 2

) Tz ==

Virtual Machines

Virtualization Server

——— —

Physical Server N

et i _

Shared Storage

Fig. 1. Model of full virtualization.

using virtualization is better utilization of resources
which implies significant savings resulting from the
purchase of equipment, power consumption, heat
generation and space requirements [4, 5].

Additionally with virtualization, we gain much more
flexibility and efficiency in resource configuration.
Without interfering with the physical equipment, we are
able to change the parameters of our servers. This
increases both the availability and reliability of systems.
In the case of breakdown it allows for rapid
reconstruction of infrastructure. Virtualization is also
solution for a problem with application of compatibility
across delivery required environments (operating
systems). Actually, there is variety of applications
generating virtual machines, e.g. VMware, KVM, Xen,
Microsoft Hyper-V, VirtualBox, OpenVZ [4, 6].

As a result of the development and growing popularity
of virtualization techniques the new idea called cloud
computing was established. It is natural evolution of
traditional grids, clusters and data centres [7]. The
National Institute of Standards and Technology defined
cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction” [8].

The model is based on the idea of resource
virtualization which allows to offer highly personalized
service. The idea is to move the obligation to provide IT
services (access to data, software or computing power)
to servers and enabling continued access by client
devices. Fee is charged from the customer for the
resources used (pay per use) like computational power,
software, storage, data transfer etc [9]. Cloud computing
providers offer their services in a transparent way
according to several fundamental models and the three
main are listed below [10]:

e Infrastructure as a Service (IaaS),
e Platform as a Service (PaaS),
e Software as a Service (SaaS).

One of the innovative and more and more popular
software platform providing services in the TaaS model
is the OpenStack platform that is the subject of our
article.

Experiments described in the article were performed
under the Development Workshop classes by the
Cracow University of Technology students supervised
by Daniel Grzonka. The aim of the course was to
familiarize students with the implementation and the
basic issues related to performance in distributed
environments such as cloud computing.

The paper is organized as follow. In Section 2 we
described features and architecture of OpenStack
platform. We present all the modules available in the
latest version. The hardware requirements, installation
tools and related problems are described in Section 3.
Finally, in Section 4 we present results of our
experiments. The paper is summarized and concluded in
Section 5.

LEAD-IN OPENSTACK

OpenStack is a free and open-source platform that
possesses a set of tools for the creation and management
of private, public and hybrid cloud computing. Services
provided by the OpenStack software control a wide
range of compute, storage, and networking resources.
OpenStack provides an architecture that gives the
flexibility in the clouds design. It can be integrated with
existing systems and third-party technologies (e.g.
Amazon EC2) [11].

OpenStack has been deployed by global enterprise
customers whose process and stores data are measured
in petabytes. Data are not stored in a traditional file

OpenStack Juno services

@ — Horizon Dashboard

Nova Glance Swift
Image Store .0t Store
A

Compute

Keystone
Identity
Service

Ubuntu Storage Server

Fig. 2. The OpenStack Juno modular architecture (selected services).

system, but in a distributed storage static data systems
such as images of virtual machines, files, backups and
archives. In addition, OpenStack provides greater
scalability, redundancy and durability. Objects and files
are stored on multiple disks scattered in the data centre,
providing replication and data integrity. [12, 13]

The platform provides also flexible network models for
various applications or groups of users. The ability to
manage network addressing allows dedicating static and
dynamic IP addresses. It also allows the users to
dynamically redirect traffic to all computing resources,
which is very useful during maintenance or in case of
failure. Users can create their own networks, control
traffic and connect machines to one or more virtual
networks. The project provides mechanisms for
associating instances with external IP addresses and
allows for remote access and control.

OpenStack is developed by a non-profit corporate entity
- OpenStack Foundation, established by Rackspace and
NASA in September 2012. An important advantage is
the support and participation in the design of many
major companies and IT organizations. At the moment,
the foundation has over 18,000 members from over 150
countries around the world. The purpose of the
foundation is to promote the OpenStack software and its
community, which develop project. The platform is
open source and can be modified and adapted as needed
[11,14].

OpenStack can be treated as an laaS (Infrastructure as
a Service) model. The TaaS provider offers resources
and enables users to create own virtual infrastructure.
The software is built modular and consists of many
components working together that have open APIs so it
is possible to manage resources from a single web
interface - dashboard, or by custom solutions developed
by programmers. Services communicate with each other

using the API after the authentication. In our research
we use the newest OpenStack version - Juno - which
may (but does not need) consist of the following
modules [11]:

e Nova - basic OpenStack engine; it is the
controller for managing and implementing
a large number of virtual machines and other
items,

e Swift - storage system for objects and files;
creates individual identifiers relating to the
files and then decides where to store data,

e (Cinder - storage component executing direct
access to the data on disk,

e Neutron — set of communication functions;
enables communication for individual
components of OpenStack by networking,

e Glance - disk imaging services and a repository
of OpenStack,

e Ceilometer - provides tariffing and reporting
services for individual users clouds,

e Heat - defines the configuration files with the
requirements of specific applications clouds
and specifies the resources necessary for the
application,

e Horizon - graphical user interface for system
administrators enabling easy way for managing
OpenStack,

e Keystone - OpenStack Identity service, with
alist of users and permissions; allows for
authorization and authentication for individual
cloud services,

e Trove - managing relational database services,

e Sahara — Big Data processing service for
OpenStack; provide users with simple means to
data processing (Hadoop, Spark) in
MapReduce model.

Fig. 2 presents OpenStack Juno modular architecture
(only enabled services from our test environment).

HARDWARE
INSTALLATION

REQUIREMENTS AND

In our research we based on the newest OpenStack
2014.2 release (Juno). Our first machine was Pinokio
server (specification in Tab. 1); according to the
documentation [11] it meets the minimum hardware
requirements needed for installation.

Table 1: Specification of Pinokio server.

configuration the process hanged. Further installation
became impossible.

The last attempt we used was Vagrant OpenStack
Provider. Description of the installation steps is
presented in [15], and is limited to: VirtualBox and
Vagrant installation, clone OpenStackCookbook git
repository and vagrant up command execution.
OpenStackCookbook repository is extended with
additional scripts to configure the environment. This
approach was successful. Unfortunately, the minimum
requirements does not allow to create a stable and
smoothly running environment. A virtual machines
absorb such a large resources (mainly RAM) making
impossible to work on the platform. So we decided to
buy new machine (specification in Tab. 2), calling it
Pinokio-v2. Specifications of the new server allowed
performing simple tests.

Table 2: Specification of Pinokio-v2 server.

Processor Intel(R) Core(TM)2 Quad CPU
Q6600 @ 2.40GHz
Cores 4
Threads 4
Architecture x86 64
Virtualization Intel VT-x
Memory 8GiB DIMM DDR2
Synchronous 800 MHz (1,2 ns)
Disk 160GB SAMSUNG HD160JJ
Operating Ubuntu Server 14.10 (x64)
System
Swap Volume 4GiB

There are many solutions to the OpenStack platform
installation, including [11, 12, 15]:

1. directly from GitHub repository,

Ubuntu Juju (simple client/server application
that bootstraps an instance to create and control
environment),

3. Vagrant OpenStack Provider (popular tool to
manage virtual machines and set up
development environments),

4. DevStack (set of tools used for the installation
of the central OpenStack services from source
repository).

We have tested three first options. The first attempt of
installation we made from GitHub repository. The
installation process was conducted without any
problems. After the server restarts, there was an
unsolvable problem with Python libraries dependencies.
This problem made impossible starting the Nova
service. Trying to re-install the platform ended with an
error: ImportError: cannot import name cfgfilter. After
uninstalling and reinstalling the problem appeared
again.

Our second attempt was to install OpenStack using
Ubuntu Juju. Juju require installation MaaS (Metal as
a Service — model which role is to deploying services
fast, reliable, repeatable and scalable) server — this step
was performed without any problems. Next, we tried to
install OpenStack platform, but during Juju bootstrap

Processor Intel(R) Core(TM) i7-4710HQ
CPU @ 2.50GHz
Cores 4
Threads 8
Architecture x86 64
Virtualization Intel VT-x
Memory 16GiB SODIMM DDR3
Synchronous 1600 MHz (0.6 ns)
Disk 256GB ADATA SP600
Operating Ubuntu Server 14.10 (x64)
System
Swap Volume 15GiB

The default configuration of OpenStackCoockbook
creates 7 virtual machines (one for each: controller,
network and cinder services; two for each: compute and
swift services), which absorb about 14,5 GB RAM.
Taking into account other system services, remained
around 3% of free memory. Such configuration made
much slower the whole OpenStack platform.

EXPERIMENTAL EVALUATION

In this section we present the results of resource
utilization analysis. First the impact of the existence of
running instances was examined. The CPU and RAM
usage parameters were measured. For that purpose we
prepared an exemplary instance of the system.
OpenStack provide two images by default:

e CirrOS (93 MB) - a minimal Linux
distribution that was designed for use as a test
image on clouds,

e Trusty Tahr (244.4 MB) — distribution of
Ubuntu 14.04,

and 5 flavours (sets of the virtual resources for instance)
presented in Tab. 3.

Table 3: Available sets of the virtual resources.

Table 5: Resources consumption during calculations.

With the available physical resources, single project
OpenStack default allows to create up to 10 instances
and assign the following virtual resources: 20 VCPUs,
50GB of RAM, 50 IPs, 10 security groups, 10 volumes
and 1000GB of storage.

At the beginning, we have created project and simple
network topology that would connect our instances.
Then the image of operating system was chosen.
Because of our limited hardware resources, we have
assigned only ml.tiny flavour for each instance. To
observe an increase in the use of resources caused by
running subsequent instances we have been deploying
the 3 instances simultaneously every time. The results
of our observations where measured by Process viewer
and system resource monitor for GNOME application.
Tab. 4 presents the process of resources consuming.
Each measurement was performed after 5 minutes idle
time.

Table 4: Resources consumption caused by running
instances.

Instances CPU usage RAM usage
0 5% 97,1%
3 12% 97,1%
6 18% 97,1%
9 23% 97,1%

As we can see the operating memory usage is constant,
but CPU usage is growing. Each instance of CirrOS
irreclaimable get and use about 2% of computing power
(about 5-7% per 3 running instances).

The second task of the experiment was to measure
resources usage by performing instances calculations. In
order to increase the CPU load each instance of
calculations was performed. For this purpose we have
implemented one of the most popular benchmark -
matrix multiplication.

Firstly we have prepared an instance of CirrOS based on
ml.tiny flavour, and implemented matrix multiplication
algorithm with matrices of 1024x1024 size. Then we
have created a snapshot of the instance, which was
named Archimedes. It allows us to create the same
instances with our application. The results of our
measurement are presented in Tab. 5.

Disk RAM Instances CPU usage RAM usage
Flavour | VCPUS |, GB) | (in MB) 0 5% 97.1%
ml tiny 1 1 512 1 19% 97,2%
ml.small 1 20 2048 2 32% 97,3%
ml.medium 2 40 4096 3 41% 97,3%
ml large 4 80 8192 4 51% 97,4%
ml xlarge 8 160 16384 5 55% 97,5%
6 56% 97,5%

It should be noted, that instances number 1, 3 and 5
were assigned to nova-compute-1 node; the rest to nova-
compute-2. As we can see, we have not reached full use
of available resources. This is due to the amount of
virtual computing machines. According to OpenStack
documentation, the hardware resources we possess do
not allow creating four virtual compute machines.

In Fig. 3 the CPU usage for each thread in scenario with
four running instances on two VMs are presented. As
we can see, some of threads (but not more than four in
the same time) are using about 100% of computing
power.

Fig. 3. The CPU usage in scenario with four full loaded
running instances.

We also noticed a slight increase in consumption of
operating memory. It is caused by simple calculations
performed by the implemented program.

Next, we extended our research for performance
analysis of task execution depend on selected
OpenStack flavour. For this purpose we prepared
master-slave model based on client-server idea. Our
system assigns the task to a specific instance and
waiting for the result. Implementation of
communication is based on sockets. Specifications of
tested flavours are presented in Tab. 3. As in previous
experiments, in order to full-load the computing
resources, we used the matrix multiplication benchmark

with matrices of 1024x1024 size. The results of our
measurements are presented in Tab. 6.

Table 6: Time of matrix multiplication for each flavour.

Flavour Time [s]
ml.tiny 30,912
ml.small 30,336
ml.medium 27,520
ml large 32,955
ml xlarge 31,890

Despite the fact that even the smallest flavour meets the
task's demands for computing resources, we received
different values. The top performance was received for
ml.medium flavour. The results may seem surprising,
but keep in mind that, especially in the case of
virtualized resources, it can be a situation in which
resources increase will reduce the performance. In our
case, we have to deal with delays resulting from
switching between threads, or fragmented memory. The
selected flavour (ml.medium) seems to be the most
optimal because of sufficient resources for the system
and our test task.

SUMMARY AND CONCLUSIONS

The main aim of this research was to present overview
and perform resources analysis of the OpenStack cloud
computing software platform. In our paper, we put
emphasis on the problems that are meet by a new user
and familiarized the installation method of the
environment.

In our tests, we have observed a very high demand on
operating memory resulting from the allocation of these
resources by VMs (mainly controller and compute
nodes). In order to set up a test environment at least
16GB of RAM (8GB given in the documentation does
not provide a stable environment installation and
operation) and processor with hardware virtualization
technology (Intel VT-x or AMD-V) are needed [11, 15].
Our recommended method of installation is one of the
tools that automate this process. In our study, we used
Vagrant OpenStack Provider. Installation directly from
the git repository ended in failure associated with the
Python libraries dependencies.

OpenStack is multi-platform software, but the biggest
support is provided from Ubuntu Server community.
Ubuntu Server is recommended operating system for
OpenStack.

In the second part of our paper, we evaluate platform
demands for hardware resources and we measured
resources utilization by compute instances. Creation of
two compute VMs and the rest of needed services
(atotal of 7 machines) absorb the most of available
RAM (14,5 of 16 GB). Only a small portion remains for

system processes. According to our measurements, the
creation and running each of instances with the lightest
system irreclaimable absorb about 2% of CPU power.
Memory consumption remained unchanged.

Next, we measured the use of resources during fully
loaded instances. Two compute nodes allow utilizing up
to 50% of computing power. Probably four compute
would allow for the use up to 100%, but holed the
hardware resources did not allow for the creation of
additional compute nodes. The results of our
experiments show efficient allocation of computing
resources by the OpenStack platform.

Performance analysis of task execution depend on
selected OpenStack flavour has shown that increasing
the virtual resources is not always involves an increase
efficiency. A lot depends on the type and distribution of
resources.

According to our observations, OpenStack can be
a good option for extensive computer infrastructure. In
the case of a single machine losses of performance
associated with the implementation of solutions far
outweigh the benefits obtained. Nevertheless, having
a powerful machine, you can use a platform for simple
testing and educational purposes.

ACKNOWLEDGMENT

Daniel Grzonka’s research presented in the paper was
partially supported by the European Commission FP7
through the project ParaPhrase: Parallel Patterns for
Adaptive Heterogeneous Multicore Systems, under
contract no. 288570 (http://paraphrase-ict.cu).

REFERENCES

[1] Moore, G. E. 1998. "Cramming more components
onto integrated circuits", Proceedings of the IEEE,
Volume 86, Issue 1.

[2] Brooks Jr., F. P. 1995. "The mythical man-month"
(anniversary ed.), Addison-Wesley Longman Publishing
Co., Inc., Boston, MA.

[3] Dijkstra, E. W. 1972. "The Humble Programmer",
Communications of the ACM, Volume 15, Issue 10.

[4] Serafin, M. 2012. "Wirtualizacja w praktyce" (in
Polish), Wydawnictwo Helion, Poland.

[5] Popek, G. J. and R. P. Goldberg. 1974. "Formal
requirements for virtualizable third generation
architectures", Communications of the ACM, Volume
17, Issue 7.

[6] Gagniuc, M. B. 2008. "Virtual Machines
Technologies", Proceedings of the 9th International
Conference on Development and Application Systems,
Suceava, Romania.

[7] Marks, M. and E. Niewiadomska-Szynkiewicz.
2014. "Hybrid CPU/GPU Platform for High
Performance Computing”, Proceedings of the 28th
European Conference on Modelling and Simulation,
Brescia, Italy.

[8] Mell, P. and T. Grance. 2011. "The NIST Definition
of Cloud Computing", Recommendations of the
National Institute of Standards and Technology, USA.

[9] Mhedheb, Y; F. Jrad; J. Tao; J. Zhao; J. Kotodziej
and A. Streit. 2013. "Load and Thermal-Aware VM
Scheduling on the Cloud", Algorithms and
Architectures for Parallel Processing, Lecture Notes in
Computer Science, Volume 8285.

[10] Gregg, B. 2013. "Systems Performance: Enterprise
and the Cloud", Prentice Hall, USA.

[11] OpenStack Website and
(http://www.openstack.org/).

[12] Pepple, K. 2011. "Deploying OpenStack", O'Reilly
Media, USA.

[13] Sefraoui, O.; M. Aissaoui and M. Eleuldj. 2012.
"OpenStack: Toward an Open-Source Solution for
Cloud Computing", International Journal of Computer
Applications, Volume 55, No. 03.

[14] Corradi, A.; M. Fanelli and L. Foschini. 2014. "VM
consolidation: A real case based on OpenStack Cloud",
Future Generation Computer Systems, Volume 32.

[15] Jackson, K. and C. Bunch. 2013. "OpenStack
Cloud Computing Cookbook" (Second Edition), Packt
Publishing Ltd, UK.

Documentation

AUTHOR BIOGRAPHIES

DANIEL GRZONKA received his B.Sc.

and M.Sc. degrees with distinctions in

Computer Science at Cracow University of

Technology, Poland, in 2012 and 2013,

AV respectively. Actually, he is Research and

Teaching Assistant at Cracow University of Technology

and Ph.D. student at Jagiellonian University in

cooperation with Polish Academy of Sciences. He is

also a member of Polish Information Processing Society

and IPC member of several international conferences.

For more information, please visit:
http://www.grzonka.eu/.

MICHAL SZCZYGIEL graduated in
Computer Science at the Finnish JAMK
University of Applied Sciences and
‘ Cracow University of Technology. He is
‘ amember of a Cloud team at Finnish
Open Source project called FreeNest. Currently, he is
working on the aPaaS project called Dev Cloud related
with CCIl infrastructure. For more information, please
visit portfolio websites: http://www.szczygiel.dl.pl/ and
https://github.com/M4GiK/.

ARTUR BERNASIEWICZ is a
Computer Science student at the Cracow
University of Technology. He is interested
in the Internet of Things. He is passionate
4 of technical innovations like new
survelllance systems or home automation. His interests
include playing mini Quadcopter and watching the ISS
flights.

ANDRZEJ WILCZYNSKI graduated in
Computer Science at Cracow University of
Technology, Poland, in 2013. He also
studied at Fontys University of Applied
Sciences, Netherlands, in 2012. Currently,
he works as PHP Developer at Grupa Unity. For more
information, please visit: www.andrzejwilczynski.com.
His e-mail address is: and.wilczynski@gmail.com.

MAREK LISZKA received his bachelor

degree at Faculty of Physics, Mathematics

and Computer Science at Cracow

University of Technology, Poland.

Currently he is attending a master's degree
program at same department. He is working as PHP
Developer, interested in web Technologies such as ZF2,
SF2, Spring MVC and jQuery.

	0608-dis_ECMS2015_0100-1.pdf
	0608-dis_ECMS2015_0100-2
	0608-dis_ECMS2015_0100-3
	0608-dis_ECMS2015_0100-4
	0608-dis_ECMS2015_0100-5
	0608-dis_ECMS2015_0100-6
	0608-dis_ECMS2015_0100-7

