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ABSTRACT

This paper proposes the design of linear quadratic (LQ)
digital controller for Ball & Plate model and 2DOF
structure of the controller. Unknown parameters of the
controller are determined with the help of polynomial
approach to controller design. Semi-optimal solution is
obtained using minimization of linear quadratic
criterion. Spectral factorization with the aid of the
Polynomial Toolbox for MATLAB was used for
minimization of this LQ criterion. Additional poles of
characteristic polynomial are placed so that the process
is subtle and without sudden changes in controller
output. Results have shown that the controller is able to
stabilize the ball in desired position on the plate, reject
external disturbances and follow reference path without
much effort. Controller was designed for step changing
and harmonic reference signal to further examine its
capabilities.

INTRODUCTION

The Ball & Plate model is system with two inputs and
two outputs. It has integrating properties, hence it can
be considered unstable. This paper deals with controller
design for this system using polynomial approach,
because it simplifies the design problem to operations
on algebraic polynomial (Diophantine) equations
(Kucera 1993). Minimization of linear quadratic (LQ)
criterion is used to derive controller parameters, which
leads to semi-optimal solution (half of poles of
characteristic polynomial have to be user-defined
(Bobal et al. 2005)). This is particulary useful because it
is quite challenging to place multiple user-defined poles.
This process is applied to 2 degrees of freedom (2DOF)
controller structure, which provides separation of feed-
back part (responsible for stabilization and disturbance
rejection) and feed-forward part (responsible for
reference tracking) (Matusi and Prokop 2013). The
PID/PSD control in closed-loop feedback structure was
applied in (Jadlovska et al. 2009), where Butterworth,
Graham-Lathrop and Naslin's methods were used for
calculating controller parameters. A double feedback
loop structure based on fuzzy logic is tested in
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(Wang et al. 2007). Fuzzy supervision and sliding
control are proposed in (Moarref et al. 2008) and a non-
linear switching is described in (Tian et al. 2006).

The paper is organized as follows. A brief description of
mathematical model of the Ball & Plate structure is in
Section 2. The design of LQ controller is shown in
Section 3. Section 4 contains results of simulation and
Section 5 concludes the paper.

BALL & PLATE MATHEMATICAL MODEL

A rough scheme of Ball & Plate model is presented in
Figure 1. The derivation of system equations makes use
of general form of Euler-Lagrange equation of the
second kind (Rumyantsev 1994):
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where T is kinetic energy of the system, V is potential
energy, Q; is i-th generalized force and g¢; is i-th
generalized coordinate. It is assumed that servomotor
used for tilting the plate is described by first-order
transfer function G,, with MATLAB units sent to
servomotors circuit as input and actual angle of the plate
as output:

K
G,(s)=—=" 2
7, 85+1
where K,, = 0.1878 and 7,, = 0.187 are gain and time
constants of the motor respectively. These constants

were obtained from real model's manual pages
(Humusoft 2006).

a

Figure 1: Ball & Plate scheme (Nokhbeh et al. 2011)

The system has only 2 generalized coordinates in total
(ball position coordinates x and y), because plate angles
are direct result of transfer function (2). Also the only
external force acting on the system is gravitational force
(friction is neglected for the sake of simplification). The
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derivation of specific equations from (1) is not the
purpose of this paper, thus only final result will be
presented. This result consists of a system of 2 ordinary
second-order differential equations:
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where m, r and [, are mass, radius and moment of inertia
of the ball respectively, g is gravitational acceleration, a
and f are plate angles (a changes x coordinate and S

changes y coordinate), ¢ and S are first time

derivatives of plate angles, x and y are coordinates of
the ball from center of the plate and X, y are second

time derivatives of ball coordinates.

Linearized Model

For small angles of the plate, one can write sina ~ «
and sin = £ . It is also assumed that the rate of change
in plate inclination is small around the linearization
point, thus ¢ ~0, @*~0 and B* ~0. The moment
of inertia of a hollow sphere (spherical shell) can be

ideally expressed as I, =§mr2. These simplifications

applied to (3) and (4) result in
x: ¥=K,«a %)

yi y=Kp (6)

where K}, is constant dependent only on the gravitational
acceleration g and the type of ball. The two dimensional
problem is considered to be symmetric (see (3) and (4)),
thus it is possible to express the mathematical model (by
merging (2) with (5) or (6)) in one continuous transfer
function G(s) with generalized coordinate as output Y(s)
and generalized angle as input U(s):

Y(s) K _ K %)
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where K = K,K,,C, is velocity gain of the integrating
system (C, = 5 m"' is conversion coefficient from
meters to normalized coordinates).

Equation (7) can be generaly discretized into:
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where B(z"') and A(z") are polynomials with unknown
coefficients. Because the Ball & Plate model has double
integrator, discrete transfer function (8) can be
simplified as follows:

blz’] + bzz’2 + b3z’3
(1-z"Y(A-cz"
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2DOF LQ CONTROLLER DESIGN
Control Law

The controller is designed for two degree of freedom
(2DOF) closed-loop control system shown in Figure 2,
where G is controlled plant, C;and C, are feed-forward
and feed-back parts of the controller respectively,
1/K(z")=1/(1—-z") is the summation part of the
controller (it is extracted from denominators of Cr and
C, for practical reasons), w(k) is reference signal, y(k) is
output of the system, u(k) is output of the controller,
n(k) is load disturbance and v(k) is disturbance signal. It
is assumed that no disturbances act on the system. This
is obviously not true for real system, but it simplifies the
design and structure of the controller.

»(k)

Figure 2: Structure of 2DOF controller

As mentioned, the controller is designed using
polynomial approach. By taking signals from Figure 2
in their discrete forms (and omitting z" in polynomials'
notation), one can write a relation between reference
signal and output of the system:

BR
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The characteristic polynomial D(z”) can be extracted
from (10) creating a Diophantine equation:

D= AKP+BQ (11)

All polynomials in transfer functions will be called by
their respective letter from now on, because omitting the
term "(z')" will simplify the notation. Degree of
polynomials Q, R and P can be obtained by determining
the degree of the characteristic polynomial D, as
described in (Bobal et al. 2005), from where it should be
6 for this specific case:

6
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Thus controllers C, and Cyare

+qz +qz +qz7
C,(z ") = 19 _49t49.2 71‘122 7?32 (13)
P I+ pz +p,z

b

4, R A
Cf(z ) P 1+plz’1+pzz’2 (14
where O and P are polynomials with unknown
coefficients, computed from (11) by method of
undetermined coefficients. Polynomial R has one
unknown coefficient »,, which can be calculated for
step-changing signal (see (Bobal et al. 2005)) as:
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In the case where reference signal is not step-changing,
but harmonic, the polynomial R will be of higher degree
and another Diophantine equation has to be solved:

SD, +BR=D (16)

where S is an auxiliary polynomial not needed in
controller parameters and D, is denominator of
harmonic reference signal D,, = 1 — 2z'lcos(a)T 0) T 72
where o is its angular frequency and T, is sampling
period.

Minimization of LQ Criterion

A semi-optimal solution can be obtained by minimizing
linear quadratic (LQ) criterion, which is closely
described in (Bobal et al. 2005):

J =2 {[e@] +q,[ut0] a7

where e(k) = w(k) - y(k) is error, u(k) is controller output
and ¢, is penalization constant, which influences the
controller output during minimization process.

According to (Bobal et al. 2005), this criterion can be
minimized for input-output description of the model by
applying spectral factorization on the following
equation:

Az )g,A(z) + B(z")B(z)=D(z")éD(z) (18)

where 0 is chosen so that coefficient d, = 0 for the sake
of simplification and A(z), B(z), D(z) are conjugate
polynomials of their respective counterparts. There is no
analytical solution of spectral factorization for
polynomials with degree 3 or higher, thus it has to be
solved numerically by iterative methods (4 is 3™ degree
polynomial). The Polynomial Toolbox for MATLAB
(Sebek 2014) contains tools for solving spectral
factorization. The result of spectral factorization in this
problem offers 3 roots of characteristic polynomial (12)
that are optimal. Remaining 3 roots (poles) have to be
user-defined. For a fully optimal solution, these poles
can be placed to zero, but they are placed closer to a
unit circle to make the controller more robust and its
output properly bounded. Polynomial (12) can be now
obtained and unknown coefficients of polynomial O, P
and R computed from (11) and (15) or (16).

RESULTS

It is important to note that controlled model in
simulation was non-linear model described in (3) and
(4). Its linearized form was used only for the design of
the controller. Transfer function of the system is
obtained after parameters K and 7, are introduced into
(7):

K, K, —-5.0706
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Transfer function (19) can be discretized for the
sampling period T = 0.1s:

00039627 +0.01394z7 +0.003042"°
1-2.5871z7" + 2.1743z72 —0.5871z

The result of spectral factorization of (18) for g, =1 are
3 optimal poles 0.8477 + 0.1409; and 0.5821. User-
defined poles were chosen to be 0.8, 0.8 and 0.8.
Controller parameters for step-changing reference signal
were calculated from (11) and (15) and substituted into
(13) and (14):

G(z™h (20)
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For harmonic reference signal (with period S5s), the
polynomial R is 1* degree polynomial and feedforward
part of the controller (22) has the following form:

0.0438-0.0529z"
1-1.1023z7" +0.3830z

C(z")= (23)
Figure 3 and Figure 4 show step reference tracking
capabilities of designed controller. Because the Ball &
Plate system has integrating properties, the output of the
controller is zero when the error is zero (although this
would not be true if an unmeasurable load disturbance is
present in the process — e.g. errors of motors).
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Figure 3: Step reference tracking
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Figure 4: Step reference tracking on x-y plane




Figure 5 and Figure 6 show ability of controller to reject
disturbances. Introduced disturbances were in the form
of steps and it can be seen that the controller swiftly
reacts to the disturbance and stabilizes the ball. Faster
responses could lead to large changes in controller
output, which is not appropriate in this kind of system.
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Figure 5: Step disturbance rejection
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Figure 6: Step disturbance rejection on x-y plane
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Figure 7: Step load disturbance rejection

Figure 7 and Figure 8 show rejection of disturbances

applied directly to the output of the controller instead of

ball’s position, which simulates errors of controller.

These load disturbances are also introduced as steps.
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Figure 8: Step load disturbance rejection on x-y plane

Figure 9 and Figure 11 show circular reference tracking
with controller designed for harmonic reference signal
in (23). If the controller was designed only for step-
changing reference signal, a phase lag would be present
between reference harmonic signal and ball’s position.
Although the ball would still follow circular path for
reference signal with low frequency. It would
experience an amplitude reduction for higher
frequencies of reference signal and the circular path
would have smaller radius than desired.

A simple graphical user interface (GUI) was designed to
provide more user-friendly control over the nonlinear
model while testing control algorithms (Figure 10). It
allows to choose the type of ball (sphere or spherical
shell) and the type of reference value (manual point,
circle, maze reference or custom). Relevant information
is displayed in plots, which speeds up the design process
and testing.
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Figure 9: Circular reference tracking



EQ GUI_BallPlate — x
File Video About 2
= & \H

Ball Posttion
Tomas Bata University in Zlin X 0 Xref 0 1 _
Faculty of Applied Informatics ¥ 5 Yref - 05 _J y _L_"—f X
. ; O~
Model j J j \
() Real Model (®) Simulation 1 0.5 S 7
\ - :J -1
Reference Source ot i\ i 0 10 20 30 40 50
O manual ®) Maze 05} 1 \ | @ Potx t[s] @ Potux
O Circle O MAT-fie [ \
Run L 9 ) i —
2 l__ J\J ! ;L;_“,-\ 71\
Start Stop 05 ﬁ_l \ 71§
(@) Table tennis ball A L = » | Lt
() Mechanical mouse ball -1 0.5 0 0.5 1 0 10 20 30 40 50
x[- t-
tl @) Poty t @ Piot Uy
Info
Addtional Piots Duration: 55 s

Figure 10: Graphical user interface for Ball & Plate model
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CONCLUSION

The paper deals with design of linear quadratic (LQ)
2DOF controller for the Ball & Plate model. The
controller was designed based on linearized
mathematical model and polynomial approach for
input/output form of the model. The presented method
has been tested on computer simulation of nonlinear
model of Ball & Plate structure. This model is quite
sensitive to large changes in plate inclination (controller
output). As a countermeasure, user-defined poles were
placed in polynomial method algorithm near the unit
circle, which resulted in subtle changes in plate
inclination, but slowed the whole process. The
minimization of LQ criterion provided rest of poles in

an optimal solution, which successfully compensated
system dynamics. The controller was designed for step-
changing and also harmonic reference signal. It is able

to reject disturbances acting on the system and
successfully track desired reference value. A simple
graphical user interface (GUI) was designed to act as a
middlefinger between MATLAB/Simulink environment
and the user.
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