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ABSTRACT

This papers’ aim is to provide the Artificial Intelligence
community with a better tool for symbolic regression. In this
paper, the method of analytical programming and constant
resolving is revisited and extended. Nowadays, analytical pro-
gramming mainly uses two methods for constant resolving.
The first method is meta-evolution, in which the second
evolutionary algorithm is used for constant resolving. The
second method uses non-linear fitting algorithm. This paper
reveals the third method, which use the basic mathematics to
generate constants. The findings of this study have a number
of important implications for future practice.

INTRODUCTION

A lot of application in symbolic regression field requires
some kind of algorithm for constant generation (Koza 1992),
(O’Neill, Brabazon & Ryan 2002). Therefore the effective
numeric constant resolving algorithm is very important. In
this paper, we use analytical programming as a method for
symbolic regression (Zelinka, Davendra, Senkerik, Jasek &
Oplatkova 2011). This method based on existence of any kind
of evolutionary algorithm which generate a pointers to function
tables. Analytical programming (AP) from these pointers maps
and assemble a final regression function. In the analytical
programming algorithm, two main approaches can be selected
for constant resolving. The first approach is meta-evolution,
in which the second or slave evolutionary algorithm is used
for constant resolving. The second approach is to use of non-
linear fitting algorithm. Both approaches added to analytical
programming a lot of complexity. This study introduces a
new approach for constant resolving in analytical programming
algorithm. This approach is founded on basic mathematical
calculation.

Section II is devoted to the original algorithm of analyt-
ical programming. Section III presents the new approach for
constant resolving. Section IV presents the methods used for
this study. Section V summaries the results of this research.
Finally, Section VI presents the conclusions of this study.

Differential Evolution

Differential Evolution is an optimization algorithm intro-
duced by Storn and Price in 1995, (Storn & Price 1995). This
optimization method is an evolutionary algorithm based on
population, mutation and recombination. Differential Evolution
is easy to implement and has only four parameters which need
to be set. The parameters are: Generations, NP, F and Cr. The
Generations Parameter determines the number of generations;
the NP Parameter is the population size; the F Parameter is
the Weighting Factor; and the Cr Parameter is the Crossover
Probability, (Storn 1996). In this research, the differential
evolution is used as an analytical programming engine.

Analytical Programming

Analytical Programming, is a symbolic regression method.
The core of analytical programming is a set of functions and
operands. These mathematical objects are used for the synthe-
sis of a new function. Every function in the analytical pro-
gramming set core has its own varying number of parameters.
The functions are sorted according to these parameters into
General Function Sets (GFS). For example, GFS1par contains
functions that have only one parameter e.g. sin(), cos(),
or other functions. AP must be used with any evolutionary
algorithm that consists of a population of individuals for its
run (Oplatkova, Senkerik, Zelinka & Pluhacek 2013).

The function of analytical programming can be seen in
Figure 1. In this case, Evolutionary Algorithm is Differential
Evolution. The initial population is generated using Differen-
tial Evolution. This population, which must consist of natural
numbers, is used for analytical programming purposes. The
analytical programming then constructs the function on the
basis of this population. This function is evaluated by its
Cost Function. If the termination condition is met, then the
algorithm ends. If the condition is not met, then Differential
Evolution creates a new population through the Mutation and
Recombination processes. The whole process continues with
the new population. At the end of the analytical programming
process, it is assumed that one has a function that is the optimal
solution for the given task.
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Fig. 1. Scheme of Analytical Programming with Differential Evolution
algorithm

ORIGINAL ALGORITHM

Let’s have the individual of the n length

ind = (x1, x2, . . . , xn)

where xi ∈ R
+.

This individual is then rounded

indr = (‖x1‖, ‖x2‖, . . . , ‖xn‖)

where ‖.‖ is nearest integer function.

Let’s have a set called GFSall which consists of m
functions

GFSall = {{f1, fp1}, {f2, fp2}, . . . , {fm, fpm}}

where fm is function and fpm is number of parameters of
function fm.

Then these functions are sorted to 4 sets : GFS0, GFS1,0,
GFS2,1,0 and GFSall.

TABLE I. GFSS BY PARAMETERS

GFS0 = {{f1, 0}, {f2, 0}, . . . , {fn, 0}} ⊂ GFSall

GFS1 = {{f1, 1}, {f2, 1}, . . . , {fn, 1}} ⊂ GFSall

GFS2 = {{f1, 2}, {f2, 2}, . . . , {fn, 2}} ⊂ GFSall

GFS1,0 = GFS1 ∪ GFS0

GFS2,1,0 = GFS2 ∪ GFS1 ∪ GFS0

The sets from table I are expanded to the maximum value
from the individual because we expected that the value of each
number in individual could be higher then the length of GFS.

TABLE II. EXAMPLE OF GFSS, WHEN MAXIMUM VALUE OF

INDIVIDUAL IS 6

GFS0 = {{K, 0}, {x, 0}, {K, 0}, {x, 0}, {K, 0}, {x, 0}}
GFS1,0 = {{Sin, 1}, {Cos, 1}{K, 0}, {x, 0} {Sin, 1}, {Cos, 1}}

GFS2,1,0 = {{Plus, 2}, {Minus, 2}, {Sin, 1}, {Cos, 1}, {K, 0}, {x, 0}}
GFSall = {{Plus, 2}, {Minus, 2}, {Sin, 1}, {Cos, 1}, {K, 0}, {x, 0}}

Then we need to construct a matrix with functions mapped
by individual.

After that we have

function = ((f1, fp1), (f2, fp2), . . . , (fn, fpn))

where fn is function and fpn is number of parameters of
function fn.

Then we need to choose which function is applied to which
function. The values are pointers to the functions in GFSs.
After that, we have constructed function; however, there is a
constant K, which have to be resolved. Now we have two
possibilities

• Meta-evolution e.g. Differential Evolution

• Non-linear least square fitting for example
Levenberg-Marquardt

NEW APPROACH

Let’s have the individual of the n length

ind = (x1, x2, . . . , xn)

where xi ∈ R
+.

This individual is then rounded

indf = (⌊x1⌋, ⌊x2⌋, . . . , ⌊xn⌋)

where ⌊.⌋ is round to floor.

Now we can construct a difference between ind and indf .

indc = ind− indf

In vector indf are pointers to GFSs and indc are corre-
sponding constants.

The decimal numbers in indc are in range < 0, 1 >. These
numbers could be easily converted to constants into the chosen
range.

Let’s have a set called GFSall which consists of m
functions

GFSall = {{f1, fp1}, {f2, fp2}, . . . , {fm, fpm}}

where fi is function and fpi is number of parameters of
function fi.

Then this functions are sorted to 4 sets : GFS0, GFS1,0,
GFS2,1,0 and GFSall.

The next key change in analytical programming algorithm
is function selection. In this new approach, the GFSs are
not expanded to the maximum value of the individual. The
selection of function is controlled by modulo function. On the
position where the constant K will be mapped; we can read a
constant number from the indc vector. The original mapping
algorithm is the same. Now we have constructed function with
resolved constants.



PROBLEM STATEMENT

The overall research question to be answered within the
study is whether there is a possibility to outperformed the
original analytical programming method. This section presents
the design of the research question. We performed experiments
to get an insight in the constant resolving of analytical pro-
gramming. The research question of our study can be outlined
as follows:

RQ: Analysing the impact of new approach on the cal-
culation duration and minimization performance of analytical
programming.

The research question (RQ) aims to get an insight on the
new approach of constant resolving of analytical programming
and understand the actual effectiveness of this technique.
For this reason, we use 3 different methods for constant
resolving. Analytical programming with differential evolution
and two new versions of proposed algorithm. Then, we try
to outperformed the original constant resolving algorithm of
analytical programming. To asses the performance of fitness
function, we used descriptive statistics.

METHOD

New constant resolving algorithm for analytical program-
ming was tested for searching regression functions. Results
were compared by descriptive statistics.

Following functions have been tested

• f(x) = 45.5

• f(x) = 3x+ 0.65

• f(x) = 2.3x2 − 20x− 5.6

• f(x) = 3.65 ∗ sin(2x)

These functions were selected with emphasis on constant
resolving. Functions such as constant, linear, quadratic and
harmonic were tested. There was generated 20 points for each
function. And the task for analytical programming was to fit
these points. Three methods of constant resolving were tested.

• Analytical programming with differential evolution
further referred to as AP+DE

• New analytical programming version with constant
range < −1000, 1000 > further referred to as
AP2(-1000,1000)

• New analytical programming version with constant
range < 0, 10 > further referred to as AP2(0,10)

TABLE III. SYSTEM CONFIGURATION

Parameter Value

CPU AMD Phenom II X2

3GHz

RAM 8 GB

Operation system Windows 7 Professional

64 bit

Programming language LUA 5.2

Table III shows the system configuration for performing
tests.

Table IV shows the analytical programming set-up. The
number of leafs (functions built by analytical programming

TABLE IV. SET-UP OF ANALYTICAL PROGRAMMING

Parameter Value

Number of leafs 16

GFS - functions plus, minus, multiply, di-

vide, power, log, log10,

exp, sqrt, floor, ceil, abs,

sin, cos

GFS - constants x, K

can be seen as trees) was set to 16. This value was sufficient
for the purpose of this paper.

TABLE V. SET-UP OF DIFFERENTIAL EVOLUTION

Parameter Value

NP 45

Generations 300

F 0.2

Cr 0.9

Table V shows the set-up of differential evolution. The
best set-up of differential evolution is the subject of further
research.

A. Fitness function

Fitness function used for this task is as following:

LAD =

n∑

i=1

|yi − ŷi| (1)

where yi is actual value and ŷi is predicted value.

RESULTS

For each function, 100 equations were calculated by the
aforementioned constant resolving approaches for statistical
evaluation. There were collected information about duration
and least absolute deviation error.
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Fig. 2. Comparison of time duration of each method for function f(x) =
45.5

Figure 2 depicts the box plot comparison of time dura-
tion for each constant resolving method. As can be seen,



the new approach for constant resolving with constant range
(-1000,1000) was nearly three times faster than analytical
programming with differential evolution. AP2(0,10) performed
slightly worse than AP2(-1000,1000).
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Fig. 3. Comparison of LAD error of each method for function f(x) = 45.5

Figure 3 depicts the box plot comparison of LAD error
for each constant resolving method. As can be seen, AP2(-
1000,1000) find the minimum nearly in each of 100 equa-
tions. All presented approaches find the minimum. AP2(0,10)
method perform as the second best.
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Fig. 4. Comparison of time duration of each method for function f(x) =
3x+ 0.65

Figure 4 depicts the box plot comparison of time dura-
tion for each constant resolving method. As can be seen,
AP2(-1000,1000) and AP2(0,10) performed nearly three times
faster than analytical programming with differential evolution
constant resolving. AP2(0,10) performed slightly worse than
AP2(-1000,1000).
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Fig. 5. Comparison of LAD error of each method for function f(x) =
3x+ 0.65

Figure 5 depicts the box plot comparison of LAD error
for each constant resolving method. As can be seen, AP2
generated lower error than 25% of AP+DE approach. There
also can be seen a very low variance in AP2 method.
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Fig. 6. Comparison of time duration of each method for function f(x) =
2.3x2

− 20x− 5.6

Figure 6 depicts the box plot comparison of time dura-
tion for each constant resolving method. As can be seen,
AP2(-1000,1000) and AP2(0,10) performed nearly two times
faster than analytical programming with differential evolution
constant resolving. AP2(-1000,1000) performed slightly worse
than AP2(0,10).

Figure 7 depicts the box plot comparison of LAD error
for each constant resolving method. None of the presented
approaches find the minimum value. AP2(0,10) performed



0

500

1000

1500

2000

2500

AP2(−1000,1000) AP2(0,10) AP+DE

Method [−]

L
e

a
s
t 

a
b

s
o

lu
te

 d
e
v
ia

ti
o

n
 [

−
]

Fig. 7. Comparison of LAD error of each method for function f(x) =
2.3x2

− 20x− 5.6

better than other presented approaches. As can be seen, AP2
approach had lower variance than AP+DE approach.
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Fig. 8. Comparison of time duration of each method for function f(x) =
3.65 ∗ sin(2x)

Figure 8 depicts the box plot comparison of time duration
for each constant resolving method. As can be seen, AP2(-
1000,1000) and AP2(0,10) performed nearly three times faster
than analytical programming with differential evolution con-
stant resolving. AP2(-1000,1000) and AP2(0,10) performed
nearly identical.

Figure 9 depicts the box plot comparison of LAD error
for each constant resolving method. Only AP2(0,10) find
the minimum value. AP+DE and AP2(-1000,1000) perform
notably worse than AP2(0,10).

Table VI summarises the statistics for each method and
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Fig. 9. Comparison of LAD error of each method for function f(x) =
3.65 ∗ sin(2x)

equation. As can be seen, the hardest equation to minimize
was equation E3 where the minimum value was 71,84 for
AP2(0,10). The new approach also has lower values for means
and medians than meta-evolution approach AP+DE.

DISCUSSION

The study started out with a goal to answer the question of
whether the new constant resolving technique outperforms the
standard constant resolving solution in analytical programming
algorithm. This question is answered in the result section.

There is question (RQ), which must be answered. For
answering this question, we need to study figures in result
section. As could be seen in figures 2, 4, 6 and 8, the new
approach could achieve up to 3 times lower calculation dura-
tion than standard approaches. These results were expected,
because we remove time complexity of constant resolving
using another differential evolution. The most surprising aspect
of the results is in the minimization performance. The figures 3,
5, 7 and 9 depicted that the minimization performance are more
stable and the new approach finds more accurate minimum
value; however, this could be caused by the setting of slave
differential evolution.

THREATS OF VALIDITY

It is widely recognised that several factors can bias the
validity of simulation studies. Therefore, our results are not
devoid of validity threats.

External validity

External validity questions whether the results can be
generalized outside the specifications of a study (Milicic &
Wohlin 2004). The first validity issue to mention is that
either analytical programming nor differential evolution has
been exhausted via fine-tuning. Therefore, future work is
required to exhaust all the parameters of these methods to



TABLE VI. STATISTICAL COMPARISON OF TESTED METHOD

Equation Method Minimum 1st Qu. Median Mean 3rd Qu. Maximum

E1 : AP2(-1000,1000) 0,00 0,00 0,00 0,18 0,00 13,36

E1 : AP2(0,10) 0,00 0,01 1,38 2,31 3,31 12,37

E1 : AP+DE 0,07 2,29 4,27 6,17 9,04 30,83

E2 : AP2(-1000,1000) 1,58 7,52 11,20 10,28 13,65 13,65

E2 : AP2(0,10) 0,00 1,66 5,12 4,38 6,07 11,87

E2 : AP+DE 0,62 16,70 72,52 93,85 138,68 330,06

E3 : AP2(-1000,1000) 310,80 625,90 827,90 798,00 916,30 1065,30

E3 : AP2(0,10) 71,84 302,40 326,83 433,71 622,45 862,60

E3 : AP+DE 466,10 996,20 1223,30 1345,80 1710,70 2451,50

E4 : AP2(-1000,1000) 0,01 32,50 34,47 31,17 34,47 34,47

E4 : AP2(0,10) 0,00 7,15 21,55 20,42 34,47 34,47

E4 : AP+DE 27,65 36,78 39,42 38,78 41,19 45,28

use their best versions. Threat to external validity could be
also the implementation of the analytical programming and
differential evolution algorithms. Although we used standard
implementations, there is considerable amount of code, which
could be the threat to validity.

CONCLUSIONS

In this paper, the new approach of constant resolving in an-
alytical programming algorithm was presented. The presented
approach is founded on basic mathematical calculations. The
main benefit of this solution is that, there are no another calcu-
lation of evolutionary algorithm or non-linear fitting algorithm
for constant resolving. There is also a benefit that there is
no need to set a slave meta-evolution algorithm. Nevertheless,
the range for constants must be set. Future research should
therefore concentrate on the investigation of a proper set-up
for analytical programming constant range.
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