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ABSTRACT

Assessing seafarers’ mental fatigue levels helps identi-
fying potential operational risks and the ability to sim-
ulate future scenarios can be used during planning and
management, to ensure safer operational conditions. In
this work, we propose a framework for modelling sea-
farers’ future mental fatigue levels using a combina-
tion of both physiological and environmental sensors
and model- and data-based techniques. We established
building blocks of this framework and presented exam-
ples of how it can be applied in different scenarios as
soon as enough data is collected to feed the data-based
section of the model. Once properly trained, this frame-
work can be used not only to assess human-related op-
erational risks but also to provide the necessary infor-
mation to ensure that these issues are addressed before
potential danger escalates to real accidents.

MENTAL FATIGUE IN MARITIME OPERA-
TION

Safety-critical operations is an increasing concern
across all industries dealing with human-machine inter-
action and systems. Human-related issues are the main
cause of accidents in fields such as driving (Williamson
et al., 2011), commercial air transport (Suraweera et
al., 2013), and maritime operations (Chauvin et al.,
2013). Among the most common issues, we can high-
light situational awareness and human errors. The
main contributing factors leading to these challenges
are excessive workload, stress and fatigue, specially
mental fatigue (MF).

The maritime industry presents especial fatigue-related
challenges connected to the intrinsic nature of maritime
operations. This includes long and irregular working
hours, long periods away from home, unpredictable en-
vironmental factors, and no clear separation between
work and leisure. The International Maritime Organi-
zation (IMO) defines in its Guidelines on Fatigue (IMO,
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2019) several factors influencing fatigue in seafarers.
These factors can be categorized as seafarer-specific
factors, management factors, ship-specific factors, en-
vironmental factors, and operational factors.

Among the seafarer-specific factors we can highlight
psychological and physiological characteristics and per-
sonal habits. Ship-specific factors cover all aspects re-
lated to the design and condition of the ship, such as
ship motion and responses, level of automation and re-
liability, and physical comfort in accommodation and
work spaces. Environmental factors include aspects
such as noise, vibration, ship motion, ventilation and
temperature.

With so many contributing factors, monitoring and
controlling MF levels in maritime operations is a com-
plex task. Among the available option to assess MF,
several subjective approaches are presented in the liter-
ature. Self assessment is the most common subjective
approach and can rely on the use of questionnaires,
such as Chalder Fatigue Scale (Chalder et al., 1993)
and Epworth Sleepiness Scale (Johns, 1991), and sleep-
ing diaries (Wadsworth et al., 2006). Although useful
for tracking the user’s MF profile, these methods are
generally not suitable for real-time applications.

For more a realiable MF assessment, deterministic ap-
proaches are recommended. In this case, the use of
physiological sensors, such as eye trackers, electrocar-
diogram (ECG), and electroencephalogram (EEG), is
recognized as the best way to reliably assess MF in
real-time (Sahayadhas et al., 2012). This is due to the
intrinsic relation between changes in physiological sig-
nals and variations in MF levels.

After establishing the required understanding about
the causes and how to measure MF, a natural follow
up question is how can we model the MF development.
Answering this question is important since a good MF
development model can be used for an early interven-
tion or operational planning. Addressing this task is
a challenging issue, due to the effect of external fac-
tors in the development of MF and how difficult it is to
objectively relate these factors to their effects. In the
work, we describe a framework for modelling MF de-
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Fig. 1. Framework for Mental Fatigue Assessment

velopment, taking into account not only the seafarer’s
physiological condition but also the effects of external
factors.

MEASURING AND MODELLING MENTAL
FATIGUE SCENARIOS

Being able to monitor the development of seafarers’ MF
state in real-time can be beneficial for the safety of de-
manding maritime operations. A proper MF profile of
all operators taking part in a complex operation en-
ables a more precise risk assessment, which in turn can
help preventing causalities.

Let’s consider an operational scenario where a pilot is
maneuvering a platform supply vessel (PSV) close to
an oil rig for cargo unloading. Using a set of physiolog-
ical sensors, one can monitor this pilot and perform an
MF level assessment. This MF profile can be used to
perform the operational risk assessment based on how
long the operator stayed in a critical MF level. What a
critical MF level is and how long the operator needs to
be in this state to indicate operational risks need to be
defined via experiments. This MF assessment frame-
work is presented in Fig. 1 (Based on (Monteiro et al.,
2020)).

Although MF assessment can be a useful tool for re-
ducing the risk of causalities, it presents a limitation
regarding how early we can intervene in the operation.
This limitation is due to the fact that the assessment
system measures only the current state of the operator.
Once a dangerous condition is assessed, measures need
to be taken in order to mitigate the operational risk.
This delay between assessment and action can be suf-
ficient a time window for the assessed risk to turn into
a real accident. Thus being able to anticipate the risky
period is important to prepare the necessary mitigation
measures on time.

Supposing we can assess the operator’s MF state in the
current operational scenario (Sp), how can this scenario
develop in the next, for example, two hours? If, after
the assessment of scenario Sy, the weather conditions
develop to a much rougher sea state, how will the oper-
ator’s MF level be affected? If a collision between the
PSV and the oil rig happens, how will this stressful sit-
uation come into play in the operator’s performance?
These different external factors can make the predic-
tion of future scenarios very hard, since the original
scenario can lead to several possible future scenarios.
This branching is presented in Fig. 2.
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Fig. 2. Branching of Scenarios

The current work aims to extend our previous studies
(Monteiro et al., 2019, 2020) by adding a prediction
capability to our MF assessment framework. So, the
question we want to answer in this paper is: How can
we model and simulate other MF scenarios from the
current assessed scenario? Can this theoretical model
be calibrated and validated with real data gathered
from day-to-day operations? In order to be able to an-
swer these questions, we need to address four important
points. First, which factors affect the progression of the
MF state? Then, how to measure and quantify these
factors? Later, how to integrate these measurements
and the current MF assessment into an MF prediction
algorithm? Finally, how can real data can be used to
calibrate these models?

Contributing Factors

As presented in the previous section, there are several
factors that affect the development of MF in seafarers.
For our analysis we will group these contributing fac-
tors in time and distress. Time refers to the natural
progression of MF due to physiological and psycholog-
ical factors, and the prolonged exposition to environ-
mental factors. Distress is related to unexpected and
emergency situations. These events can be punctual or
have long duration. They elevate MF levels by increas-
ing workload, tension, and stress levels.

Sensors

In this work we propose the use of two different classes
of sensors: physiological and environmental sensors.
Physiological sensors are the most reliable way to as-
sess MF levels, since the physiological symptoms of MF
can be captured as they start to develop. The most



usual physiological sensors used to monitor MF in-
clude eye tracker, electrocardiogram (ECG), electroen-
cephalogram (EEG), and body temperature sensors.
Ideally, we would like to have as much sensor informa-
tion available as possible to help in the decision making
process. Practically, the use of several sensors attached
to a seafarer’s body can hinder the proper execution of
complex tasks. So, this trade-off between the amount
of data and sensors needs to be taken into considera-
tion when selecting which physiological sensors to use
for real-life applications.

Environmental sensors are used to quantify factors that
are external to the seafarers. They include gyroscopes,
accelerometers, weather sensors, cameras, sound level
meters, etc. In opposition to physiological sensors,
there is no limit for the number of environmental sen-
sors to apply when monitoring maritime operations.
Additionally, most vessels already record data for sev-
eral of the sensors cited above, so there is little extra
setup to be done regarding the environmental sensor.
The challenge is how to correlate this kind of sensor
data and variations in a seafarer’s MF level.

Mental Fatigue Prediction

There are two main steps when trying to forecast MF
scenarios. First, we need to assess the seafarer’s cur-
rent MF level. Then, we need to predict the expected
MEF level based on the seafarer’s current MF level and
time and distress effects. Fig. 3 presents our proposed
framework for forecasting MF' scenarios, including the
assessment, and prediction steps.
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Fig. 3. Framework for Mental Fatigue Prediction

The MF assessment loop is responsible for determining
the seafarers’ current MF state at a certain operation
(1). The assessment is performed using only data from
physiological sensors (2). This data is acquired in real
time as time-series. After any required preprocessing,
the data can be used as the input to an MF assessment
algorithm (3) responsible to determine the current MF
level. Here, two different approaches are viable. One
possible approach is to use neural networks to classify
the input data in different levels in an MF scale. An-
other alternative is to apply a model-based approach,
which defines MF levels in a deterministic way by mod-
eling the MF representation using the sensors data and
expert knowledge. With the profiled MF progression,
a risk assessment algorithm can be used to inform the
seafarer about the current operational risk level (4).

The assessed MF state in a time-stamp tg is correlated
to all the environmental sensors (5) data collected at
that time stamp. The time-series of the MF profile and
the time-series of the environmental sensors are stored
in a database of previous scenarios (6), which can be
used for training the MF prediction algorithm (7). In
this case, it is considered a data-driven algorithm. Be-
sides being stored in the database, the MF profile and
the environmental sensors data are the inputs for the
MF prediction algorithm. Using the combination of re-
cent environmental sensors data and the current MF
level of an operator, the trained algorithm can produce
a prediction about the expected MF level of said opera-
tor in the near future, and a risk assessment algorithm
can be used to inform the seafarer about the projected
operational risk level (8). The main difference between
the algorithms implemented in (3) and (7) is that in
(3) we only rely on instantaneous physiological sensor
data, while in (7) we consider the instantaneous phys-
iological and external sensors data, while relying on a
database of previous scenarios.

Database of Previous Scenarios

For this application, we are handling complex data.
The complexity of the data is defined by two main
factors: several disparate data sources and data size.
Firstly, the environmental sensors can provide data in
different domains, which can be hard to fuse in a mean-
ingful way. For example, a camera provides a video
feed, while an accelerometer provides accelerations in
different directions. In order to efficiently store and
handle all external sensor data, having all data in the
same domain can be very helpful. Most sensors data
are generated as time-series data, which is basically a
stream of time-stamp/value pairs. In this case, hav-
ing time as a common domain is the simplest solution
to facilitate the data fusion process. So, in order to
ensure that all sensors speak the same language, some
preprocessing may be needed for some sensors to ex-
tract time-domain features that can be stored in the
data base and fused with other sensors data.

With the huge amount of time-series data produced by
the environmental sensors, the computational complex-
ity to handle this information is high. In this case, a
specialized time-series database can go a long way im-
proving the system’s overall efficiency. In a time-series
database, new incoming data is stored in a sequential
manner, usually ordered by time-stamp. In this case,
new data is inserted in the database instead of old val-
ues being updated. This allows for tracking how the
data changes with time, making it possible to under-
stand tendencies in the past and predict trends in the
future. Traditional databases can be employed to han-
dle time-series data, but usually they lack the tools to
handle two important aspects of time-series data: scale
and usability.

Regarding the scale factor, the amount of data that
needs to be stored when handling time-series can grow
very fast. This is specially true when handling several
sensors operating at high frequencies. In order to effi-



ciently handle this huge amount of data, the database
needs to be optimized to provide bigger ingest rate,
faster querying and optimized operations for data com-
pression. This optimization is only possible when the
time variable is considered a first priority during the
database framework design.

Usually, only storing the time-series data is not enough.
Regarding the usability factor, it is important that we
are able to perform operations that are characteristic
of this kind of data. Some examples of these operations
include data retention policies, continuous queries, and
flexible time aggregations.

Data-driven Mental Fatigue Prediction

Once enough data is stored in the database for both the
MF assessment and external sensors, fully data-driven
methods can be effectively applied to perform the MF
prediction. The minimum amount of data necessary to
perform a good prediction is a relative matter, since it
depends on both the complexity of the prediction and
its expected accuracy. One natural candidate for this
task would be a long-short term memory (LSTM) neu-
ral network (Hochreiter & Schmidhuber, 1997). This
neural network is capable of learning long-term depen-
dencies in time-series data by using a memory cell to
regulate the information flow (Fig. 4). The informa-
tion flow is controlled by non-linear gating units that
include input gates (i), output gates (o;) and forget
gates (f¢). A complete formulation of the LSTM algo-
rithm and examples of applications in time-series pre-
diction can be easily found in the literature, for example
(Ellefsen et al., 2019). By training the LSTM algorithm
in a data stream composed by all the physiological and
environmental sensors, it can learn to predict the MF
state by applying the penalty functions automatically,
without the need to manually tune the penalty func-
tions parameters. The appropriate network structure,
including number of layers and neurons, needs to be
determined during the training process, according to
the desired precision criteria for the prediction task.
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Fig. 4. LSTM Memory Cell

MODELING MENTAL FATIGUE PROGRES-
SION

As presented in Fig. 3, the prediction of future MF
states depends on a database of physiological and en-

vironmental sensors data. In order to establish a foun-
dation for the handling of this data, we can discuss
how the integration between physiological and environ-
mental factors can be applied for forecasting MF lev-
els in seafarers. Since we do not have an established
database, we need to first model the effects of time and
distress over the MF level. This theoretical modeling
can be then used to exemplify our proposed approach.

Time Dependant Mental Fatigue Progression

The simplest effect to model is the effect of time. Due
to physiological and environmental factors, MF accu-
mulates as time goes by. There is an initial rested state
that progresses to a maximum level of MF where stay-
ing awake would be almost impossible. Although this
situation can sound a little extreme, it is not unlikely
to happen, specially during night shifts. Eq. 1 can be
used to model this time dependent MF progression

MF(t) = % Lo (ﬁﬂ(t _ %» (1)

where T is the total duration of the prediction, -y
indicates the position of the inflection point of the
curve, [ dictates the inflection angle, 7w is the non-
dimensionalization constant for the arctan function
and « scales the function to our desired MF scale.
Fig. 5 presents the proposed model for the time aspect
of the MF progression, with the theoretical limits for
restedness and tiredness.
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Fig. 5. Time-dependant Mental Fatigue Progression Model

Fig. 5 shows the time-dependant MF progression for
a=1,5=0.2,and v = 2.

Distress Dependant Mental Fatigue Progression

The effects of distress over the time dependent MF pro-
gression will be modeled as penalties to the natural
MF development. There are several possible causes of
distress (IMO, 2019), and for simplicity we will group
them into continuous and punctual effects.

Continuous effects represent disturbances that take
place continuously, for an extended period of time.
Such effects include higher then normal noise levels,
excessive vessel motion due to weather conditions, long
watch shifts at night, etc. The effects of distress do not
push the MF level over the theoretical MF limit. In-
stead, they accelerate the MF development. For mod-
eling continuous effects, we propose the use of the fol-



lowing Gaussian-like function:

Pconst(t) = a1 exp <(t§;)> (2)
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where a; is the scale factor for the penalty, T'/by dic-
tates the position of center of the normal distribution,
and c¢; represents its spread. The penalty is applied in
the time dependant MF progression as follows:

MF/(t) = MF(t) . (1 + Pconst(t)) (3)

Fig. 6 shows the continuous effect penalty function for
ap = 0.15, by = 2.5, and ¢; = 0.1.
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Fig. 6. Penalty Function Model for Continuous Distress

Punctual effects represent disturbances that have short
duration but can effect the MF development in the long
term. This kind of effect includes, for example, a vessel
collision with other vessel or marine structure, acci-
dents with cargo handling, and man overboard scenar-
ios. Punctual effects are more relevant when they have
an acute impact on the seafarer’s situational awareness
and sense of danger, triggering a burst of adrenaline.
This phenomenon can, in the short term, increase at-
tention and, in the long term, increase MF progression
due to the increase in tension and workload levels.

In order to model punctual effects, we propose the use
of a combination of Gaussian-like functions. The nega-
tive portion of the equation models the increase in at-
tention after a serious, unexpected event occurs, while
the positive portion models the long term increase in
the MF progression levels.

2 2
~(t—3) —(t— )
Pyport(t) = —az exp (20222 +asz exp TQ?’

where the variables a, b and ¢ are analogous to the ones
presented for Eq. 2. The way the punctual penalty is
applied to the time dependant MF progression is the
same described in Eq 3. Fig. 7 shows the punctual effect
penalty function for ay = 0.75, by = 2.8, co = 0.35,
ag = 0.25, bg = 2.3, and ¢3 = 0.15.

Tunning Models

Previously we described the modeling of the MF devel-
opment process based on the time-dependant MF pro-
gression and penalty functions. So one may ask: how
could I tune the parameters that compose the penalty
functions for different scenarios? The answer for this

Penalty function

time

Fig. 7. Penalty Function Model for Punctual Distress

question lays on the time-series complex data stored in
the previous scenarios database.
Initially, when no previous scenarios data are available,
the prediction capabilities of the proposed framework
are poor. Normal operation data is the easiest kind
of data to come around. It is produced by the assess-
ment framework when no distress factor is in play. It is
essential for implementing a time-dependant MF state
forecasting strategy. Using this prediction model as a
baseline, the penalty functions for a specific operational
conditions (including one or more distress factors) can
be approximated using the inverse of the mapping func-
tion presented in Eq. 3. This new equation can be writ-
ten as: )
MF'(t

Pconst(t) = Z\M((t)) -1 (5)
The obtained penalty function can then be approxi-
mated to the formulation of either continuous or punc-
tual penalties by defining the appropriate parameters.
Defined this way, the parameters can be stored and re-
covered when a similar distress factor takes place dur-
ing the MF monitoring of an operator. Once calibrated
with real data, the proposed framework can be used as
management and planning tools. These applications
are exemplified in the next section.

SIMULATING MENTAL FATIGUE SCENAR-
10S

Management Tool

As a management tool, this framework can be used for
assessing, in real-time, the operational risk related to
seafarers’” MF condition. At any given time during an
operation, the MF level assessed from an operator until
that time and the data from the environmental sensors
can be used to forecast how the MF level is expected
to change in the near future. The MF level can fall un-
der good (green), attention (yellow) or dangerous (red)
ranges. Fig. 8 shows the composition of the predicted
MF state for a seafarer. The assessed MF levels (1) is
used to extrapolate the time dependant progression of
the MF state (2). Environmental sensor data is used
to calculate punctual (3) and continuous (4) penalty
functions. Applying all this data in Eq. 3, the system
outputs the predicted MF state (5).

With this information, a manager can keep track of the
operational risks related to the seafarer’s MF state. In
a scenario where this risk surpasses some predefined
criteria, the manager can act by alerting the seafarer



Mental fatigue level
p—"

Penalty function
w

time time

Mental fatigue level

time

Mental fatigue level
IS
Penalty function

time time

Fig. 8. Mental Fatigue Prediction Composition

about the dangerous condition or even plan a break or
a change of operator.

Planning Tool

As a planning tool, this framework can be used for eval-
uating different possible scenarios during a demand-
ing operation. Based on these possible scenarios, worst
case conditions for the seafarers can be identified and
the risks involved in the operation can be assessed.
Consider for example a crane operation taking place
offshore by a construction vessel. The crane opera-
tor presents his own time dependant MF progression
(So), disregarding any external complicating factors.
But what if during the operation the weather condi-
tions worsen (S7), or there is an accident damaging one
important component that should be installed (S3), or
an unforeseen delay takes place (S3) or there is a mal-
function in one equipment (S4). How can these dif-
ferent scenarios effect workload and stress and impact
the MF development of the said operator? The utiliza-
tion of the proposed framework to investigate all these
possible scenarios is presented in Fig. 9.
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Fig. 9. Comparing Different Possible Scenarios

With the prediction model for the different scenarios at

hand, the operation can be planned to account for the
risks related to high MF levels. The operation can be
planned for the worst case scenario in order to ensure
a higher safety factor. But it also can be planned for
less risky scenarios if the probability for the worst case
condition is low. Another viable option involves plan-
ning for a scenario represented by a weighted average
of the possible modeled scenarios, where the weighting
factor is the probability of occurrence of each scenario.

TOWARDS AN INTELLIGENT MODEL FOR
MENTAL FATIGUE AND HUMAN ERROR
PREDICTION

The work here presented was developed as a simple and
fundamental approach to put in practice the framework
from Fig. 3. Originally, the framework was developed
as a way to transform real data from operations into
an assessment for MF. The reality is that this real-
operations data is not available, and much has been
done only from experiments in simulators. The equa-
tions here presented can be used as a comparison and
benchmark, elegantly in terms of coefficients of well
know equations.

We are aware that the presented model is an educated
guess on how MF seems to behave based on the lit-
erature and current research at NTNU. We attempted
here to navigate between the two worlds of the litera-
ture found in this topic. One extreme, very human and
social based, which describes MF qualitatively and is
intrinsically connected to the psychological aspects of
a human-being performing a safety-critical task in de-
manding operations at the sea. No wonder IMO uses
this side of the spectrum to describe the types and lim-
its of MF, given that no number is able to properly
and safely estimate MF in maritime operations. In this
way, we understand the problem, but no data is given
for decision-making.

On the other extreme, data-driven methods are wide
spreading in all fields, promising that a well trained Al
will be able to estimate everything with more preci-
sion than just a narrow sample of human experience,
providing accurate decision-making. The database pre-
viously described requires a large amount of complex-
data. This intensive data-driven approach demands
hundreds of hours of real-data operation that need to
be collected, filtered, stored and fed to an advanced
AT algorithm. We also observed in recent experiments
in simulators (Monteiro et al., 2019; Kari et al., 2019)
that physiological factors can add extra complexity to
the operations, and demand time and patience to be set
up and used. Remote sensor technology, such as Open
CV, may be the solution, but they have yet a long path
before being commercially applicable in such a narrow
niche as maritime operations.

We do believe that having a functional model, able to
theoretically predict MF based on time and distress, is a
fundamental piece to achieve the framework proposed.
In this context, we call for an open and collaborative
approach to calibrate, improve and validate our model.
The source code is available at an online repository



(https://github.com/thiagogabrielm/MFM).

We plan to continue the experiments at NTNU, and
currently we are gathering data from our research ves-
sel. This is, however, a small sample yet for properly
training Al In this sense, having a sound mathemati-
cal model as the one here described seems a good initial
step for other actors to use and adapt our model. If we
are right, we will be able to present a library of tan-
gible coeflicients, calibrated for each operation. In the
future, connecting these coefficients to each MF aspect
from IMO, can be the basis for a sound regulation on
MF and, therefore, safer operations.
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