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ABSTRACT 

Distribution quality management performance in supply 

chains is a key issue for overall performance and 

competitiveness. This paper proposes a methodology for 

analyzing distribution quality management performance 

using simulation and design of experiments (DOE). This 

methodology has four steps: (i) Selection of variables, 

(ii) Determination of factors and levels, (iii) Performing

the experimental simulation and (iv) Analysis of the

results. The joint application of simulation and DOE

allowed analyzing the effects of the independent

variables on the distribution quality management

performance. It was also possible to sort the

independent variables according to the degree of impact

on the response variable.

INTRODUCTION 

A supply chain is a network of companies involved in 

different processes and activities to add value to 

products and services from suppliers to the end 

customer (Slack and Lewis 2017). It involves all the 

parties involved in customer satisfaction and includes 

the functions involved in receiving and satisfying 

customer requirements within each organization 

(Chopra 2018). Thus, Supply Chain Management is 

planning, designing, and controlling the flow of 

materials, information, and money throughout the 

supply chain to offer the end customer superior value 

effectively and efficiently (Sanders 2018). 

Quality Management has expanded its principles to the 

entire supply chain to coordinate and integrate processes 

involving business activities and business structure 

(Robinson and Malhotra 2005; Akyuz 2011; Yoo and 

Cheong 2018). Supply Chain Quality Management 

implies a set of integrated systems that improve the 

performance of the links between the upstream supply 

chain with suppliers and the downstream supply chain 

with distributors and customers (Foster 2008; Batson 

and Mcgough 2007). 

Supply chain quality management is the coordination 

and integration of the processes of all members of the 

supply chain in order to improve performance and 

achieve customer satisfaction, emphasizing cooperative 

learning (Parast 2013). The efficient operation of a 

supply chain to align separate entities and improve 

overall performance in quality management requires 

collaborative, coordinated, and integrated activities and 

making decisions based on performance measurement 

(Moharana et al. 2012; Bautista-Santos et al. 2015). 

According to Das and Lashkari (2015), distribution 

plans are important for optimal business performance 

and for the interrelationship between distribution 

modes, perfect deliveries and product quality. They also 

state that improved responsiveness depends on the 

conditions of flexibility in facility location and size, 

customer density, and delivery requirements. Similarly, 

in distribution models for perishable products, it is 

necessary to consider the relationship between product 

quality deterioration and delivery distances (Chen et al. 

2021). 

Park (2005) establishes the need to jointly analyze and 

plan production and distribution systems as a successful 

strategy to maximize total net profit. Pettersson and 

Segerstedt (2013) state that quantification and 

disaggregation of logistics costs at the manufacturing 

and distribution stages is essential for making 

appropriate decisions to improve overall supply chain 

performance. Chiadamrong and Wajcharapornjinda 

(2012) consider quality costs as one of the main 

categories of supply chain costs and highlight the need 

to quantify them at all stages. 

On the other hand, the design of experiments has been 

applied as a validation tool for computational simulation 

models, making it possible to determine the important 

factors with the least number of simulation runs (Duman 

2007; Kleijnen 2005; Law 2017; Montevechi et al. 

2010). The use of the design of experiments has 

advantages over the sensitivity analysis carried out by 

varying one parameter and leaving the rest fixed since 

the latter is statistically inefficient and does not take into 

account the interactions between factors (Law 2015). 

The validation of research based on simulation by using 

the design of experiments allows increasing the 

transparency of the simulation models behavior and the 

effectiveness of the results report (Lorscheid et al. 2012; 

Tarashioon et al. 2014). 

Moreover, the fractional factorial design has been used 

for validating simulation and optimization studies 

applied in hybrid renewable energy systems with a large 
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number of factors and uncertainty in resources and 

demand, and complex interaction between factors 

(Chang and Lin 2015). Also, it has been used to validate 

simulation models of factors that influence response 

capacity in fire safety studies (Suard et al. 2013). Hence, 

it is possible to use a fractional factorial design jointly 

with a simulation tool to analyze the variables behavior 

of the system studied in this work. 

Therefore, this paper proposes a methodology for 

analyzing distribution quality management performance 

using simulation and design of experiments. The 

experimental simulation approach is used to analyze the 

initial selection of variables and the interactions that 

influence distribution quality management performance. 

The joint application of simulation and design of 

experiments to study supply chain management is a 

current research trend. 

FRACTIONAL FACTORIAL DESIGN 

DOE consists of planning and performing a set of trials 

to obtain data and analyzing them statistically to answer 

questions about the studied system. In each experiment, 

changes are made to the input variables to identify the 

reasons for the changes observed in the output variable 

(Montgomery 2020). Factors are the variables studied in 

the experiment regarding how they influence or affect 

the response variable(s). The different values assigned 

to each factor in a DOE are called levels. 

There are some DOEs, and selecting the right one 

depends on the experiment objective, the number of 

factors, the number of levels per factor, the studied 

effects, the experiment cost, and the desired precision. 

In general terms, it is possible to use experiments with a 

single factor, block designs, factorial designs, and 

robust designs (Jones and Montgomery 2020). The 

fractional factorial design is selected to perform the 

experiments in this work, so its basics are briefly 

explained below. 

A fractional factorial design is a part or fraction of a full 

factorial design, in which the number of experimental 

runs is reduced without reducing the quality of relevant 

information about significant effects. The theory of 

fractional factorial designs is based on the hierarchy of 

effects: the main effects are more important, followed 

by double interactions, then triples, quadruples, etc. 

(Montgomery 2020). Fractional factorial designs are 

recommended in exploratory experiments where 

information on main effects and low-order interactions 

of multiple factors is required. 

In full factorial designs with less than five factors (k < 

5), the potentially important effects outnumber the a 

priori ignorable effects, so relevant information may be 

lost if they are fractionated. On the other hand, when k ≥ 

5, the number of ignorable effects exceeds the number 

of potentially important ones, indicating that these 

designs can be fractionated many times without losing 

valuable information. The larger the value of k, the 

greater the allowed degree of fractionation in the design 

(Antony 2023). 

The resolution is a characteristic of a fractional factorial 

design and is related to the role exerted by the 

potentially relevant effects. The most common 

resolutions are III, IV, and V. In the resolution III 

design, the main effects are not aliases of each other, but 

there are main effects that are aliases of double 

interactions. In the resolution IV design, the main 

effects are not aliases of each other or with double 

interactions, but some double interactions are aliases of 

each other. In the resolution V design, the main effects 

and the double interactions are aliased with triple or 

higher-order interactions (Gutiérrez and De La Vara 

2012). Thus, the higher the resolution, the better to 

study the relevant effects of the design.  

Factorial designs are versatile as they can be adapted to 

different experimental conditions, such as simple 

replicates, factorial replicates, and experiments in 

exploratory phases. Using fractional factorial design is 

based on the fact that a small fraction of the factor 

effects are significant for a process, while the rest of the 

effects are inert for practical purposes, associating much 

of the variation with only a few factors.   

SIMULATION USING FUZZY COGNITIVE 

MAPS 

Fuzzy Cognitive Maps (FCMs) are soft computing tools 

for modeling complex systems using human knowledge 

or knowledge extracted from databases in the form of 

rules (León et al. 2010). An FCM consists of variables 

representing the system under study and weighted arcs 

representing the causal relationships between the 

concepts. Each arc has a value in the interval [-1, +1] 

according to the strength of the relationship between the 

variables. The weights of each pair of variables result 

from an adjacency or correlation matrix (Dickerson and 

Kosko 1994). 

FCMs can be used to represent a specific behavior of 

the system, and the evaluation at run-time is fast to meet 

the requirements of real-time simulations (Buche et al. 

2010). Using FCMs as a simulation tool makes it 

possible to model uncertain conditions of systems 

through a macroscopic level-based method, based on 

historical data and predicting the future states (Amini et 

al. 2021). As simulation step, the value of a variable is 

calculated by computing the influence of the 

interconnected variables by following a specific rule 

(Kang et al. 2016). 

FCMs are adequate for modeling complex systems with 

limited and small data or when data are inaccessible 

because the collection is costly (Yousefi et al. 2020). 

FCMs can be used for simulating multiple scenarios 

since they reduce the dissimilarity between the current 

state vector and the expected response (Felix et al. 



2019). So, after the simulation runs, it is possible to 

infer some behavioral properties of the variables and 

reach some conclusions about the system under study 

(Christoforou and Andreou 2017). 

The dynamic behavior of the simulation with FCMs 

depends on the values of the weights of the variables 

interrelationships and the inference mechanism of the 

state transition. Thus, three different outcomes can be 

expected: (a) The state vector settles to a stationary 

value after a finite number of steps, reaching a so-called 

fixed attractor, (b) The state vector periodically settles 

to the same value after a finite number of steps, or, (c) 

The state vector changes chaotically (Papageorgiou 

2014). Due to the characteristics and requirements of 

the DOE, the desired stopping criterion of the 

simulation in this work is to reach a fixed attractor.     

METHODOLOGY 

This work analyzes the interrelationships of the 

variables that determine quality performance in 

distribution through simulation and the design of 

experiments. The methodology consists of four steps: (i) 

Selection of variables, (ii) Determination of factors and 

levels, (iii) Performing the experimental simulation, and 

(iv) Analysis of the results (Figure 1).

Figure 1: Methodology Steps 

The definition of the experiment objective is the basis 

for selecting the variables of the simulation model. 

Thus, the selection of variables is made considering the 

characteristics of the experimental unit and the literature 

on supply chain quality performance. The experimental 

unit is a food products company with a production plant 

and distribution center in a city in Colombia. From 

there, distribution to the rest of the country is carried 

out. Overall distribution quality performance indicator 

data for the last twelve months were analyzed. 

Factors are the independent variables tested in the 

experiment. The study of a factor requires testing it on 

at least two levels. There would be selected the factors 

previously known as influencing the response variable. 

In this paper, the factors are the variable 

interrelationships, and the levels are the limits of the 

correlation coefficient confidence intervals. 

Performing the experimental simulation starts with the 

selection of the appropriate DOE by considering the 

factors, levels, and the resolution. The simulation runs 

are performed using the software FCM Expert. In each 

of them, the initial values correspond to the levels of the 

factors established in the experimental plan. 

The analysis of results is based on the data obtained 

from the values of the fixed attractors of the response 

variables in each simulation run. The experimental 

results are sample observations of the studied system, so 

statistical methods are used to verify if the effects are 

significant. Statistical analysis consists of estimation of 

effects and the ANOVA test.  

RESULTS 

Selection of variables 

The selection of the independent and dependent 

variables -which represent distribution quality 

performance- was made considering the performance 

measurement system of the case study. Table 1 shows 

the variables and their coding and definition. These 

three independent variables are currently in use in the 

company under study. More additional variables will be 

considered in the following research phases. 

Table 1: Variables of the Distribution Quality 

Performance 

Type Variable Definition 

R
es

p
o

n
se

 

C3: 

Distribution 

Performance 

Quality performance of the 

distribution stage, as a result of 

the influence and interaction of 

the independent variables 

(Kleijnen and Smits 2003). 

In
d

ep
en

d
en

t 

C3,1: 

Customer 

perfect 

deliveries (%) 

Percentage of orders that the 

company delivers on time, 

complete, in good condition and 

without documentation 

problems (Jacobs and Chase 

2018; Slack et al. 2016). 

C3,2: 

Customer 

rejections and 

returns (%) 

Percentage of items rejected at 

the delivery or after receipt by 

the customer, due to non-

compliance with one or more 

quality requirements (Flynn and 

Zhao 2015; Yao and Zhang 

2009). 

C3,3: 

Distribution 

unit cost 

($/item) 

The unit cost of distributing the 

orders from the production 

facilities to the final consumer 

(Kleijnen and Smits 2003).  

Determination of Factors and Levels 

Correlation analysis of historical data was performed as 

starting point to analyze the interrelationships of the 

studied variables by simulation. The obtained 

correlation coefficient intervals at 95% confidence are 

in Table 2. The exclusion threshold interval for the 

correlation coefficient is (-0.4, 0.4). Therefore, the blank 

cells correspond to low correlation coefficient intervals 



(in the exclusion interval), which are not considered in 

this work.  

Table 2: Correlation Coefficients Intervals between 

Variables 

C3 C3,1 C3,2 C3,3 

C3 

C3,1 [0.8, 1.0] [-1.0, -0.8] [-0.8, -0.6] 

C3,2 [-1.0, -0.8] [0.7, 0.9] 

C3,3 [-0.9, -0.7] [-0.7, -0.5] [0.4, 0.6] 

Thus, the experimental factors are the interactions of the 

variables with significant correlation coefficient 

intervals shown in Table 2. Table 3 shows the 

experimental factors and their levels. The Low and High 

levels correspond to the lower and upper limits of the 

correlation coefficient confidence intervals, 

respectively.  

Table 3: Factors and levels of the Experiment 

Factor Low High 

A (C3,1→C3) 0.8 1.0 

B (C3,2→C3) -1.0 -0.8 

C (C3,3→C3) -0.9 -0.7 

D (C3,1→C3,2) -1.0 -0.8 

E (C3,1→C3,3) -0.8 -0.6 

F (C3,2→C3,3) 0.7 0.9 

G (C3,3→C3,1) -0.7 -0.5 

H (C3,3→C3,2) 0.4 0.6 

Response variable C3 (Distribution performance) 

Performing the Experimental Simulation 

The selection of the appropriate fractional factorial 

design was made considering the number of 

experimental factors (eight) and getting a high 

resolution (IV or V). The latter avoided confounding 

main effects with double or triple interactions, with an 

acceptable number of runs. Then, a 28-2 design with 

resolution V and 64 simulation runs was selected. 

The system studied using the selected fractional 

factorial design has variables and degrees of causality 

between them (factors and levels) and it is necessary to 

evaluate the impact of their interactions on the response 

variable. Accordingly, FCMs were selected as the 

simulation technique to obtain the value of the response 

variable from the factor levels in each simulation run 

(Papageorgiou 2014). Figure 2 shows an example of a 

simulation run result. 

The 64 experimental simulation runs were performed 

using the Kosko activation rule with self-memory 

(Christoforou and Andreou 2017):   

  (1) 

where the value Ai (response variable) at time k+1 is 

calculated as the sum of the previous value of Ai at the 

previous time k with the product of the value Aj of node 

Cj at time k and the value of the weight of the cause-

effect relationship wji (levels of the experiment). The 

stopping criterion selected for each simulation run was 

to obtain a fixed attractor, as shown in Figure 2. 

Figure 2: An Example of a Simulation Run Result 

Analysis of the Results 

The analysis of the experimental simulation results was 

carried out using a sequential phased approach, 

excluding and transferring to error the non-significant 

effects until the final model with significant sources of 

variation was obtained (Rigdon et al. 2022). The results 

of the final regression model obtained make it possible 

to identify that the variable with the highest impact on 

distribution quality management performance is the 

distribution unit cost (correlation coefficient = 0.58), 

followed by customer rejections and returns (0.54) and 

customer perfect deliveries (0.42).  

The ANOVA test of the simulation results (Table 4) 

shows that all main effects are statistically significant, 

confirming the initial selection of the variables that 

influence the distribution quality management 

performance. This is also noted in the behavior of the 

standardized Pareto diagram of effects (Figure 3) and 

the main effects plot (Figure 4). 

Table 4: The ANOVA Test Results 

Source Sum of squares DF 
Mean 

squares 
F-

Value 
P-

Value 
A:A 0.019082 1 0.019082 5659.91 0.0000 

B:B 0.026402 1 0.026402 7831.16 0.0000 

C:C 0.033001 1 0.033001 9788.51 0.0000 

D:D 0.002494 1 0.002494 739.67 0.0000 

E:E 0.002236 1 0.002236 663.25 0.0000 

F:F 0.003090 1 0.003090 916.52 0.0000 

G:G 0.007693 1 0.007693 2281.96 0.0000 

H:H 0.004288 1 0.004288 1272.05 0.0000 

Error 0.00018543 55 0.00000337 

Total 0.0984728 63 

All the interactions between the variables studied were 

significant for distribution quality management 

performance. Therefore, it is important to consider 

minimal variations in the value of the interactions in the 

analysis of their effects on distribution performance. 



 

 

The risks of physical distribution make the interactions 

between distribution unit cost, perfect customer 

deliveries, and customer rejections and returns very 

uncertain and have a significant impact on performance 

(Jaqueta et al. 2020). 
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Figure 3: Standardized Pareto Diagram of Effects for 

Distribution Performance 
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Figure 4: Main Effects Plot for Distribution 

Performance 

 

CONCLUSIONS 

The study of distribution quality management 

performance in supply chains must go beyond the 

descriptive approach characteristic of most traditional 

models. The joint application of simulation and the 

design of experiments makes it possible to analyze 

complex or little-studied systems from the perspective 

of analyzing the impacts of the relationships between 

variables.  

 

Because the purpose of this work is to analyze the 

impact of the relationships between factors and that 

there is a relatively high number of them (k ≥ 5), the 

foundations of experimental design recommend using a 

fractional factorial design. Selecting this type of DOE 

allowed for obtaining sufficient information to research 

the effects of the independent variables on the response 

variable with a reasonable number of runs. 

 

The methodology developed in this research is 

adaptable to the particular conditions of performance 

measurement in other supply chains or specific sectors. 

For its application in a given business sector, it is 

essential to have historical information that makes it 

possible to extract knowledge of the variables 

interrelationship strength by using multivariate 

descriptive statistical analysis. 

 

The simulation approach of this research focuses on 

analyzing the variables interrelationship strength as 

evidence of the quality management performance in the 

supply chain. Therefore, it is not possible to obtain a 

mathematical model for predicting the value of the 

response variable. However, it allows establishing 

possible degrees of impact of the changes made in one 

variable with respect to other ones. 

 

This article is a product of ongoing research whose 

main objective is the application of analytical modeling 

techniques in Supply Chain Quality Management. 

Future work is developing predictive models of quality 

performance in the supply chain from data collected 

online on the behavior of state variables of the different 

supply chain stages. 
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