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ABSTRACT 

In this paper a new multi-chaotic variant of differential 

evolution is used to solve a model of vehicle routing 

problem with profits. The main goal was to achieve 

exceptional reliability (success rate) and low time 

demands in comparison with deterministic solvers. The 

method will be applied in the future on solving real-

world transportation network problems.  

 
INTRODUCTION 

Various vehicle routing problem (VRP) variants are still 

actual category of optimization problems in these days 

and their solving is challenging for many optimization 

methods (Laporte 1992; Boussier et al 2007; Avci, 

Topaloglu 2016). However, in this paper we deal with a 

modification of VRP (or travelling salesman problem 

(TSP) alternatively) that is the so-called VRP with 

profits (the VRP with profits on a non-complete graph 

or selective VRP, alternatively), where not all customers 

have to be visited, see (Boussier et al, 2007). 

We present initial results of evolutionary optimization 

method called multi-chaotic success-history based 

adaptive differential evolution that is being developed 

for future application on real vehicle routing problems 

(Pavlas et.al, 2015; Stodola et.al., 2014) and 

transportation network problems (Roupec et. al., 2013). 

Approach that we present in the paper is considered to 

be further developed to follow ideas in network design 

problems (Roupec et. al., 2013) and in waste 

management (Somplak et. al., 2013). Other 

modifications of the problem as well as algorithm are 

also considered (Stodola et.al., 2014). 

The differential evolution (DE) (Storn, Price, 1997) is a 

foundation for some of the best performing evolutionary 

optimizers. In recent years, various successful 

applications of DE enhanced with chaotic pseudo-

random number generators (PRNGs) were presented 

(Senkerik et.al., 2013, Liang et.al., 2011). 

In the following section the basics of chaotic systems 

(maps) and their use as PRNGs are presented. The next 

section describes proposed Multi-chaotic differential 

evolution algorithm. In the following section the 

problem is defined following with the experiment setup. 

The results are presented and discussed in the following 

section. The paper closes with a conclusion section. 

 

CHAOTIC MAPS 

Chaotic maps are systems generated continuously by 

simple equations from a single initial position. The 

current position is used for generation of a new position 

thus creating a sequence which is extremely sensitive to 

the initial position, which is also known as the “butterfly 

effect.” Sequences generated by chaotic maps have 

characteristics which are not common in classical 

random number generation. Therefore, their application 

in evolutionary algorithm (EA) can change its behavior 

and improve the performance. 

The multi-chaotic system presented in this paper uses 

five different chaotic maps – Burgers, Delayed Logistic, 

Dissipative, Lozi and Tinkerbell.  

The process of acquiring i-th random integer rndInti 

from chaotic map is depicted in (1). 

𝑟𝑛𝑑𝐼𝑛𝑡𝑖 = round (
abs(𝑋𝑖)

max(abs(𝑋𝑖∈𝑁))
∗ (𝑚𝑎𝑥𝑅𝑛𝑑𝐼𝑛𝑡 − 1)) + 1 

Where abs(Xi) is an absolute value of i-th X of a chaotic 

sequence with length of N, max(abs(Xi∈N)) is a 

maximum of absolute values of X in chaotic sequence 

and round() is common rounding function. The 

generated number rndInti is from interval [1, 

maxRndInt]. 
 

Lozi Chaotic Map 

The Lozi map is a simple discrete two-dimensional 

chaotic map. The map equations are given in (2). The 

typical parameter values are: a = 1.7 and b = 0.5 with 

respect to (Sprott, 2013). For these values, the system 

exhibits typical chaotic behavior and with this 

parameter setting it is used in the most research papers 

and other literature sources. The x,y plot of Lozi map 

with the typical setting is depicted in Figure 1.  
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Figure 1: x,y plot of Lozi map 

Dissipative Standard Map 

The Dissipative standard map is a two-dimensional 

chaotic map. The parameters used in this work are b = 

0.6 and k = 8.8 based on previous experiments [15, 16] 

and suggestions in literature (Sprott, 2013). The x,y plot 

of Dissipative standard map is given in  

Figure 2.The map equations are given in (3). 
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Figure 2: x,y plot of Dissipative standard map 

 

Burgers Chaotic Map 

The Burgers map (See Fig. 3) is a discretization of a 

pair of coupled differential equations The map 

equations are given in (4) with control parameters a = 

0.75 and b = 1.75 as suggested in (Sprott, 2013).  
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Figure 3:  x,y plot of Burgers map 

Tinkerbell Map 

The Tinkerbell map is a two-dimensional complex 

discrete-time dynamical system given by (5) with 

following control parameters: a = 0.9, b = -0.6, c = 2 

and d = 0.5 (Sprott, 2013). The x,y plot of the 

Tinkerbell map is given in Figure 4. 
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Figure 4:  x,y plot of Tinkerbell map 

 

Delayed Logistic Map 

The map equations are given in (6). The control 

parameter A=2.27 (Sprott, 2013). The x,y plot of the 

Delayed Logistic map is given in Figure 5. 
  

 𝑋𝑛+1 = 𝐴𝑋𝑛(1 − 𝑌𝑛)  (6) 
𝑌𝑛+1 = 𝑋𝑛 
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Figure 5:  x,y plot of Delayed Logistic map 

 
 

DIFFERENTIAL EVOLUTION, SUCCESS-

HISTORY BASED ADAPTIVE DIFFERENTIAL 

EVOLUTION AND MULTI-CHAOTIC PARENT 

SELECTION 

DE algorithm (Storn, Price, 1997) has four control 

parameters – population size NP, maximum number of 

generations Gmax, crossover rate CR and scaling factor 

F. In the canonical form of DE, those four parameters 

are static and depend on the user setting. Other 

important features of DE algorithm are mutation 

strategy and crossover strategy. This work uses 

“rand/1/bin” mutation strategy (7) and binomial 

crossover (10). The success-history based adaptive 

differential evolution (SHADE) algorithm, on the other 

hand, uses only three control parameters – population 

size NP, maximum number of generations Gmax and new 

parameter H - size of historical memories. F and CR 

parameters are automatically adapted based on the 

evolutionary process. Values of F and CR for each 

individual are generated according to (9) and (11) 

respectively. Also, the mutation strategy is different 

than that of canonical DE. Novel mutation strategy used 

in SHADE is called “current-to-pbest/1” and it is 

depicted in (8). The concept of basic operations in DE 

and SHADE algorithms is shown in following sections. 

For a detailed description on feature constraint 

correction, update of historical memories and external 

archive handling in SHADE see (Tanabe, Fukunaga, 

2013). 

Initialization 

The initial population is generated randomly from 

objective space and has NP individuals in both 

algorithms. In SHADE algorithm, the external archive A 

is initially empty with a maximum size of NP and 

historical memories MCR and MF are both set to the size 

H where MCR,i = MF,i = 0.5 for (i = 1, …, H). 

Mutation Strategies and Parent Selection 

In canonical forms of both algorithms, parent vectors 

are selected by classic PRNG with uniform distribution. 

Mutation strategy “rand/1/bin” uses three random parent 

vectors with indexes r1, r2 and r3, where r1 = U[1, NP], 

r2 = U[1, NP], r3 = U[1, NP] and r1 ≠ r2 ≠ r3. Mutated 

vector vi, G is obtained from three different vectors xr1, 

xr2, xr3 from current generation G with help of static 

scaling factor Fi = F as follows: 

 𝒗𝑖,𝐺 =  𝒙𝑟1,𝐺 + 𝐹𝑖(𝒙𝑟2,𝐺 − 𝒙𝑟3,𝐺) 

Contrarily, SHADEs mutation strategy “current-to-

pbest/1” uses four parent vectors – current i-th vector 

xi,G, vector xpbest,G randomly selected from NP × p (p = 

U[pmin, 0.2], pmin = 2/NP) best vectors (in terms of 

objective function value) from G, randomly selected 

vector xr1,G from G and randomly selected vector xr2,G 

from the union of G and external archive A. Where xi,G 

≠ xr1,G ≠ xr2,G. (8) 

𝒗𝑖,𝐺 =  𝒙𝑖,𝐺 + 𝐹𝑖(𝒙𝑝𝑏𝑒𝑠𝑡,𝐺 − 𝒙𝑖,𝐺) + 𝐹𝑖(𝒙𝑟1,𝐺 − 𝒙𝑟2,𝐺)

The scaling factor Fi is generated from Cauchy 

distribution with location parameter value of MF,r which 

is randomly selected value from scale factor historical 

memory, and scale parameter value of 0.1 (9). 

 𝐹𝑖 = 𝐶[𝑀𝐹,𝑟 , 0.1] 

Crossover and Elitism 

The trial vector ui,G which is compared with original 

vector xi,G is completed by crossover operation (5) and 

this operation is the same for both DE and SHADE 

algorithms. CRi value in DE algorithm is again static 

CRi = CR whereas with SHADE algorithm its value is 

generated from a normal distribution with a mean 

parameter value of MCR,r which is randomly selected 

value from crossover rate historical memory and with 

standard deviation value of 0.1 (10). 

 𝒖𝑗,𝑖,𝐺 = {
𝒗𝑗,𝑖,𝐺 if 𝑈[0,1] ≤ 𝐶𝑅𝑖 or 𝑗 =  𝑗𝑟𝑎𝑛𝑑

𝒙𝑗,𝑖,𝐺 otherwise
 

Where jrand is randomly selected index of a feature, 

which has to be updated (jrand = U[1, D]), D is the 

dimensionality of the problem.  (11) 

 𝐶𝑅𝑖 = 𝑁[𝑀𝐶𝑅,𝑟 , 0.1] 

Vector which will be in next generation G+1 is selected 

by elitism. When the objective function value of trial 

vector ui,G is better than that of the original vector xi,G,  

the trial vector will be selected for the next population 

and the original will be placed into the external archive 

A. Otherwise, the original will survive and the content 

of A remains unchanged (12). 
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 𝒙𝑖,𝐺+1 = {
𝒖𝑖,𝐺 if 𝑓(𝒖𝑖,𝐺) < 𝑓(𝒙𝑖,𝐺)

𝒙𝑖,𝐺 otherwise
 

Multi-Chaotic Parent Selection 

Multi-chaotic framework for parent selection process is 

based on ranking selection of chaotic map based PRNGs 

(CPRNGs). A pool of CPRNGs Cpool has to be added 

to the EA and each CPRNG is initialized with the same 

probability pcinit = 1/Csize, where Csize is the size of 

Cpool. For example, for five CPRNGs Csize = 5 and 

each of them will have the probability of selection pcinit 

= 1/5 = 0.2 = 20%. 

For each individual vector xi,G  in generation G, the 

chaotic generator CPRNGk is selected from the Cpool 

according to its probability pck, where k is the index of 

selected CPRNG. This selected generator is then used to 

replace classic PRNG for selection of parent vectors and 

if the generated trial vector succeeds in elitism, the 

probabilities are adjusted. There is an upper boundary 

for the probability of selection pcmax = 0.6 = 60%, if the 

selected CPRNG reached this probability, then no 

adjustment takes place. Whole process is depicted in 

(8). 


if 𝑓(𝒖𝑖,𝐺) < 𝑓(𝒙𝑖,𝐺) 𝑝𝑐𝑗 = {

𝑝𝑐𝑗+0.01

1.01
𝑝𝑐𝑗

1.01

if 𝑗 = 𝑘

otherwise

otherwise 𝑝𝑐𝑗 = 𝑝𝑐𝑗

 

PROBLEM DEFINITION 

The following model presents a modified open VRP 

with profits (see, e.g., Boussier et al, 2007 for similar 

problems). In order to make/test our (experimental) 

computations/algorithm, we consider one vehicle in the 

model (which corresponds to travelling salesman 

problem modification of VRP) that does not have to 

return into the initial node (depot). The basic goal is to 

deliver cargo from source (production facility) to 

multiple customers at lowest cost (with maximal profit). 

In our setting, not every customer must be served (if it is 

not profitable according to objective function). There 

are only few links for each node meaning the network is 

not complete.  

 

The network was designed as is presented in Table 1. In 

Table 1 each node is given alongside with its demand 

and neighboring nodes and their distance. The node no. 

1 is the source (production facility) therefore its demand 

is negative. The network is depicted in Figure 6. 

 

The objective function (14) maximizes the total profit, 

i.e. the revenue minus transportation cost. Equations, or 

in equations alternatively, (15) - (20) present a set of 

constraints, where: (15) and (16) guarantee that we can 

neither come nor leave one node more than once and, 

moreover (17) guarantee that we have to come and 

leave every node either once or not at all; (18) sets 

quantities q(i) from the first point of the tour; (19) 

means that if a node/customer is visited then the 

customer must be served; (20) is a capacity constraint of 

the quantity q(i). 

 

Table 1: Experiment setup 

No. Demand Neighbor No. (distance) 

1 -283 

2 (18.39), 6 (22.39), 10 (24.48), 15 (27.57), 19 

(3.18) 

2 11 1 (18.39), 3 (7.24), 7 (2.18), 8 (18.81), 10 (8.18) 

3 19 2 (7.24), 19 (8.36) 

4 16 6 (8.95), 9 (6.61), 13 (6.18), 20 (4.48) 

5 13 9 (12.74), 10 (2.14), 11 (13.76) 

6 13 
1 (22.39), 4 (8.95), 9 (2.95), 10 (9.67), 14 (4.88), 
17 (13.62), 18 (6.9) 

7 12 2 (2.18), 9 (18.68) 

8 13 2 (18.81), 13 (16.23), 14 (5.22), 18 (9.) 

9 19 

4 (6.61), 5 (12.74), 6 (2.95), 7 (18.68), 11 

(11.14), 14 (1.99) 

10 10 
1 (24.48), 2 (8.18), 5 (2.14), 6 (9.67), 11 (15.1), 
13 (15.28), 17 (17.8), 19 (21.63) 

11 15 

5 (13.76), 9 (11.14), 10 (15.1), 13 (0.76), 14 

(11.59), 16 (4.31) 

12 20 13 (11.15), 15 (5.16), 16 (15.07), 20 (3.36) 

13 16 

4 (6.18), 8 (16.23), 10 (15.28), 11 (0.76), 12 

(11.15), 14 (11.01) 

14 20 

6 (4.88), 8 (5.22), 9 (1.99), 11 (11.59), 13 

(11.01), 15 (5.2), 18 (10.25), 20 (9.6) 

15 18 1 (27.57), 12 (5.16), 14 (5.2) 

16 11 11 (4.31), 12 (15.07) 

17 17 6 (13.62), 10 (17.8), 18 (7.47), 19 (7.93) 

18 11 6 (6.9), 8 (9.), 14 (10.25), 17 (7.47) 

19 12 1 (3.18), 3 (8.36), 10 (21.63), 17 (7.93) 

20 17 4 (4.48), 12 (3.36), 14 (9.6) 

 max ∑ 𝑑(𝑖)𝑀𝑝(𝑖1, 𝑖)𝑝 −  ∑ [𝑞(𝑖)𝑐 + 1]𝑀𝑑(𝑖, 𝑖1)𝑀𝑝(𝑖, 𝑖1)𝑖,𝑖1∈𝐼𝐶𝑖,𝑖1∈𝐼𝐶 ,𝑖≠𝑖1



s. t.

∑ 𝑀𝑝(𝑖1, 𝑖) ≤ 1,𝑖1∈𝐼𝐶 ,𝑖1≠𝑖 ∀𝑖 ∈ 𝐼, 

 ∑ 𝑀𝑝(𝑖, 𝑖1) ≤ 1,𝑖1∈𝐼𝐶 ,𝑖1≠𝑖 ∀𝑖 ∈ 𝐼, 

 ∑ 𝑀𝑝(𝑖1, 𝑖) = ∑ 𝑀𝑝(𝑖, 𝑖1),𝑖1∈𝐼𝐶,𝑖1≠𝑖𝑖1∈𝐼𝐶 ,𝑖1≠𝑖 ∀𝑖 ∈ 𝐼𝐶, 

 𝑞(𝑖) ≤ 𝑊 + [𝑑(𝑖) − 𝑊]𝑀𝑝(1, 𝑖), ∀𝑖 ∈ 𝐼𝐶, 

 ∑ 𝑑(𝑖)𝑀𝑝(𝑖1, 𝑖)𝑖1∈𝐼 ≤ ∑ 𝑞(𝑖)𝑀𝑝(𝑖1, 𝑖),𝑖1∈𝐼 ∀𝑖 ∈ 𝐼𝐶, 

 𝑞(𝑖) ≤ ∑ 𝑀𝑝(𝑖, 𝑖1)𝑊,𝑖1∈𝐼 ∀𝑖 ∈ 𝐼 

with the decision variables: 

q(i) : quantity delivered up to i; 

Mp(i; i1) : 1 if i immediately precedes i1; 0 otherwise; 

 

the sets of indices: 

I : set of all nodes in the network, 

IC : set of customers, 

 

and parameters: 

Md(i; i1) : distance matrix presenting also a cost for 

using a path, 

W : vehicle (e.g. a lorry) capacity or maximal possible 

production 

capacity in a production node, i.e. in i ∈ I – IC 

d(i) : demand in a (customer) node, i ∈ I 



 

 

p : unit selling price; 

c : unit transportation cost per unit of length: 

 

EXPERIMENT SETUP 

To generate experimental network (see Figure 6) that 

approximates real situations, we use a network 

generator presented in (Pavlas et.al, 2015). 

In the experiment three variants of DE were compared, 

the original DE rand/1/bin, SHADE and proposed MC-

SHADE.  

The goal for the optimizing algorithm is to find the best 

possible route and amount of cargo with respect to 

profit (14). 

 

The maximal number of objective function evaluations 

Max_FEs was set to 200 000. Cpool contained Burgers, 

Dissipative, Lozi, Tinkerbell and Delayed Logistic 

CPRNGs. Other parameters were set as follows: 

DE: 

Dim: 20; NP: 100; Gmax: 2 000; F: 0.5; CR: 0.8;  

 

SHADE:  

Dim: 20; NP: 100; Gmax: 2 000; H = 10; 

 

MC-SHADE: 

Dim: 20; NP: 100; Gmax: 2 000; H = 10;

 

 

 
Figure 6: Experiment network setup with highlighted source of cargo 

 

RESULTS AND DISSCUSION 

In this section the results of above described experiment 

are presented and discussed. The statistical overview of 

the results is presented in Table 2. 50 independent runs 

were performed for each algorithm. The success rate 

refers to number of runs in which the best possible 

solution was found. The best possible solution 

(confirmed by deterministic commercial solver) is 

visualized in Figure 7. 

 

Table 2: Results comparison 

 
DE SHADE MC-SHADE 

Time for 50 

runs (m:s) 1:42 8:48 9:06 

Min: 13176.45 13839.60 13839.60 

Max: 13865.72 13865.72 13865.72 

Mean: 13588.97 13863.63 13865.20 

Median: 13623.61 13865.72 13865.72 

Std. Dev.:  173.35 7.16 3.69 

Success Rate: 8% 92% 98% 

 

 

Best solution details: 

Route sequence: 1, 19, 17, 18, 6, 9, 14, 15, 12, 20, 4, 13, 

11, 5, 10, 2, 3 

Not-visited nodes: 7, 8, 16 

Cargo picked-up in node No. 1. : 247  

 

It is clear that the original DE is much faster than 

SHADE or MC-SHADE however the success rate is 



 

 

unacceptable for practical use. The canonical SHADE 

achieved satisfactory success rate with higher time 

demands. With comparable time demands the proposed 

MC-SHADE achieved exceptional success rate failing 

to find the optimum only in 1 run from 50. The 

Wilcoxon signed-rank test between SHADE and MC-

SHADE results with alternative hypothesis that mean 

rank value of SHADE is lower than that of MC-SHADE 

provided p-value of 0.0745. Based on this result the 

reliability of the proposed method seems very 

satisfactory even in comparison to deterministic solvers. 

The time demand is significantly lower than those of 

comparable deterministic solvers where a single run for 

this model can easily take over 1 hour.  

 

The presented evidence strongly supports the feasibility 

of the proposed multi-chaotic method for solving the 

modified VRP and its superiority to canonical SHADE.

 
 

Figure 7: Final solution visualization 

 

 

CONCLUSION 

In this paper a Multi-chaotic Success-history based 

adaptive differential evolution was applied to a model of 

open vehicle problem with profits. The performance 

was compared with canonical version of the algorithm 

and also with the original differential evolution. The 

performance of proposed method is superior to both 

algorithms and the reliability is almost as good as a 

deterministic solver with significantly lower time 

demands. This supports the claim that the proposed 

method can be used as a fast and reliable transportation 

network problem optimizer. The future research will 

focus on applying these findings on similar real-world 

problems. 
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