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ABSTRACT

The MAP/M/1/K type ticket queue is analysed.
Arriving users obtain a ticket for service but may balk
the system with the probability depending on the queue
of tickets ahead of him/her. Irrespective of joining or
balking, the ticket issued for the user remains in the
ticket buffer. Also, the waiting user can abandon the
system during the waiting time, but his or her ticket
remains in the buffer. Users are served in the order of
their tickets. The server is unaware of the presence of
users in the system and spends some time for his/her
service even if the respective user already left the sys-
tem. Ticket queuing systems describe the wide range
of real world system. The stationary distribution of the
considered system is computed. Numerical illustrations
are presented.

I. Introduction

Queuing theory is widely used for the performance
evaluation and optimization of various industrial, logis-
tics, and telecommunications systems and communica-
tion networks. Classical queuing models assume that
each incoming user is accepted into the system if there
is at least one free space in the queue and is served in
a certain order. There is also a sort of queuing sys-
tems, so-called ”visible queues”, in which an arriving
user observes the length of a queue and makes a deci-
sion to join the queue or to balk even if the buffer is
not full, see, for example, (Sun et al. 2018).

Also, in classical queuing models, it is assumed that
accepted users always wait for their turn and will cer-
tainly be served. However, frequently in real systems,
users may be impatient and leave the system after some
waiting time if their service has not begun. The rel-
evant literature is quite extensive, see, for example,

(Dudin et et al. 2022; Garnett et al. 2002; Wang et al.
2010).

Another kind of practically important and interest-
ing queues is so-called ticket queues. In such queues,
each arriving user receives a numbered ticket (slip, to-
ken, etc.) and observes the number of the user being
served, which is broadcast on a display panel. When
the service of the user with the displayed number is
finished, the system calls for the next number, i.e., the
service is implemented according to the First In - First
Out discipline. In a ticket queue, no physical queue is
formed; a customer can only see his own ticket number
and the number being served. Based on information
about the difference between his/her number and the
displayed number, the user decides whether to balk or
wait for service. In contrast to the usual queues with
balking users, the balking user in ticket queues leaves
the system physically, but his number remains in the
queue. However, the server does not have any infor-
mation about which users are physically present and
which have left the system. We call below the former
users as active users and the latter ones as inactive
users. During the active user’s stay in the buffer, he or
she may show impatience and depart from the system.
Thus, he or she becomes an inactive user but his or her
ticket remains in the queue.

Ticket queues are considered in the literature due to
their high practical importance and many advantages
over technologies requiring the physical presence of the
user, see, e.g., (Xuet et al. 2007). The ticket queue
technology has seen widespread use in financial institu-
tions, government agencies, health care organizations,
and retail stores, for more details and concrete exam-
ples, see, e.g., (Hanukov et al. 2021; Xuet et al. 2007).
In those papers, good reviews of relevant research are
presented and M/M/1 ticket queue is analysed.

In real practical systems, users’ departure due to
balking and/or impatience leads to an increase in their
loss probability, which, in turn, negatively affects the
revenue received by the system. In addition, the system
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may suffer reputation losses due to the dissatisfaction
of users who left the system without receiving the ser-
vice. Therefore, system managers should try to min-
imize the negative consequences associated with such
user behavior. In ticket queues, such a behavior cre-
ates more problems for system management than in
the classical queues and needs more careful analysis.

It is supposed in (Xuet et al. 2007) that an arriving
user balks if the difference between his or her number
and the number of the serviced user exceeds the pre-
defined threshold. No reneging of the users (departure
from the queue during waiting time) is supposed. The
authors propose a Markov chain (MC) model of a ticket
queue operation and develop effective tools for an ap-
proximate evaluation of the system’s performance.

A similar model is described and analyzed in (Jen-
nings and Pender 2016). But authors additionally al-
low users to resign from the queue. The paper con-
tains the heavy traffic-inspired approximations for per-
formance measures of the system and their comparison
with the analogous measures of the corresponding clas-
sical queueing system.

In (Xiao et al. 2022), analysis provided in (Xuet
et al. 2007) is extended for the use for managerial
goals. It is assumed that there are two levels of server
operation, distinguished by the service rate and aban-
donment probability, depending on the current level.

Advantages of analysis provided in our paper over
the results from (Jennings and Pender 2016; Xiao et al.
2022; Xuet et al. 2007) are threefold.

• We do not assume that the service time of inactive
users (no-show users) is negligible compared to the ser-
vice time of active users. From our personal experi-
ence, namely the waste of time required to the service
provider to realize that the called user will not show
up is the main disadvantage of the ticket queue. This
time includes the time until the waiting user reaches
the server, while some users in real systems do not rush.
Also, in many real-world systems, the call to a user is
repeated if the user does not approach the server dur-
ing the fixed time. All this makes the service to an
inactive user far from negligible. The proper account
of service time of inactive users is important to the use
in managerial goals because this time causes irritation
of users and loss of the throughput of the server.
• We assume that an arbitrary user balks with the
probability arbitrarily dependent on the difference be-
tween the user’s own number and the displayed number.
Frequently considered in the literature, the threshold
strategy is the particular case of our randomized strat-
egy in which the balking probabilities are equal to zero
when the difference does not exceed the threshold and
equal to one otherwise.
• All papers mentioned assume the stationary Poisson
arrival process. We consider the essentially more gen-
eral model of Markov arrival process (MAP ), see, e.g.,
(Chakravarthy 2022a, 2022b; Dudin et al. (2020); Lu-
cantoni (1991)). This allows us to avoid the serious
under-estimating of the required server throughput and
buffer capacity in comparison with the stationary Pois-

son arrival process which ignores essential fluctuation
of arrival rate in real world system.

Note that importance of account of non-negligible
service time of inactive users is indicated in (Hanukov
et al. 2021) where this time is referred to as calling
time.

II. Mathematical model

We consider a single-server queuing system with a
finite buffer of capacity K, the structure of which is
displayed in Figure 1.
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Fig. 1. Structure of the system

The MAP flow of users enters the system. This ar-
rival flow is defined by the underlying process νt, t ≥ 0,
which is an irreducible MC with continuous-time and
the finite state space {1, 2, . . . ,W}, and the matrices
D0, D1. The average user arrival intensity is denoted as
λ and calculated as λ = θD1e where θ = (θ1, . . . , θW ) is
the invariant probability vector of the chain νt. It is de-
fined as the only solution to the system θ(D0 +D1) =
0, θe = 1. Here and throughout this paper, e is a
column vector of appropriate size consisting of units,
and 0 is a row vector of appropriate size composed of
zeros. More detailed descriptions of the MAP and
formulas for finding its characteristics, e.g., the coef-
ficients of correlation and variation, can be found in
(Chakravarthy 2022a, 2022b; Dudin et al. 2020; Lu-
cantoni 1991).
If an arriving user finds the server idle, he or she

occupies it and starts processing. Otherwise, he/she
occupies a free place in a buffer and waits until he or
she will be picked up for service according to the First
In – First Out discipline. If during the arrival epoch
the buffer is full, the user leaves the system perma-
nently. After joining the system, the user can observe
the queue. We assume that the user decides that the
queue length is too long for him/her and becomes an
inactive customer with the probability qk, 0 ≤ qk ≤ 1,
where k is the number of users (active and inactive) in
the system during the arrival epoch. With the compli-
mentary probability 1 − qk, the arriving user will stay
in the buffer as an active one.
An inactive user occupies a place in the buffer but

does not require the full service, and the server will
not gain profit from serving such a user. Note that the
server cannot recognize whether or not the user is in-
active before the start of his/her service. An arbitrary
user’s service time follows an exponential distribution
with the parameter µ1, µ1 > 0, if this user is active,
and with the parameter µ2, µ2 ≥ µ1, if this user is
inactive.
The active users staying in the buffer can be impa-

tient. This means that, independently of other users
and their own ticket number, each active user can be-



come inactive after an exponentially distributed time
with the parameter β, β > 0.

III. The process of system states and its
stationary distribution

Let kt, kt = 0,K + 1, be the number of users in
the system (in the buffer and on the server); nt, nt =

0,max{0, kt − 1}, be the number of active users in the
buffer; mt be the state of the server: mt = 0, if the
server provides service to an active user, mt = 1, if
the server provides service to an inactive user; νt, νt =
1,W , be the state of the underlying process of the
MAP at time t, t ≥ 0.
Unfortunately, the four-dimensional random process

ξt = {kt, nt, mt, νt}, t ≥ 0, is non-Markovian because
the rate of service of the next user depends on whether
this user is active or not. Therefore, to have the Marko-
vian random process, it is necessary to supplement the
introduced components with components defining the
status of each user in the queue. The simplest way is
to explicitly indicate the status of each user. In such a
way, the component nt can be eliminated. For kt ≥ 1,
each of kt−1 users in the queue is marked by the num-
ber 1 if he/she is active and number 0 otherwise. The
cardinality of this set of components, for each kt ≥ 1,
is 2kt−1. Correspondingly, the size of the system equi-
librium equations will be W2K+1. This number can be
large and solving this system becomes infeasible.

Another possible way to obtain the Markovian pro-
cess via supplementing the process ξt is to supplement
it by the indication of places in the buffer occupied by
the active users and the number of inactive users in
the queue staying in turn after any active user. Such
a way of supplementing is discussed in (Hanukov et al.
2021; Xuet et al. 2007). However, as it is mentioned
in (Xuet et al. 2007), the authors of (Xuet et al. 2007)
did not succeed to manage computation for K > 9.
Recall, that the queueing model considered in (Xuet et
al. 2007) is significantly more simple for analysis than
our model due to assumption about zero service time
of inactive users and the parameter W in their study is
equal to 1 while we admit an arbitrary finite W.
Therefore, we restrict ourselves to providing an ap-

proximate analysis. We make the following assump-
tion. If the number of users in the buffer at an user
service completion moment is equal to k, k = 1,K,
and the number of active users is j, j = 1, k, then the
next service will be provided to the active user with the
probability j

k . This assumption can be omitted if the
balking probability qk does not depend on the number
of users in the system k and when the users are picked
up from the queue in random order, but not in the order
of arrival.

Under this assumption, the process ξt =
{kt, nt, mt, νt}, t ≥ 0, becomes the MC.
Let the states of the MC ξt be enumerated in lexi-

cographic order.
Theorem 1. The generator Q of the MC ξt, t ≥ 0,

has the following block-tridiagonal structure:

Q =



Q0,0 Q0,1 O . . . O O O
Q1,0 Q1,1 Q1,2 . . . O O O
O Q2,1 Q2,2 . . . O O O
...

...
...

. . .
...

...
...

O O O . . . QK,K−1 QK,K QK,K+1

O O O . . . O QK+1,K QK+1,K+1


where

Q0,0 = D0, Q1,1 = I2 ⊗D0 − diag{µ1, µ2} ⊗ IW ,

Qk,k = I2k ⊗D0 − Ik ⊗ diag{µ1, µ2} ⊗ IW−

−βCk ⊗ I2W + βCkE
−
k ⊗ I2W , k = 2,K,

QK+1,K+1 = I2(K+1)⊗(D0+D1)−IK+1⊗diag{µ1, µ2}⊗IW−

−βCK+1 ⊗ I2W − βCK+1E
−
K+1 ⊗ I2W ,

Q0,1 =
(
1 0

)
⊗D1,

Qk,k+1 = (1−qk)E
+
k ⊗I2⊗D1+qkẼk⊗I2⊗D1, k = 1,K,

Q1,0 =

(
µ1

µ2

)
⊗ IW ,

Qk,k−1 = HkẼ
−
k ⊗

(
µ1 0
µ2 0

)
⊗ IW+

+(I −Hk)Êk ⊗
(

0 µ1

0 µ2

)
⊗ IW , k = 2,K + 1.

Here
⊗ is the symbol of the Kronecker product of matri-

ces;
Ck = diag{0, 1, 2, . . . , k − 2, k − 1}, k = 2,K + 1;
diag{. . .} means the diagonal matrix with the diag-

onal entries listed in the brackets;
E−

k , k = 2,K + 1, is a square matrix of size k with

all zero entries except the ones (E−
k )l,l−1, l = 1, k − 1,

which are equal to 1;
E+

k , k = 1,K, is a k × (k + 1) matrix with all zero

entries except the ones (E+
k )l,l+1, l = 0, k − 1, which

are equal to 1;
Ẽk, k = 1,K, is a k × (k + 1) matrix with all zero

entries except the ones (Ẽk)l,l, l = 0, k − 1, which are
equal to 1;
Ẽ−

k , k = 2,K + 1, is a k×(k−1) matrix with all zero

entries except the ones (Ẽ−
k )l,l−1, l = 1, k − 1, which

are equal to 1;
Êk, k = 2,K + 1, is a k × (k − 1) matrix with all

zero entries except the ones (Êk)l,l, l = 0, k − 1, which
are equal to 1;
Hk = diag{0, 1

k−1 ,
2

k−1 , . . . ,
k−2
k−1 , 1}, k = 2,K + 1.

The theorem is proved by analyzing the intensities of
all possible transitions of the MC ξt over an infinites-
imal time interval. The block-tridiagonal form of the
Q generator is easily explained by the fact that users
come into the system and leave it one at a time.
If the system is empty (the buffer is empty and the

server is idle), the behavior of the MC ξt is determined
only by the process νt. The rates of its transitions to
other states are given by non-diagonal entries of the ma-
trix D0, and the exit intensities from the corresponding
states are determined up to sign by the diagonal ele-
ments of this matrix, hence Q0,0 = D0.



Then let us explain the form of the block Qk,k, k =
1,K + 1. This is a diagonal block of the generator, so
all its diagonal entries are negative, and the moduli of
these entries determine the exit intensities of the MC
ξt from the corresponding states. The exit of the MC
ξt from the current state is possible in the following
cases:

1) The underlying process νt of users arriving leaves
its current state. The corresponding transition intensi-
ties are determined up to a sign by the diagonal entries
of the matrices I2k ⊗D0 if k = 1,K + 1.

2) The user completes the service. The transition
intensities are determined by the diagonal entries of
the matrices Ik ⊗ diag{µ1, µ2} ⊗ IW , k = 1,K + 1.

3) An active user from the buffer leaves the system
due to impatience. The corresponding intensities are
given by the matrices βCk ⊗ I2W , k = 2,K + 1.

The non-diagonal entries of the matrix Qk,k, k =
1,K + 1, determine the transition intensities of theMC
ξt without changing the value k of the first component.
These transitions are defined by the following entries:

1) non-diagonal entries of the matrices I2k⊗D0, k =
1,K + 1, when the underlying process νt makes a tran-
sition without generating a user.

2) entries of the matrices βCkE
−
k ⊗ I2W , k =

2,K + 1, when an active user becomes inactive due to
impatience.

3) entries of the matrix I2(K+1)⊗D1, if a user arrives
to the system when the buffer is full (when k = K +1)
and leaves the system without receiving a ticket.

As a result, we obtain the blocks Qk,k, k = 0,K + 1,
presented above.

The form of blocks Qk,k+1, k = 0,K, is explained
as follows. These blocks contain the transition rates
of the MC ξt that lead to increase in the number of
users in the system (in the buffer and in the server)
by one. If k = 0 (the server is idle and there are no
users in the buffer), these transitions happen when a
user arrives at the system and starts servicing. The
transition intensities of this event are determined by
the entries of the matrix

(
1 0

)
⊗ D1. If k = 1,K,

an increase in the number of users in the system from
the value k to the value k + 1 can occur when a new
user enters the system. The transition intensities of
this event are defined by the entries of the matrices
(1−qk)E

+
k ⊗I2⊗D1, if the arriving user joins the buffer

as an active customer and the entries of the matrices
qkẼk⊗I2⊗D1 if the arriving user becomes an inactive
one.

Now consider the blocks Qk,k−1, k = 1,K + 1. These
blocks contains of the transition intensities of the MC
ξt from the state with the value k of the first compo-
nent to the state with the value k − 1 of this compo-
nent. Such transitions are possible only in the case of
a completed service. If the buffer is empty during the
service completion epoch, the intensities of this event

are given by the entries of the matrices

(
µ1

µ2

)
⊗IW .

Otherwise, the intensities of this event are given by

the entries of the matrices HkẼ
−
k ⊗

(
µ1 0
µ2 0

)
⊗ IW

if an active user starts service and the entries of the

matrices (I − Hk)Êk ⊗
(

0 µ1

0 µ2

)
⊗ IW if an inac-

tive user is chosen for service. Taking into account
all these explanations, we obtain the formulas for the
blocks Qk,k−1, k = 1,K + 1, presented above.
It is obvious that the stationary probabilities of

the system states π(k, n,m, ν), k = 0,K + 1, n =

0,max{0, k − 1}, m = 0, 1, ν = 1,W , exist for all pos-
sible values of the system parameters. Let us form the
row vectors πk of these probabilities enumerated in the
lexicographic order of the components n, m, ν. It is well
known that these vectors satisfy the following system
of linear algebraic equations:

(π0,π1, . . . ,πK+1)Q = 0, (π0,π1, . . . ,πK+1)e = 1

where Q is the infinitesimal generator of the MC
ξt, t ≥ 0. To solve this system, we recommend us-
ing the efficient and numerically stable algorithm de-
veloped in (Dudin et al. 2021).

IV. Performance measures

The mean number of users in the system is calculated

by the formula L =
K+1∑
k=1

kπke.

The mean number of users in the buffer is computed
by

Nbuf =

K+1∑
k=2

(k − 1)πke.

The mean number of active users in the buffer is
computed by

Nbuf−act =

K+1∑
k=2

k−1∑
n=1

nπ(k, n)e.

The mean number of inactive users in the buffer is
computed by

Nbuf−inact =

K+1∑
k=2

k−2∑
n=0

(k − 1− n)π(k, n)e =

Nbuf −Nbuf−act.

The average output rate of active users is defined as:

λout−act = µ1

K+1∑
k=1

k−1∑
n=0

π(k, n, 0)e.

The average output rate of inactive users is defined
as:

λout−inact = µ2

K+1∑
k=1

k−1∑
n=0

π(k, n, 1)e.

The probability that an arbitrary moment the system
is idle is computed as Pidle = π0e.
The probability that an arrival user starts service

upon arrival is computed as Pimm = 1
λπ0D1e.



The loss probability of an arbitrary active user from
the buffer due to impatience is calculated by the for-
mula:

Pimp−loss =
β

λ

K+1∑
k=2

k−1∑
n=1

nπ(k, n)e =
βNbuf−act

λ
.

The loss probability of an arbitrary user upon arrival
due to abandonment is calculated by the formula:

Pbalk =
1

λ

K∑
k=1

qkπk(I2k ⊗D1)e.

The loss probability of an arbitrary user upon arrival
due to a full buffer is defined as:

Pent−busy−loss =
1

λ
πK+1(I2(K+1) ⊗D1)e.

The loss probability of an arbitrary customer is com-
puted as

Ploss = 1− λout−act

λ
=

Pimp−loss + Pent−abad−loss + Pent−busy−loss.

The last expression can be used for an accuracy check
during the debugging of the code and the computation
of stationary probabilities and performance measures.

V. Numerical examples

We consider five arrival flows with the same aver-
age arrival intensity of users λ = 3 which is defined as
follows.

The first arrival process coded as M is stationary
Poisson. It is defined by the matrices D0 = (−3), D1 =
(3) of size W = 1. It has coefficients of correlation ccor
and variation of successive inter-arrival times cvar equal
to 0 and 1, correspondingly.

The second flow is defined by the matrices

D0 =

 −1.20113 0.480452 0.720678
3.90367 −208.396 204.492
3.90367 3.90367 −810.763

 ,

D1 =

 0 0 0
0 0 0

300.883 502.072 0

 .

It is the IPP flow with ccor = 0 and cvar = 4.
The rest arrival flows are MAP s with the same vari-

ation cvar = 4 but different correlation coefficients. De-
note by MAPx the MAP flow with the coefficient of
correlation equal to x.

MAP0.1 is defined by the matrices:

D0 =

 −7.96609 0.359372 0.359372
0.38932 −1.49739 0.239582
0.419268 0.239582 −0.958327

 ,

D1 =

 6.88797 0.239582 0.119791
0.269529 0.539059 0.0598954
0.149739 0.0299477 0.119791

 .

MAP0.2 is defined by the matrices:

D0 =

 −9.55774 0.362952 0.362952
0.30246 −1.36107 0.272214
0.362952 0.332706 −1.17959

 ,

D1 =

 8.58986 0.181476 0.060492
0.060492 0.635166 0.090738
0.060492 0.120984 0.30246

 .

MAP0.3 is defined by the matrices:

D0 =

 −15.4094 0.241244 0.211088
0.0874508 −1.34493 0.120622
0.180933 0.241244 −1.05544

 ,

D1 =

 14.6254 0.271399 0.0603109
0.0211088 1.00418 0.111575

0. 0.150777 0.482487

 .

We assume that the intensity of impatience β = 0.03,
the service rate of active users µ1 = 5, the service rate of
inactive users µ2 = 6. The probabilities qk are defined
as qk = k/101, k = 0,K. We vary the buffer capacity
in the interval [0; 50] with step 1.
Figures 2-6 illustrate the dependence of the aver-

age output intensity λout−act of active users, the av-
erage output intensity λout−inact of inactive users, the
loss probabilities of an arbitrary user upon arrival due
to full buffer Pent−busy−loss and due to abandonment
Pbalk, the loss probability of an arbitrary active user
from the buffer due to impatience Pimp−loss on the
buffer size K for different arrival processes described
above.
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Fig. 2. Dependence of λout−act on the buffer size K for different
arrival processes

One may conclude from these figures that correlation
has a profound effect on the performance measures of
the system. The operation of the system became sig-
nificantly worse with the growth of correlation. The
assumption that the arrival flow is described by the
stationary Poisson arrival process imposed in the cited
papers leads to an overly optimistic prediction of the
system’s performance.
Let us assume that the quality of the system’s op-

eration is defined by the following economic criterion
defining the revenue of the system:

E = E(K) = aλout−act − bλout−inact−
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c1λPbalk − c2λPent−busy−loss − c3λPimp−loss − dK

where a is a profit obtained by the system for servic-
ing one active user, b is a system cost for servicing an
inactive user, c1, c2 and c3 are charges paid by the sys-
tem for a customer loss due to balking, buffer overflow
and impatience respectively, and d is the charge paid
by the system for maintenance on one unit of buffer
space. This economic criterion E(K) defines the av-
erage profit obtained by the system per unit of time.
Our aim is to optimally choose the buffer capacity K
to maximize the average system profit.
We fix the following values of cost coefficients: a =

5, b = 2, c1 = 1/3, c2 = 1/2, c3 = 2/3, d = 0.02.
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Fig. 6. Dependence of the probability Pimp−loss on the buffer
size K for different arrival processes

The dependence of the cost criterion E(K) on the
buffer size K for different arrival flows is shown in Fig-
ure 7.
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different arrival processes

The optimal values of E∗ the cost criterion and K∗

of the buffer capacity for different arrival flows having
the same average arrival rate are presented in Table 1.

TABLE I: The optimal values of the cost criterion for different

arrival processes

M IPP MAP0.1 MAP0.2 MAP0.3

E∗ 14.2931 12.9421 13.0415 12.3241 10.1269
K∗ 8 16 15 17 22

Based on Figure 7 and Table 1, it is possible to con-
clude the following:
• Choice of the proper capacity of the buffer allows the
system to increase its revenue.
• The optimal capacity of the buffer essentially de-
pends on the correlation in the arrival process (under
the same mean arrival rate);
• The optimal capacity of the buffer increases as the
correlation in the arrival process increases.
• The maximum revenue of the system decreases as the
correlation increases.

VI. Conclusion

The approximate Markov model of MAP/M/1/K
type ticket queue is analysed. Arriving users can balk



the system after receiving a ticket with the probability
dependent on the current length of the queue of the
tickets. An admitted user can balk immediately if he
or she decides that the queue size is inappropriate and
renege after some random amount of time. Tickets of
users who left the system remain in the queue, and the
server needs to waste time for their processing along
with the service of users who did not balk or renege.

Presented numerical results illustrate the importance
of account correlation in the arrival process and the
possibility of an optimal choice of the size of buffer
space. Results are planned to be extended to the multi-
server systems, including systems with varying number
of servers, systems with more general, than exponen-
tial, phase type distribution of service times, and sys-
tems with service rate dependent on the queue length.
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