BALL & PLATE MODEL FOR ROBOTIC SYSTEM

Lubos Spacek, Jiri Vojtesek, Frantisek Gazdos and Tomas Kadavy
Tomas Bata University in Zlin
Faculty of Applied Informatics
Nad Stranemi 4511, 760 05 Zlin, Czech Republic
E-mail: {spacek,vojtesek,kadavy,gazdos}@utb.cz

KEYWORDS
YuMi, robotics, LQ polynomial control, LQR state-space control, PD controller.

ABSTRACT
There are many solutions to control Ball & Plate model, ranging from hobby projects to more advanced control. This paper brings a new idea of control using robotic manipulator. This is quite challenging because industrial robots are not originally designed as a motion system for relatively fast and unstable system, which the Ball & Plate certainly is. This paper compares 3 controller designs to better comprehend the situation - a general LQR state-space control, LQ polynomial control and a basic PD controller. Results are also compared for a range of reference values to better understand advantages and disadvantages of chosen controllers, which will lead to future work and implementation for the real system. Data presented in this paper serve as a valuable background for next steps of the research and implementation.

INTRODUCTION
The Ball & Plate model is a well-known representative of fast and unstable systems ideal for designing and testing control algorithms. It is possible to find many designed Ball & Plate models on the Internet (mostly as hobby projects) with 2DoF separated control. There are of course more advanced structure with redundant degrees of freedom (Bruce et al. 2011) and even solution with 6DoF Stewart platform, which offers additional movement in the space.

Many control strategies are developed for Ball & Plate model starting at simple PID control (Jadlovska et al. 2009) and ending with fuzzy supervision (Moarref et al. 2008). This paper is aimed at the comparison of 2DoF LQ polynomial controller (Bobal et al. 2005), classic PD controller and LQR state-space controller. This comparison is also done for multiple reference values to better understand designed controllers. The quality of control is not the key aspect of this paper, but quality criteria for errors and controller effort are introduced in a table to better see the differences.

The paper is organized as follows. The first chapter deals with the theory and background behind Ball & Plate system and used robotic manipulator. It is divided into 3 subsections dealing with Ball & Plate, robot and identification separately. The next chapters describe 2DoF LQ polynomial controller and LQR state-space controller. The paper is closed with a chapter presenting obtained results and conclusion.

BALL & PLATE ROBOTIC SYSTEM

Ball & Plate
A great model for testing control algorithms for unstable systems is Ball & Plate model. This model has relatively fast dynamics and with its instability provides quite a challenging task for controller design. Its general simplified and linearized mathematical description can be described by (1) and (2). This was more closely described in the previous work of authors (Spacek et al. 2017).

\[\ddot{x} = K \alpha \rightarrow G_x(s) = \frac{K}{s^2} \]

\[\ddot{y} = K \beta \rightarrow G_y(s) = \frac{K}{s^2} \]

where \(x,y\) are ball coordinates from the center of the plate (\(\ddot{x}, \ddot{y}\) are respective 2nd time derivatives), \(\alpha, \beta\) are angles of the plate, \(K\) is constant dependent on the gravitational acceleration \(g\) and the momentum of the ball and \(G_x(s), G_y(s)\) are continuous-time transfer functions with complex variable \(s\). It is obvious these functions are symmetric in nature and thus only one-dimensional solution (Fig. 1) will be presented in simulations in this paper.

![Fig. 1. Ball & Plate setup (Nokhbeh et al. 2011)](image)

Collaborative Robot YuMi
The industrial robotic manipulator ABB IRB14000 YuMi (Fig. 2) was used as the motion structure for the simulations as a background to the real implementation. It has two manipulators with 7DoF and 0.02 mm repeatability each, which offers more possibilities and opportunities as the classic 2DoF solution with two servo motors or even 6DoF parallel manipulator commonly known as Stewart platform.

The YuMi is a collaborative robot, which means it can operate without external caging, which is safer and more efficient during implementation (Fryman and Matthias 2012). It would not be practical to have the
robot in a cage during control because it is possible to interact with the ball externally. The advantage is also that YuMi has two arms, which extends this application to the cooperative solution of more manipulators.

The development and simulation environment from ABB called RobotStudio is also a great advantage, as it excels in the deployment of similar applications and supports virtual sensors for measurements. The 7DoF manipulator has certainly complicated dynamics, but only last three joints actively influence the angle of the plate. The plate angle dynamics can be approximated by 2nd order transfer function, as can be seen from the change of the plate angle from 0 to 10 degrees in Fig. 3. This paper presents a solution, where the dynamics of the plate angle are approximated by 1st order transfer function. It is not the usual practice nowadays to simplify 2nd order dynamics to 1st order, but because Ball & Plate model consists of both the Ball & Plate dynamics and motor dynamics, it is the necessary step to reduce complexity. The identification chapter will show that it is not a very serious issue, as combined dynamics will negate this effect.

Identification

The Ball & Plate model was identified for one dimension for both input-output (3) and state-space (4) models. Note that all measurements were in RobotStudio which is still the virtual environment, thus the identified system is still an ideal (semi-real) representation of the real system.

\[
G(s) = \frac{K}{s^2(Ts + 1)} = \frac{K}{Ts^3 + s^2} \quad (3)
\]

where \(G(s) \) is continuous transfer function with complex variable \(s \), \(K \) is velocity gain and \(T \) is the time constant of the system.

\[
\begin{bmatrix}
\dot{x} \\
\ddot{x} \\
\dot{\alpha}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & K_\alpha \\
0 & 0 & T_\alpha
\end{bmatrix}
\begin{bmatrix}
x \\
\dot{x} \\
\alpha
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \alpha
\]

\[
y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}
\begin{bmatrix}
x \\
\dot{x} \\
\alpha
\end{bmatrix} \quad (4)
\]

where \(x \) is the position of the ball in one dimension, \(\dot{x} \) is its time derivative, \(\ddot{x} \) is its 2nd-time derivative, \(\alpha \) is angle of the plate, \(y \) is the output of the system, \(K_\alpha \) and \(T_\alpha \) are identified constants of the state-space system. Resulting identifications for different input angles showed a nonlinearity in the system, as shown in Fig. 4 which displays identification for the system described by (3). Both mathematical models were discretized with the period \(T_0 = 0.05 \text{s} \). Their discretization is necessary to design a discrete controller for future implementation of the real system.

LQ POLYNOMIAL CONTROL

Discrete polynomial control is easy to implement because the discrete transfer function can be easily implemented in basic programming language and needs just previous values of input and output. Its disadvantage is a generally worse quality of control and limited possibilities compared to the state-space control, due to obvious reasons. The design of the 2DoF LQ digital controller is described in previous work of authors (Spacek et al. 2017). The problem is solved by minimizing linear quadratic criterion in (5). This criterion can be solved in the polynomial form using spectral factorization (Bobal et al. 2005), instead of solving Riccati algebraic equation.

\[
J = \sum_{k=0}^{\infty} \left\{ [e(k)]^2 + q_u |u(k)|^2 \right\} \quad (5)
\]

where \(e(k) = w(k) - y(k) \) is the error, \(u(k) \) is controller output and \(q_u \) is a penalization constant, which
influences the controller output during the minimization process. Half of the solution (poles of characteristic polynomial in (6)) can be obtained from spectral factorization and other half is user-defined to adjust the behavior if needed (Spacek et al. 2017). This helps during the design of the controller, especially for the unstable system when poles of characteristic polynomial are harder to "guess".

\[D = AKP + BQ \] (6)

where \(D \) is characteristic polynomial of a closed-loop system, \(B \) and \(A \) are numerator and denominator polynomials of the plant respectively, \(K \) is summation element, \(P \) and \(Q \) are denominator and numerator polynomials of the controller respectively. This equation is the same for continuous-time and discrete-time version, thus dependence notation of polynomials on complex variables \(s \) or \(z^{-1} \) is omitted.

The control law is designed for 2DoF controller structure (Fig. 5) because of its softer response to step changes. The 2DoF controller has 3 parts in this case: feedforward part \(C_f(7) \), feedback part \(C_b(8) \) and summation part \(1/K(z^{-1}) = 1/(1 - z^{-1}) \), which is extracted solely for practical purpose. Resulting implementation of the controller to programming environment is thus expressed in (9).

\[C_f(z^{-1}) = \frac{R}{P} = \frac{r_0}{1 + p_1z^{-1} + p_2z^{-2}} \] (7)

\[C_b(z^{-1}) = \frac{Q}{P} = \frac{q_0 + q_1z^{-1} + q_2z^{-2} + q_3z^{-3}}{1 + p_1z^{-1} + p_2z^{-2}} \] (8)

\[u_k = (1 - p_1)u_{k-1} + (p_1 - p_2)u_{k-2} + p_2u_{k-3} + r_0u_k - q_0y_k - q_1y_{k-1} - q_2y_{k-2} - q_3y_{k-3} \] (9)

where \(q_1, p_1, \) and \(r_0 \) are controller parameters, \(u_{k-1} \) and \(y_{k-1} \) are outputs of the controller and plant respectively and \(u_k \) is desired (reference) value.

![Fig. 5. Structure of 2DoF controller](image)

LQR STATE-SPACE CONTROL

The state-space controller is harder to implement, especially to the software of the robot because it is not designed for such tasks in terms of speed and optimization. On the other hand, it has more options and may provide better results while using state observer, Kalman filter, MPC, and others. Because this paper deals with only simulation implementation it is not needed to use state observer.

The state-space control (Fig. 6) is derived from the state-space description of the system either for continuous form in (10) or discrete form in (11).

\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \] (10)

\[x_{k+1} = Ax_k + Bu_k \]
\[y_k = Cx_k + Du_k \] (11)

where \(x, u \) and \(y \) are state, input and output vectors respectively, \(A, B, \) and \(C \) are system, input, and output matrices respectively and \(D \) is zero matrix for most real systems.

As mentioned above, the discrete controller is needed for future implementation, thus it will be designed for the discrete state-space model in (11). The goal is to obtain the optimal gain matrix \(K \) for state feedback control in (12) by minimization of the quadratic criterion in (13). The gain matrix \(K \) is then computed in MATLAB from (14).

\[u_k = -Kx_k \] (12)

\[J = \sum_{k=1}^{\infty} \{x_k^TQx_k + u_k^TRu_k\} \] (13)

\[K = (B^TSB + R)^{-1}B^TS \] (14)

where \(Q \) and \(R \) are state \((x_k)\) and input \((u_k)\) weight matrices respectively, \(A \) and \(B \) are matrices described in (11) and \(S \) is the solution of discrete-time Riccati equation. \(N \) in Fig. 6 is precompensator equal to the 1st term of the gain matrix \(K \) (in this case). The precompensator is required because the reference value is not directly compared to the output, thus it needs a compensation.

![Fig. 6. State-space control in Simulink](image)

As already mentioned, it is highly appropriate to use at least state observer to correctly estimate not measurable states, but in a simulation all states are "measurable", thus the more advanced control will be designed for the real system implementation only.

RESULTS

Designed controllers were implemented in MATLAB and Simulink to test and compare their results. Three types of controllers will be compared for this pilot study - adding a basic discrete PD controller to LQR state-space and LQ polynomial solutions. The PD controller
was designed by Naslin method (Balate 2003) and subsequently discretized, however its output was saturated to soften its output for large changes to interval $< -2; 2 >$. Results are shown for a step change (Fig. 7 and Fig. 8), sequence change (Fig. 9 and Fig. 10), ramp change (Fig. 11 and Fig. 12) and harmonic change (Fig. 13 and Fig. 14). Note that the plot is bounded for the step change, but the output of the PD controller reaches its saturation in -2°. The schematic of the Ball & Plate model virtualized in the RobotStudio for YuMi is shown in Fig. 15.

Quality criteria

The quality of control is shown in Tables 1-4. The criterion for the sum of squared errors is in (15) and for the sum of controller outputs in (16).

$$S_e = \frac{1}{N} \sum_{k=1}^{N} e^2(k) \quad (15)$$

$$S_u = \frac{1}{N} \sum_{k=1}^{N} u^2(k) \quad (16)$$

Tab. 1. Quality control for the step change

<table>
<thead>
<tr>
<th></th>
<th>LQR</th>
<th>LQ</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_e</td>
<td>0.0080</td>
<td>0.0229</td>
<td>0.0081</td>
</tr>
<tr>
<td>S_u</td>
<td>2.4203</td>
<td>0.2963</td>
<td>5.4281</td>
</tr>
</tbody>
</table>

Tab. 2. Quality control for the sequence change

<table>
<thead>
<tr>
<th></th>
<th>LQR</th>
<th>LQ</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_e</td>
<td>0.0475</td>
<td>0.1348</td>
<td>0.0548</td>
</tr>
<tr>
<td>S_u</td>
<td>13.9880</td>
<td>1.4078</td>
<td>16.9862</td>
</tr>
</tbody>
</table>
CONCLUSION

It is clearly visible from graphs that the PD controller shows a very good quality of control. However, from previous experiences with Ball & Plate system can be stated, that this type of controller would not work in the real system, because it has fast behavior and generates large changes in its output. Not to mention the noise from the environment and disturbances. It also nicely managed to follow a linear and sinusoidal trajectory. Two other controllers can be of course designed to be more competitive, but the goal was to show their true nature. For example, 2DoF LQ polynomial controller was quite slow and although it has similar setting time, it looks lazy. This is actually the point of using the 2DoF controller, which has a very subtle behavior well suited for the Ball & Plate model. State-space LQR controller could be also modified for better control, but its behavior is sufficient enough for this paper.

Tables clearly show that the LQ polynomial control excels at the quality of controller effort. This is caused by its 2DoF structure and desired, especially when the setting time is almost as small as for two other designed controllers. PD controller shows very good results for ramp and harmonic change because of their relatively slow rise time.

Results presented in this paper are helpful for future research on the topic and authors are keen to continue further. Next steps are to add state observer or Kalman filter to the state-space control, implement designed algorithms to the programming language of the robot and run tests in RobotStudio simulation environment. RobotStudio virtualizes the robot quite precisely, thus it is a good intermediate step in the implementation. The hardest part will be to implement state-space control in the programming language of the robot because it does not have appropriate tools and it is not optimized for this type of application. Using an external control unit is considered as the best option, which can simply send angles directly to the robot and do the "heavy" work.
ACKNOWLEDGMENT
This article was created with support of the Ministry of Education of the Czech Republic under grant IGA reg. n. IGA/CebiaTech/2018/002.

REFERENCES
Bruce, J.; Keeling C. and R. RODRIGUEZ. "Four Degree of Freedom Control System Using a Ball on a Plate". Southern Polytechnic State University, 2011

AUTHOR BIOGRAPHIES
LUBOŠ SPAČEK studied at the Tomas Bata University in Zlin, Czech Republic, where he obtained his masters degree in Automatic Control and Informatics in 2016. He currently attends PhD study at the Department of Process Control, Faculty of Applied Informatics. His e-mail address is lspacek@utb.cz.

JIŘÍ VOJTĚŠEK was born in Zlin, Czech Republic in 1979. He studied at Tomas Bata University in Zlin, Czech Republic, where he received his M.Sc. degree in Automation and control in 2002. In 2007 he obtained Ph.D. degree in Technical cybernetics at Tomas Bata University in Zlin. In the year 2015 he became associate professor. He now works at the Department of Process Control, Faculty of Applied Informatics of the Tomas Bata University in Zlin, Czech Republic. His research interests are modeling and simulation of continuous-time chemical processes, polynomial methods, optimal, adaptive and nonlinear control. You can contact him on e-mail address vojtesek@fai.utb.cz.

TOMÁŠ KADAVÝ was born in the Czech Republic, and went to the Faculty of Applied Informatics at Tomas Bata University in Zlin, where he studied Information Technologies and obtained his MSc degree in 2016. He is studying his Ph.D. at the same university and the fields of his studies are: Artificial intelligence and evolutionary algorithms. His email address is: kadavy@utb.cz.

FRANTIŠEK GAZDOŠ was born in Zlin, Czech Republic in 1976, and graduated from the Brno University of Technology in 1999 with MSc. degree in Automation. He then followed studies of Technical Cybernetics at Tomas Bata University in Zlin, obtaining Ph.D. degree in 2004. He became Associate Professor for Machine and Process Control in 2012 and now works as the Head of the Department of Process Control, Faculty of Applied Informatics of Tomas Bata University in Zlin. He is author or co-author of more than 80 journal contributions and conference papers giving lectures at foreign universities, such as University of Strathclyde Glasgow, Instituto Politécnico do Porto, Universita di Cagliari and others. His research covers the area of process modelling, simulation and control. His e-mail address is: gazdos@utb.cz.