INDEXED BONDS WITH MEAN-REVERTING RISK FACTORS

Attila A. Vig
Ágnes Vidovics-Dancs, PhD, CIIA

Department of Finance
Corvinus University of Budapest
H-1093, Fövám tér 8, Budapest, Hungary
E-mail: attila.vig@uni-corvinus.hu

KEYWORDS
Inflation-indexed bond, Monte Carlo simulation, risk neutral pricing, mean-reverting stochastic process

ABSTRACT
In this paper, we focus on the value of inflation-indexed bonds in an extended short rate model, which is a specific case of the general framework provided by Jarrow and Yildirim (2003). In the model, we assume mean-reverting stochastic dynamics under the risk neutral measure for both the short interest rate and the instantaneous inflation rate. We define the zero-coupon inflation-indexed bond, and first estimate its value by Monte Carlo simulation, then deduce an analytical formula as well. We briefly touch on the yield and inflation curves the model is able to produce.

INTRODUCTION
Standard nominal bonds are considered one of the simplest financial products, serving as building blocks for complex ones as well. While government bonds are usually considered riskless – apart from default risk which we ignore in this paper –, it is important to note that this property means no risk in the future nominal cash-flow, not in the present value of the security itself. The main subject of our examination is a bond with a similar idea: the inflation-indexed bond. This security can also be considered riskless, but in a different sense: instead of the nominal values, the real values of future cash flows are fixed. To achieve this, the face value of an inflation-indexed bond is adjusted according to a price index, and the coupon and principal payments are based on this adjusted amount.

An example for the cash flows of nominal and inflation-indexed bonds is given in Table 1. While the future cash flows of the nominal bond are deterministic, those of the indexed bond are random variables, since we do not know the inflation rates of in advance. However, if we care more about the purchasing power rather than the exact dollar figures, the inflation-indexed bond suddenly becomes deterministic, while the future cash flows of the nominal bond can be considered random variables. The indexed bond described in Table 1 will provide the holder with (5,5,105) units of the basket of goods that is used for calculating the price index.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>inflation</td>
<td>2%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>notional</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>cash flow</td>
<td>5.0</td>
<td>5.0</td>
<td>105.0</td>
</tr>
<tr>
<td>notional</td>
<td>100.0</td>
<td>102.0</td>
<td>106.1</td>
</tr>
<tr>
<td>cash flow</td>
<td>5.1</td>
<td>5.3</td>
<td>114.7</td>
</tr>
</tbody>
</table>

Table 1: Cash flows of standard nominal and inflation-indexed bonds. Coupon rate: 5%. Frequency: annual.

An example – and perhaps the most important one in terms of gross market value – of such an indexed bond is the Treasury Inflation-Protected Security [TIPS] issued by the Treasury of the United States. Issued at maturities of 5, 10, and 30 years, adjustment of the principal amount is based on the Consumer Price Index [CPI]. Real coupon rates are fixed, and are paid semi-annually. TIPS take up more than 6% of total public debt of the United States (United States Department of the Treasury, 2017). The main holders of TIPS are pension funds, who are especially motivated to hedge against inflation risk. Pension funds’ future obligations are tied to inflation, so by investing in TIPS, inflation risk will be present on both sides of their balance sheet, thus cancelling each other. For more information about inflation-indexed securities in general see Deacon et al. (2004). Affine models for inflation-indexed derivatives and related securities are discussed thoroughly by Ho, Huang and Yildirim (2014). Our research follows the path of Mercurio (2005), who considers a specific case of such affine models.

The rest of the paper is organized as follows. First we introduce two basic financial instruments and describe
We are investigating the zero-coupon inflation indexed bond [ZCII]. This theoretical financial security – together with the standard zero-coupon bond – is going to define the term structure of inflation rates (and interest rates).

The ZCII has the following parameters: it is issued at time T_0, it matures at time T, and its single payoff at maturity is $I(T)/I(T_0)$, thus the payoff is indexed by the increase of the price index during the bond’s term.

We are looking for the value of the ZCII at time t, where naturally $T_0 \leq t \leq T$. Notation: $P_t(t,T_0,T)$.

It should be noted here that while ZCIIs are mostly theoretical in nature, a real world inflation-indexed coupon bond like the TIPS described in the introduction can be thought of as a portfolio of ZCIIs with maturities that coincide with the coupon and notional payments of the coupon bond.

Since the model is a simple extension of the Vasicek model to include inflation-indexed bonds, it does not lose standard nominal bonds either. Thus, we also define the zero-coupon bond [ZCB]: a security with a single payoff of 1 (notional) at maturity T. The notation for the value of this security at time $t \leq T$ is $P_t(t,T)$.

Numerical Approach

First, we will calculate the value of a ZCII (issued at $T_0 = 0$) at time $t = 0$ by Monte-Carlo simulation. Without violating generality, we can assume $B(0) = I(0) = 1$. The value of a ZCII maturing at time T is thus given by the pricing formula:

$$P_t(0,0,T) = E_Q \left(\frac{I(T)}{B(T)} \right | F(0)$$

Since the stochastic processes detailed above are given under the martingale measure, we can estimate this expectation by Monte Carlo simulation directly.

The two processes are correlated in their stochastic shocks, but most software can only generate independent pseudo-random variables, so we will use Cholesky-decomposition to exchange $W_t^Q(t)$ of equation 1 for two independent Wiener processes:

$$dW_t^Q(t) = \alpha \left[\frac{\Delta t}{\sqrt{T}} - i(t) \right] dt$$

$$+ \sigma \left(p dW_t^Q(t) + \sqrt{1 - \rho^2} d\tilde{W}_t^Q(t) \right)$$

where $W_t^Q(t)$ and $\tilde{W}_t^Q(t)$ are independent.

A given pair of trajectories for the short interest rate and the instantaneous inflation rate will be simulated recursively as a first order approximation of the dynamics given in equation 1:

$$r(t_{n+1}) = r(t_n) + \alpha \left[\frac{\Delta t}{\sqrt{T}} - r(t_n) \right] \Delta t + \sigma \sqrt{\Delta t} Z_{n+1}$$

$$i(t_{n+1}) = i(t_n) + \alpha \left[i(t_n) - i(t_n) \right] \Delta t + \sigma \sqrt{\Delta t} \left(\rho Z_{n+1} + \sqrt{1 - \rho^2} \tilde{Z}_{n+1} \right)$$

where $0 = t_0 < \cdots < t_N = T$ is an equidistant partition of the interval $[0,T]$, $\Delta t = t_{n+1} - t_n$ is the length of a subinterval, and $(Z_{n+1}, \tilde{Z}_{n+1})$ are independent standard normal random variables.
Representing a single event from the sample space, Figure 1 shows generated trajectories for the short interest rate and the instantaneous inflation rate. We chose $T = 10$ and $N = 1000$ (thus $\Delta t = 0.01$) for the simulation. The strong negative correlation parameter can be traced visually: while both processes fluctuate around their long-term mean, they tend to move in the opposite direction.

![Figure 1: Generated trajectories for the interest rate and inflation rate. Parameters: $\alpha_r = 0.4, \alpha_i = 0.4$, $\bar{r} = 0.06, \bar{i} = 0.04, \sigma_r = 0.06, \sigma_i = 0.04$, $r(0) = 0.02, i(0) = 0.01, \rho = -0.9$.](image)

Given the trajectories for the interest rate and the inflation rate, the value processes for the bank deposit and the price index can be calculated by linear approximation of the dynamics given in equation 2:

$$B(t_{n+1}) = B(t_n)(1 + r(t_n)\Delta t)$$

$$I(t_{n+1}) = I(t_n)(1 + i(t_n)\Delta t)$$

where $B(0) = I(0) = 1$.

While the processes $r(t)$ and $i(t)$ are of unbounded variation, the value processes $B(t)$ and $I(t)$ are defined by the integral of these, thus becoming of bounded variation. This “smoothness” property can be seen in Figure 2.

![Figure 2: Value processes for the bank deposit and the price index.](image)

Finally, we calculate the ratio of these value processes, thus receiving a single observation for $I(T)/B(T)$. It is important to note that a single observation is a trajectory itself, since we calculate the ratio for $\forall \{t_n\}_{n=1}^N \in [0,T]$. We produce a multitude of such observations in order to get an estimate for the expectation of equation 3.

$$\hat{P}_i(0,0,T) = \frac{\sum_{m=1}^{M} I_m(T)}{M}$$

We chose a sample size of $M = 10,000$ for this simulation. Figure 3 shows the 95% confidence interval of the empirical mean, and it also shows the exact theoretical value, which was calculated by using the closed formula detailed in the next section.

It is important to note the computational costliness of the Monte Carlo approach: a single pair of trajectories required $2 \times N = 2,000$ standard normal random variables, and we generated $M = 10,000$ such pairs, thus requiring 20 million in total.

![Figure 3: Price of a ZCII B issued today for maturities $T \in [0,10]$. Parameters used are the same as in Figure 1.](image)

An important property of the ZCII B can be traced in Figure 3: the value of such a bond does not necessarily have to be decreasing in maturity. While ZCBs’ simple payoff of 1 at maturity means that their price does have to be decreasing in maturity almost by definition because of the time value of money, ZCII Bs’ payoff is indexed by inflation, thus a longer bond can be worth more than a shorter one if market participants expect high inflation in the future.

CLOSED FORMULA

In this section, we will deduce a closed formula for the price of the ZCII B. The value of a security at time t with the payoff $I(T)/I(T_0)$ is given by the pricing formula:

$$P_i(t,T_0,T) = B(t)\mathbb{E}_q \left(\frac{I(T)/I(T_0)}{B(T)} \right)$$

After substituting the solutions for $B(T)$ and $I(T)$ given in equation 2, and taking the $\mathcal{F}(t)$-measurable factors out of the expectation, we arrive at:

$$P_i(t,T_0,T) = \frac{I(t)}{I(T_0)} \mathbb{E}_q \left(e^{\int_t^T \sigma(s)-\rho(s)\sigma(s)ds} \right)$$
The value of this conditional expectation could be calculated directly, but we follow another route. Since both \(r(t) \) and \(i(t) \) are Markov processes, the condition \(F(t) \) is equivalent to the condition \((r(t), i(t)) \). The conditional expectation thus becomes a function with the following arguments:

\[
P_i(t, T_\alpha, T) = \frac{i(T)}{I(T)} V(r(t), i(t), t, T)
\]

(4)

Since the \(Q \) martingale measure is the specific measure under which any value process divided by the bank deposit (our numeraire) becomes a martingale, \(P_i(t, T_\alpha, T) / \beta(t) \) must also be a martingale, thus its drift must equal 0. We calculate this drift by applying Ito’s lemma, and arrive at a partial differential equation for \(V(r(t), i(t), t, T) \). We omit the arguments for \(V(r(t), i(t), t, T), r(t), i(t) \), and indicate partial derivatives in the subscript:

\[
V_t + V_r \sigma_r (r - \bar{r}) + V_i \sigma_i (i - \bar{i}) + V_\bar{r} \sigma_r \sigma_i + \frac{1}{2} V_{rr} \sigma_r^2 + \frac{1}{2} V_{ii} \sigma_i^2 - V_r = 0
\]

\[
V(r(T), i(T), T, T) = 0
\]

(5)

The boundary condition arises from the ZCIB’s payoff at maturity: it pays \(I(T)/I(T_\alpha) \) at maturity, thus the bond’s value at time \(T \) also must equal this amount, which means from equation 4 we get:

\[
\frac{I(T)}{I(T_\alpha)} = P_i(t, T_\alpha, T) = \frac{I(T)}{I(T_\alpha)} V(r(T), i(T), T, T)
\]

which implies the boundary condition of equation 5:

\[
V(r(T), i(T), T, T) = 1
\]

We are going to solve this PDE under the assumption of a specific – so-called affine – form:

\[
V(r(T), i(T), t, T) = e^{A(T,t) - C(T,t)r(T) + D(t,T)i(t)}
\]

(6)

After substituting this solution form into equation 5, the boundary condition becomes:

\[
A(T,T) - C(T,T) r(T) + D(T,T)i(T) = 0
\]

We are looking for a solution for \(\forall \{r(T), i(T)\} \in \mathbb{R} \times \mathbb{R} \). When \(r(T) = i(T) = 0 \), the boundary condition becomes \(A(T,T) = 0 \). When \(r(T) \neq i(T) = 0 \), we get \(C(T,T) = 0 \) and similarly, when \(i(T) \neq r(T) = 0 \), we get \(D(T,T) = 0 \). Since the boundary condition has to hold true for \(\forall \{r(T), i(T)\} \), it has fallen apart into three separate boundary conditions:

\[
A(T,T) = 0
\]

\[
C(T,T) = 0
\]

\[
D(T,T) = 0
\]

After substituting the solution form of equation 6 into the PDE of equation 5 itself, we can apply the same reasoning, which results in it falling apart into three separate PDEs as well:

\[
A_t - \alpha_r \bar{r} C + \alpha_i D - \sigma_r \sigma_i \rho C D + \frac{1}{2} \sigma_r^2 C^2 + \frac{1}{2} \sigma_i^2 D^2 = 0
\]

\[
- C_t + \alpha_r C - 1 = 0
\]

\[
D_t - \alpha_i D + 1 = 0
\]

The solutions for \(C(T,T) \) and \(D(T,T) \) are the following:

\[
C(T,T) = \frac{1-e^{-\alpha_r (T-t)}}{\alpha_r}
\]

\[
D(T,T) = \frac{1-e^{-\alpha_i (T-t)}}{\alpha_i}
\]

(7)

From here, the solution for \(A(T,t) \) can be derived by simple integration. We will omit the arguments of \(A(T,t), C(T,t) \) and \(D(T,T) \) in the result:

\[
A = C \left[\bar{r} + \frac{\sigma_r \sigma_i \rho}{\alpha_r \alpha_i} \left(1 - \frac{\alpha_r}{\alpha_r + \alpha_i} \right) - \frac{(\sigma_r)^2}{2 \alpha_r} \right] (\alpha_r C + 2)
\]

\[
+ D \left[-\bar{i} + \frac{\sigma_r \sigma_i \rho}{\alpha_r \alpha_i} \left(1 - \frac{\alpha_i}{\alpha_r + \alpha_i} \right) - \frac{(\sigma_i)^2}{2 \alpha_i} \right] (\alpha_i D + 2)
\]

\[
+(T - t) \left[\bar{r} - \bar{i} - \frac{\sigma_r \sigma_i \rho}{\alpha_r \alpha_i} + \frac{(\sigma_r)^2}{2 \alpha_r} + \frac{(\sigma_i)^2}{2 \alpha_i} \right]
\]

+CD \frac{\sigma_r \sigma_i \rho}{\alpha_r + \alpha_i}

Thus, the value of a ZCIB (issued at \(T_\alpha \) with maturity date \(T \)) at time \(t \) is:

\[
P_i(t, T_\alpha, T) = \frac{I(t)}{I(T_\alpha)} e^{A(T,t) - C(T,t)r(T) + D(t,T)i(T) + D(t,T)i(T)}
\]

where the functions \(A(t,T), C(t,T), \) and \(D(t,T) \) are defined above.

Figure 3 shows results of this closed formula for the current price of ZCIBs for different maturities issued today: \(P_i(0,0,T), T \in [0,10] \). The theoretical values fall well inside the 95% confidence interval of the Monte Carlo simulation.

A logical control point for our result arises here: if we choose the parameters in a way that eliminates the effect of inflation, we should get the value of the standard nominal zero-coupon bond \(P_i(t,T) \) of the Vasicek model.

To achieve this, first we set the price index at the issue date and current time to unity: \(I(T_\alpha) = I(t) = 1 \). Next, we eliminate the volatility of the inflation rate: \(\sigma_i = 0 \). Finally, we make sure the inflation rate starts at zero and stays at zero by setting: \(\bar{i}(t) = \bar{i} = 0 \). With these parameters, our result reduces to:

\[
P_i(t, T_\alpha, T) = P_i(t, T_\alpha, T) = e^{A(T,t) - C(T,t)r(T)}
\]

where \(A(t,T) \) takes the reduced form:

\[
A(t,T) = C(t,T) \left[\bar{r} - \frac{(\sigma_r)^2}{2 \alpha_r} (\alpha_r C(t,T) + 2) \right]
\]

\[
+ (T - t) \left(\frac{(\sigma_r)^2}{2 \alpha_r^2} - \bar{r} \right)
\]

and \(C(t,T) \) is given in equation 7. This result does concur with the price of the zero-coupon bond of the Vasicek model.

TERM STRUCTURE OF INFLATION RATES

The yield curve of a given issuer – typically a government – shows the current market conditions for
annual yields at which the issuer could refinance its debt at different maturities. There is a one-to-one correspondence between the yield curve and the price of ZCBs, thus the formula of the Vasicek model for \(P_r(0,T) \) produces a yield curve:

\[
y_r(T) = \frac{1/P_r(0,T)}{T}
\]

where \(y_r(T) \) is the nominal yield for maturity \(T \). The yield curve typically – although not necessarily – has an upward sloping shape, which the Vasicek model is able to reproduce, as seen in Figure 4.

We go one step further: since our model includes both nominal and inflation-indexed zero-coupon bonds, we will be able to deduce the market-projected annual inflation rate (Dodgson and Kainth, 2006), which we will simply refer to as inflation curve:

\[
\log \left(\frac{P_r(0,T)}{P_r(0,0)} \right) = y_i(T) = y_r(T) - \frac{1}{T} \frac{P_r(0,0,T)}{T}
\]

where \(y_i(T) \) shows the annual inflation rate which is projected by the market for maturity \(T \).

![Figure 4: Possible yield and inflation curves described by the model. Parameters are the same as in Figure 1, apart from the correlation parameter as noted in the legend. Note that the mean reversion level of the interest rate process is well above that of the inflation rate process.](image)

CONCLUSION

In this paper, we presented the main features of inflation-indexed bonds. We defined the zero-coupon inflation-indexed bond, which can serve as building blocks for coupon bonds as well. We set up a mean-reverting stochastic model for the short interest rate and the instantaneous inflation rate. We simulated pairs of trajectories for these processes, and estimated the value of the zero-coupon inflation-indexed bond by Monte Carlo simulation. Then we presented an analytical solution for this problem as well, which corresponded with the results of the simulation. Finally, we used the analytical formula to graph typical inflation curves, and discussed the possible effect of the model’s correlation parameter.

REFERENCES

AUTHOR BIOGRAPHIES

Attila András VÍG is a PhD student at the Department of Finance at Corvinus University of Budapest. His main research area is pricing theory of financial derivatives, with emphasis on interest rate derivatives. He received his bachelor’s degree in finance from Corvinus University of Budapest, and his master’s degree in financial mathematics from Eötvös Loránd University. His e-mail address is: attila.vig@unicorvinus.hu

Ágnes VIDOVICS-DANCS, PhD, CIIA is adjunct professor at the Department of Finance at Corvinus University of Budapest. Her main research areas are government debt management in general and especially sovereign crises and defaults. She worked as a junior risk manager in the Hungarian Government Debt Management Agency in 2005-2006. Currently she is risk manager of a Hungarian asset management company. Her e-mail address is: agnes.dancs@unicorvinus.hu