Exploring the Benefits of OpenCL Shared
Virtual Memory: A Comparative Analysis
on Integrated and External GPUs

Filip Kruzel and Mateusz Nytko
Department of Computer Science
Cracow University of Technology
Warszawska 24, 31-155 Krakow, Poland
Email: filip.kruzel@pk.edu.pl

KEYWORDS

GPGPU, Intel Xe-LP, Intel ARC, Shared Virtual
Memory, OpenCL, Nvidia RTX.

ABSTRACT

In this article, we test the feature of using a Shared
Virtual Memory in OpenCL on Intel Iris Xe and Nvidia
GeForce RTX 3060 GPUs. The first of these architec-
tures is integrated into the CPU, so by definition, it uses
the same RAM as the CPU. The second one uses a PCI-
Express connection to transfer data between computer
memory and separate GPU memory. OpenCL Shared
Virtual Memory (SVM) feature allows zero-copy mech-
anisms to use the same address space for the CPU and
Accelerator. In this work, the authors test the differ-
ences between classical implementations of the FEM
numerical integration algorithm on GPU with explicit
data sending between CPU and Accelerator and the
SVM implementation with the transfer hidden from the
user. Research should answer whether the advantages
of using a weaker integrated card with faster data trans-
fer will overcome the external graphics card’s connec-
tion bottleneck.

INTRODUCTION

Two main trends exist in the evolution of computer
architectures used in scientific computing. The first
concerns the growing number of processors’ computing
cores and wide register units. The second, however,
coincides with using specialised accelerators to accel-
erate the most demanding parts of the code. In the
development of modern computing accelerators, most
architectures are based on graphics processors, in which
there is a SIMD method of computing using thousands
of threads running simultaneously. Due to this trend,
using graphics cards to accelerate code fragments has
become a standard. In home applications, we can ob-
serve another trend related to the miniaturisation of
specialised equipment used in modern smartphones,
tablets, or laptops. Increasing the processing power
of this type of equipment is associated with the need
to minimise the energy consumed while maintaining
high performance. At the junction of these two ap-
plication types, we can observe interesting designs that

Communications of the ECMS, Volume 37, Issue 1,

Proceedings, ©ECMS Enrico Vicario, Romeo Bandinelli,

Virginia Fani, Michele Mastroianni (Editors) 2023

ISBN: 978-3-937436-80-7/978-3-937436-79-1 (CD) ISSN 2522-2414

combine many specialised cores with a smaller number
of general-purpose cores. Such an integrated architec-
ture can save energy using standard cores and maintain
high computing power during more complex tasks. In
addition to energy efficiency, another advantage of us-
ing such architectures is that they are equipped with
new technologies for transferring data between differ-
ent types of cores and memory. When programming
accelerators equipped with their memory, there is, un-
fortunately, a problem with the preparation and trans-
fer of data between the so-called host (most often un-
derstood as computer RAM) and accelerator memory.
Although high-speed interfaces connect modern GPUs,
this usually represents a bottleneck in overall program
performance. Hence, there is an opportunity to use
heterogeneous architectures for scientific computing to
use high-speed inter-core and memory buses efficiently.
With the introduction of various systems with inte-
grated graphics and general-purpose cores on a sin-
gle chip, the need to support RAM access is emerging.
The first exciting system with complete unification of
special-purpose and standard cores was the IBM Cell
processor used in the PlayStation 3. The architecture
allows fast data transfers from memory to SPUs and
efficient data exchange between standard IBM Power
cores. These capabilities, combined with energy effi-
ciency, have resulted in the widespread use of this archi-
tecture in scientific computing. In our previous work,
we explored the possibility of using this architecture for
specific parts of calculations using the Finite Element
Method (Kruzel and Banas, 2013).

The problem of data exchange between different
types of computing cores plays a vital role in all het-
erogeneous architectures. As a result, several differ-
ent strategies have emerged at the software and hard-
ware layers. In June 2012, some significant players in
heterogeneous computing, including AMD and ARM,
formed the Heterogeneous System Architecture Foun-
dation to develop technology standards for supporting
computing on different types of cores (HSA Foundation,
2013). The collaboration resulted in the developing
of the Heterogeneous Unified Memory Model (hUMA),
first introduced in the AMD Accelerated Unit processor
(Kyriazis, 2012). Almost simultaneously with the de-
velopment of the hUMA model, Khronos Group intro-

duced the OpenCL 2.0 specification with Shared Vir-
tual Memory capabilities, which unifies CPU and GPU
memory on the developer side, and in HSA systems can
leverage the hardware capabilities of hUMA (Howes,
2014). With OpenCL 2.0, this can be used as shared
memory for CPU and GPU cores (Graczyk, 2013). In
our previous work, we tested the possibilities of use of
the hUMA and SVM on the AMD Accelerated Pro-
cessing Unit A10-7850 codenamed "Kaveri" with the
encouraging result of achieving a 30% speed-up com-
pared to the model with the sending data between two
separate memory regions (Kruzel and Banag, 2015).

With the introduction of OpenCL 2.0 capabilities to
Nvidia GPUs in 2017, there is also the possibility of
testing SVM features using externally connected GPUs
(Hindriksen, 2017).

The graphics card market is dominated by two lead-
ing players, Nvidia and AMD. Their graphics cards
and GPU-based accelerators are characterised by a very
similar structure based on arrays of stream processors
grouped into larger units called multiprocessors. The
growing market for external accelerators forced Intel,
which is supreme in producing general-purpose proces-
sors, to search for a solution in this area. Based on the
broad vector registers that characterise the Cell/BE,
Intel began to build the Larabee graphics card archi-
tecture. Due to this architecture, the company tried
to overcome the main barrier to the wider use of accel-
erator programming techniques, which was a complex
model and programming method (Seiler et al., 2008).
At the same time, Intel was working on the Single-Chip
Computer and Teraflops Research Chip projects, which
feature a huge multicore structure. Based on these
projects, the Intel MIC (Many Integrated Core) archi-
tecture was developed, which was used in Intel Xeon
Phi coprocessors, codenamed Knights Corner (KNC).
The MIC architecture has been touted as one that com-
bines the power of graphics accelerators with the pro-
gramming ease of processors. The next generation of
the MIC architecture, Knights Landing, was offered as
a separate PCI-Express card and a standalone proces-
sor. Intel Xeon Phi was a significant part of the most
powerful computer systems in the world, and in June
2015, the use of this type of accelerator reached 34% of
all systems (Strohmaier et al., 2020). Although the In-
tel Xeon Phi architecture has officially been discontin-
ued (Intel, 2018), its evolution has led to the creation
of Intel Xe graphics cards, which were announced in
November 2019 (Intel, 2019). The new architecture was
mentioned to avoid repeating Xeon Phi errors, provide
a unified programming model (oneAPI), and provide
exceptional performance (Cutress, 2019). Because In-
tel Xe-LP GPUs are integrated into the Intel Core pro-
cessors, and the latter solution is often sold as a part of
gaming laptops equipped with the second, more power-
ful GPU, the authors decided to test the possibility of
using OpenCL Shared Virtual Memory mechanism on
this type of machine. For tests, we used an ASUS TUF
DASH F15 laptop computer equipped with an Intel i7
11370 CPU with the integrated Intel Iris GPU and an

additional GPU, Nvidia GeForce RTX 3060 Laptop.
For the algorithm tested, we used our auto-tuned FEM
numerical integration, which we have already tested
on modern graphics processors (Bana$ et al., 2020),
CPUs (Kruzel, 2019), hybrid systems (Kruzel and Ba-
nas, 2015), as well as Intel Xeon Phi (Banas and Kruzel,
2014), and Intel Xe-LP (Kruzel and Nytko, 2022). Ex-
tending previous research to include a new architecture
may indicate whether integrated GPUs can compete
with the external GPU when the bottleneck connected
with the data transfer is eliminated (or hidden from the
user).

NUMERICAL INTEGRATION

Finite element method procedures turned out to be
one of the most challenging engineering tasks related
to the use of accelerators. One of the essential parts of
the finite element method is numerical integration, used
to prepare elementary stiffness matrices for the solving
system. Most research on using accelerator computing
power has focused on using GPUs to speed up the so-
lution of the final system of linear equations (Geveler
et al., 2013; Buatois et al., 2009). Often, this procedure
is optimised first, as it is the most time-consuming part
of FEM. However, once the process has been optimised,
the earlier steps of the computation, such as numerical
integration or assembling the entire matrix, also signif-
icantly affect the execution time (Mamza et al., 2012).

Numerical integration in the finite element method
is correlated with the applied geometry and the ap-
proximation type of the given elementary shape func-
tions. Therefore, an appropriate geometric transforma-
tion must be applied to the mesh geometry used for the
calculations. By denoting the physical coordinates in
the mesh as x, the transformation from the reference el-
ement with coordinates £ is marked as (£). Typically,
it is obtained as a linear, multilinear, square, cubic, or
other transformation of the underlying geometric func-
tions and the set of degrees of freedom. The use of

the Jacobian matrix J = g—w is required for the trans-

formation of the coordinates from the reference element
to the real element. This significantly distinguishes this
algorithm from other matrix integration and multipli-
cation algorithms. The numerical quadrature converts
the analytical integral to the sum of the integration
points in the reference domain. Of the various possible
quadratures, we will focus on the most popular Gaus-
sian quadrature (Lyness, 1969). The coordinates in the
reference element are marked as £Q, and the weights
as w? where @ = 1,...,Ng (Ng - number of Gauss
points depending on the type of element and the de-
gree of approximation applied). In the final numerical
integration formula used in our calculations, we use the
determinant of the Jacobian matrix detJ = det(g—?)

and get:

;09" 0¢°
/ ch i~
(1)

w®
€Q

To standardise and describe the algorithm from the
point of view of mathematical calculations, some modi-
fications were made to the above formula, which allows
us to create a general numerical integration algorithm
for finite elements of the same type and degree of ap-
proximation (Alg. 1).

The algorithm’s structure allows us to modify the
loops’ order and use different memory types to store
different arrays. This property allowed us to develop a
system for automatically tuning the algorithm for dif-
ferent types of accelerators. For the memory transfer
test in the numerical integration algorithm, we used the
artificial convection-diffusion-reaction problem with a
matrix of problem coefficients C' different from 0. To
complicate the calculations, we have used prismatic el-
ements that can reproduce even the most complex ge-
ometry of the computational area € (Kallinderis, 1995).

det J

i1 09" 0¢°
Z chjaazl Ox;

USED GPUs

To perform the tests, the authors used the mobile
version of the Nvidia GeForce RTX 3060 and the Iris
Xe-LP integrated with the Intel i7 11370H processor.

Intel Iris Xe-LP

Compared to the previous generation of Intel proces-
sors, in Iris Xe-LP architecture, there has been a sig-
nificant change in the processing power of the graphics
unit - now it can even reach 2.2 teraflops (Intel, 2020).
The number of execution units (EU) - basic computing
units has also increased, which in the previous genera-
tion amounted to 64 units, and currently 96 (Fig. 1).

SHARED FUNCTIONS COPY ENGINE

1 g 3 :
3 3 i 85|88
PIXEL BACKEND | L BACKEND

| PIXEL BACKEND.

L3 CACHE

Figures. 1: Intel Iris XE-LP Architecture (Intel, 2020)

The heterogeneous graphics architecture of Intel pro-
cessors allows physical DRAM to be shared. Com-

1

2

3

4
5

10

11

12
13
14
15
16

17
18
19
20

21
22
23
24
25
26

Algorithm 1: Generalised numerical integration
algorithm for elements of the same type and degree
of approximation

- determine the algorithm parameters — Ngr, Ng,
Ns;

- load tables £9 i w? with numerical integration
data;

- load the values of all shape functions and their
derivatives relative to local coordinates at all
integration points in the reference element;

for e =1 to Ngr, do

- load problem coefficients common for all
integration points (Array C°);

- load the necessary data about the element
geometry (Array G°);

- initialize element stiffness matrix A° and
element right-hand side vector b°;

for ig =1 to Ng do

- calculate the data needed for Jacobian
transformations (gcg gg, vol);

- calculate the derivatives of the shape
function relative to global coordinates
using the Jacobian matrix;

- calculate the coefficients Clig| i Dlig] at
the integration point;

for ig =1 to Ng do

for jo =1 to Ng do
for ip =0 to Np do
for jp =0 to Np do
A’[is][jsl+ = Cligllip]lin]x
xlilis)lin]x dligllis)lin) %
xvol
end
end
if is :js and ’iD :jD then
b°[is]+ = Dlig]lin)x
X¢[iQ][i5] [ZD] x vol
end
end
end
end
- write the entire matrix A° and vector b®;
end

pared to PCI-E-based chipsets, sharing physical mem-
ory eliminates the communication bottleneck between
the computing unit and memory. The great advan-
tage of this solution is the lack of a copy buffer be-
tween units, which results in increased computing effi-
ciency while reducing the amount of memory and en-
ergy needed to operate. The memory management sub-
system in Intel 11th-generation processors has been op-
timised to minimise latency, and the memory controller
scheduling algorithms have been improved, positively
affecting the overall memory bandwidth. Theoretically,
the memory bandwidth of the embedded Intel Xe GPU
can reach 38,4 GB/s. In addition, compared to the pre-

vious generation of processors, the L3 cache memory
has been increased - up to 3072 kB. The Iris XE-LP
graphics unit is divided into six blocks containing 16
Execution Units (EU). Shared Local Memory (SLM)
with a size of 64kB is available for computing units.
In the previous generation of processors, this memory
was connected to the L3 cache outside the block, which
caused delays due to the need to use a data port (Fig.
2). In the generation used, SLM is available directly
for Execution Units, significantly reducing delays (In-
tel, 2020).

Gen9 Gen11

=
]
o

£ 3

w

=

F

Dataport Dataport
SLM

Figures. 2: Intel Iris XE-LP Shared Local Memory
(Intel, 2020)

Nvidia GeForce RTX 3060

The GeForce RTX 3060 Laptop graphics card is
based on the Ampere architecture. The graphics chip
is divided into 3 Graphics Processing Clusters (GPC),
which contain 5 Texture Processing Units (TPC).
Each TPC has 2 clusters with two blocks contain-
ing Streaming Multiprocessors (SM) - basic computing
units. Each streaming multiprocessor includes 128 kB
of L1/shared memory, allocated according to computa-
tional needs (Nvidia, 2021).

The Nvidia GeForce RTX 3060 graphics card con-
tains 3072 kB L2 cache memory and 6GB of RAM. The
data from the computers’ RAM is transferred through
the PCI-Express x4 interface, which is theoretically ca-
pable of 7,88 GB/s bandwidth.

DEVELOPMENT TOOLS
ModFEM

The primary tool used in the research was the modu-
lar software platform for engineering calculations using
the finite element method called ModFEM (Michalik
et al., 2013). Its modular structure enables the mod-
ification of individual parts of the finite element cal-
culation, such as approximation, mesh handling, and
solving solvers. The program consists of several levels
with separate modules. The main user-managed mod-
ule is the Problems module, which defines the weak
FEM formulation and the other modules the user uses.
An extension of the approximation module with ap-
propriate accelerator support was developed during the
investigation. The problem modules of the researched

tasks were also modified to prepare the data structures
properly and test the numerical integration algorithm
in the OpenCL environment.

OpenCL Shared Virtual Memory

OpenCL programming is an exceptionally versatile
method among the many programming methods used
in accelerators. It supports many modern architec-
tures, including GPUs, coprocessors (e.g. Xeon Phi),
or CellBE. OpenCL has been gradually developed since
2009, and its 2.0 version was introduced in 2014, bring-
ing out several essential improvements. OpenCL mem-
ory model defines several types of memory regions avail-
able for programmers. Due to the model’s origin in
GPU programming, the memory model is based on the
physical organisation of typical GPU memory. Due to
the portability of OpenCL, each of the memory objects
can be mapped differently, depending on the available
hardware resources. The variables defined inside the
kernel belong to private memory and can be stored
in scalar or vector registers. The other memory re-
gions are assigned through specific qualifiers. OpenCL
defines three types of memory — global, constant and
shared (local). Global memory stores variables visible
to all threads executing the kernel; constant memory is
also available for all threads but is only accessible for
reading. The fastest local memory stores the variables
threads share in a single workgroup. Due to the porta-
bility of the created code, OpenCL contains procedures
that allow adapting to different platforms and devices
even without physical equivalents of specific memory
types (Rul et al., 2010). Typical behaviour in OpenCL
computing was copying the data necessary for calcu-
lations from the host memory to the device’s global
or constant memory for further use. It required proper
preparation of the memory buffers on the host side from
the programmer side and many hardware or system so-
lutions to copy the data from the host to the acceler-
ator. Even for the integrated solutions with CPU and
Accelerator on one die (e.g. CellBE, APU), the memory
was partitioned into the host and device parts, which
prevents zero-copy operations and takes precious time.
The procedure was complicated and time-consuming
despite software and hardware solutions to pass data
from the host to the device and back. Shared Vir-
tual Memory (SVM) presented in OpenCL 2.0 solves
both problems with programming the OpenCL mem-
ory model. From the programmer side, it reduces the
necessary preparations for the data and the whole map-
ping and passing pointer operations that take a lot of
code lines. From a performance point of view, the HSA-
compatible hardware uses the full potential of hUMA,
which means there is no copying between the CPU and
the accelerator. If the device is not HSA compatible,
the framework will handle data transmission in the best
possible way. Shared Virtual memory defines a buffer
that can be used directly by both a host and an acceler-
ator without unnecessary mappings and copying of the
data. OpenCL allows for Fine-Grain or Coarse-Grain
memory buffers, depending on the hardware type. De-

tailed information on SVM OpenCL features can be
found in (Intel, 2014; Howes, 2014). Although the Intel
Xe-LP card used in this paper is an integrated unit,
it does not support Fine-Grain technology and oper-
ates as a non-atomic duplicate buffer (Coarse-Grain).
Data sharing occurs at the granularity of regions of
OCL memory objects. Updates between the host and
device occur explicitly through the map and unmap
calls. This behaviour can hide data transfer latency in
other operations, such as calculations or data prepara-
tion (Das et al., 2015). The Nvidia card works in the
same mode, but with the introduction of the Nvidia
Pascal architecture, some Unified Memory Buffer mech-
anisms were added to omit the overhead connected with
the PCI-Express bottleneck. Some mechanisms include
a wide 49-bit virtual addressing and on-demand page
migration. It addresses the entire system memory and
allows GPU threads to migrate pages from anywhere
in the system to GPU memory on demand with max-
imum efficiency (Sakharnykh, 2016). Also, the driver
uses heuristics to maintain data localisation and pre-
vent excessive page faults (Harris, 2017). This feature
is very convenient for our Auto-Tuning mechanism be-
cause of its multiple repetitions to fit the investigated
architecture.

Auto-Tuning

To obtain the best possible results for different types
of architecture, the authors developed a system for au-
tomatically tuning the numerical integration code. For
this purpose, several parameters that affect the algo-
rithm’s performance have been characterised. The pa-
rameter list in the auto-tuning system is mainly about
how memory is handled in the OpenCL model, which is
based on the graphics card architecture. Arrays passed
as arguments to the numerical integration routine (e.g.
geometrical data and problem coefficients) can be used
directly in calculations or previously downloaded to lo-
cal tables stored in registers or shared memory. Us-
ing shared memory as a temporary data read buffer,
data are read continuously - a single thread reads an-
other memory cell and writes to the shared buffer. The
read data can be stored in a buffer and used later for
calculations, or written to registers, freeing the buffer
for further use. The total number of combinations of
these parameters for any architecture is 40. The de-
veloped system consists of scripts and code fragments
that are responsible for compiling the kernel with the
appropriate options. An additional parameter defines
the minimum number of threads that can be run on the
accelerator and is set to 64 for both GPUs. Detailed
information on the auto-tuning mechanism used can be
found in (Bana$ et al., 2020).

RESULTS

The best results obtained with Auto-Tuning are pre-
sented in table 1. As seen in both cases for OpenCL 1.2,
the data transfer times are much higher than the com-
putation time. The numerical integration algorithm for
the convection-diffusion problem with a linear approx-

imation is a memory-bound task (Banas et al., 2018).
The difference is much more visible in the case of the
faster GeForce RTX 3060 card because of its higher
computational power. After modification of the code
for the use of Shared Memory Buffer, the speed up is
extraordinary. In the case of the Iris Xe GPU, all data
transfer is hidden under the computation time but can
be separated by using internal time measurements in
the kernel. As can be seen, data transfer is still more ex-
tensive than the calculations, but both values are much
smaller than in OpenCL 1.2. To fully understand the
behaviour of our code, we have used the Intel Vtune
profiler (Fig. 3).

GPU fo
Slice

X6 L3
SubSlice

179.8 MB/s 455.5 MB/s — SLM
-

x16

Execution Unit Sampler
R
Active: 19.6% Busy: 0.0%
Stalled: 20.1% & < Bottleneck: 0.0%
Idle: 0.3%
Threads Issued: 6,144 e L2
Occupancy: 98.1%

Total: 172.8 GB/s

Figures. 3: Execution profile for OpenCL 1.2 version
of the code

As can be seen, the memory-bound code has a lot of
stalls connected to the necessity of synchronisation with
the memory. Even with the 98% occupancy, the GPU
is active only for 20% of the total computation time. In
OpenCL 1.2 with the explicit memory sending regions,
the observed memory bandwidth reaches the maximum
at 18 GB/s out of 38 GB/s of the theoretical maximum,
which is not bad but indicates that the amount of data
sent was too small to use all the bandwidth fully. With
the use of SVM, the total occupancy value increases
slightly. Still, the average speed of obtaining the data
from memory decreases because of spreading it over
a more extended period, not only the write and read
procedures (Fig. 4).

GPU GTI
Slice

X5 L3

Subslice

178.7 MBis 452.6 MB/s — SLM
-

x16

Execution Unit Sampler
—
Active: 19.5% Busy: 0.0%
Stalled: 80.4% & = Boteneck: 0.0%
Idie: 0.1%
Threads lssued: 6,144 . L2
Occupancy: 99.3%

Total: 167.7 GB/s ——————>

Figures. 4: Execution profile for Shared Virtual
Memory version of the code

The behaviour of the GeForce RTX 3060 is much
more predictable - the calculation time is the same in
both versions of OpenCL, but the data transfer time
is highly faster. This behaviour is quite different from
the Intel Xe case. According to (Ravi, 2016), for the
Coarse-grain SVM buffer, transfer times should be hid-
den in the map/unmap regions of the code. This can be

observed in the Nvidia case, where almost no overhead
time is connected to data transfer. But in the Intel
case, the latency is associated with the synchronisation
points in code(clFinish). This may indicate that Intels’
implementation of SVM uses some of the mechanisms
which characterised Fine-grain SVM access.

Table 1: Results (in ns)

Intel Iris Xe Nvidia GeForce RTX 3060
OpenCL 1.2 | OpenCL 2.0 | OpenCL 1.2 | OpenCL 2.0
Sending Data | 26.52 8.61 57.77 0.19
Execution 10.99 7.66 1.20 1.22

The differences in execution time are visible in fig-
ure 5. In the OpenCL 1.2 case, the total time spent
for the whole calculation process with the data transfer
is higher for the external GPU, despite its faster pro-
cessing speed. This calls into question the validity of
using external graphics cards for scientific and techni-
cal computing with relatively large data sizes in relation
to the computation. SVM technology significantly re-
duces the data transfer time and gains an impressive
speedup compared to the embedded Intel solution.

70
mSending Data m Execution

60

50

40

30

20

) .

0 —

OpenCL1.2 OpenCL 2.0 OpenCL1.2 OpenCL 2.0

Time [ns]

Intel Iris Xe Nvidia GeForce RTX 3060

Figures. 5: Comparison of execution results with
separate data transfer analysis

mSending Data ® Execution

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

OpenCL 1.2 OpenCL 2.0 OpenCL 1.2 OpenCL 2.0

Intel Iris Xe Nvidia GeForce RTX 3060

Figures. 6: Percentage of data transfer and
calculations

Figure 6 shows the ratio of calculation to computa-
tion in each case. As can be observed in the Intel Iris
Xe, the time spent on data transfer is reduced by 20%
with OpenCL 2.0. In the Nvidia case, we see that with-
out SVM, the time spent on data transfer is 98% of all
time. With OpenCL 2.0 techniques to hide the transfer

in code map/unmap regions, we can reduce this time
to 13% of the total time.

CONCLUSIONS

In summary, we can conclude that SVM can signifi-
cantly speed up the total computation time by reducing
the data exchange between the host and the accelerator.
In addition, the simplified method of transferring data
to the accelerator is convenient for developers and en-
courages more extensive use of GPU computing power
in the newly developed software. All these observa-
tions align with the result we obtained in (Kruzel and
Banasg, 2015), where we tested fully HSA-compatible
hardware using the AMD Accelerated Processing Unit
as an example. Although the architectures tested in
this paper can only use the most straightforward im-
plementation of shared virtual memory, we can see a
significant speedup. The data obtained from the Intel
Profiler shows that we have to test this feature on more
powerful GPUs with more demanding tasks to see if it
would significantly reduce the data transfer time in var-
ious applications. Despite that, the extensive memory
addressing mode in modern external GPUs can over-
come the bottleneck connected with the additional link
via the PCI _Express port and using the separate mem-
ory for the card. In our future work, we will test this
feature on more powerful cards to fully utilize the avail-
able bandwidth and see if the difference between the
external GPUs and the internal solutions is more visi-
ble.

REFERENCES

Banas, K. and Kruzel, F. (2014). OpenCL performance
portability for Xeon Phi coprocessor and NVIDIA
GPUs: A case study of finite element numerical in-
tegration. In Furo-Par 2014: Parallel Processing
Workshops, volume 8806 of Lecture Notes in Com-
puter Science, pages 158-169. Springer International
Publishing.

Banas, K., Kruzel, F., and Bielaniski, J. (2020). Opti-
mal kernel design for finite element numerical inte-
gration on GPUs. Computing in Science and Engi-
neering, Volume 22(Issue 6):61-74.

Banag, K., Kruzel, F., Bielaniski, J., and Chlon,
K. (2018). A comparison of performance tuning
process for different generations of NVIDIA GPUs
and an example scientific computing algorithm. In
Wyrzykowski, R., Dongarra, J., Deelman, E., and
Karczewski, K., editors, Parallel Processing and Ap-
plied Mathematics, pages 232-242, Cham. Springer
International Publishing.

Buatois, L., Caumon, G., and Levy, B. (2009). Concur-
rent number cruncher: A GPU implementation of a
general sparse linear solver. Int. J. Parallel Emerg.
Distrib. Syst., 24(3):205-223.

Cutress, I. (2019). Intel’s xe for hpc: Ponte vecchio with
chiplets, emib, and foveros on 7nm, coming 2021.
AnandTech.

Das, D., Raghavendra, P., Gupta, M., and Tye, T.

(2015). Implementing cross-device atomics in het-
€rogeneous pProcessors.

Geveler, M., Ribbrock, D., Géddeke, D., Zajac, P.,
and Turek, S. (2013). Towards a complete FEM-
based simulation toolkit on GPUs: Unstructured
grid finite element geometric multigrid solvers with
strong smoothers based on sparse approximate in-
verses. Computers & Fluids, 80:327 — 332. Selected
contributions of the 23rd International Conference on
Parallel Fluid Dynamics ParCFD2011.

Graczyk, R. (2013). Intel Iris Pro 5200 test; Crysis 3
na integrze? Accessed on 10th Febuary 2015.

Harris, M. (2017). Unified memory for cuda beginners.
Nvidia Developer.

Hindriksen, V. (2017). NVidia (finally) opens door to
OpenCL 2.0. Linkedin Pulse.

Howes, L.; Munshi, A. (2014). The OpenCL Specifica-
tion. Khronos OpenCL Working Group. version 2.0,
revision 26.

HSA Foundation
http: //www.hsafoundation.com.

Intel (2014). OpenCL 2.0 Shared Virtual Memory
Overview.

Intel (2019). Intel Unveils New GPU Architecture with
High-Performance Computing and AI Acceleration,
and oneAPI Software Stack with Unified and Scal-
able Abstraction for Heterogeneous Architectures.
Intel Newsroom.

Intel (2020). Intel Architecture Day 2020 Presentation
Slides. Whitepaper.

Intel (July 23, 2018).
116378 - 00.

Kallinderis, Y. (1995). Adaptive hybrid prismatic-
tetrahedral grids. International Journal for Numer-
ical Methods in Fluids, 20:1023-1037.

Kruzel, F. (2019). Vectorized implementation of the
FEM numerical integration algorithm on a modern
CPU. In European Conference for Modelling and
Simulation, volume Volume 33, pages 414-420.

Kruzel, F. and Banag, K. (2013). Vectorized OpenCL
implementation of numerical integration for higher
order finite elements. Computers and Mathematics
with Applications, 66(10):2030-2044.

Kruzel, F. and Banas, K. (2015). AMD APU systems as
a platform for scientific computing. Computer Meth-
ods in Materials Science, 15(2):362-369.

Kruzel, F. and Nytko, M. (2022). Intel iris xe-lp as
a platform for scientific computing. In Ganzha, M.,
editor, Communication Papers of the 17th Confer-
ence on Computer Science and Intelligence Systems,
September 4-7, 2022, Sofia, Bulgaria, number Vol.
32 in Annals of Computer Science and Information
Systems, pages 121-128, Warszawa. PTI.

Kyriazis, G. (2012.). Heterogeneous system architec-
ture: A technical review. Technical report, AMD.
revision 1.0.

Lyness, J. N. (1969). Quadrature methods based on
complex function values. Mathematics of Computa-
tion, 23(107):601-619.

Mamza, J., Makyla, P., Dziekonski, A., Lamecki, A.,

(2013).

Product change notification

and Mrozowski, M. (2012). Multi-core and multi-
processor implementation of numerical integration in
Finite Element Method. In Microwave Radar and
Wireless Communications (MIKON), 2012 19th In-
ternational Conference on, volume 2, pages 457 —
461.

Michalik, K., Bana$, K., Ptaszewski, P., and Cybulka,
P. (2013). ModFEM — a computational framework
for parallel adaptive finite element simulations. Com-
puter Methods in Materials Science, 13(1):3-8.

Nvidia (2021). NVIDIA Ampere GA102 GPU Archi-
tecture: Ampere GA10x. Whitepaper.

Ravi, K. R. (2016). Performance considerations for
opencl on nvidia gpus. In GPU Technology Confer-
ence, APril 4-7, 2016, Silicon Valley. Nvidia.

Rul, S., Vandierendonck, H., D’'Haene, J., and De Boss-
chere, K. (2010). An experimental study on perfor-
mance portability of OpenCL kernels. In Application
Accelerators in High Performance Computing, 2010
Symposium, Papers, page 3, Knoxville, TN, USA.

Sakharnykh, N. (2016). Beyond gpu memory limits
with unified memory on pascal. Nvidia Developer.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T.,
Abrash, M., and Dubey, P. (2008). Larrabee: a
many-core x86 architecture for visual computing.
SIGGRAPH 08: ACM SIGGRAPH 2008 papers,
pages 1-15.

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.,
and Meuer, H. (2020). Top500 The List.

FILIP KRUZEL is an assistant pro-

standard hardware architectures.

https://ii.pk.edu.pl/ " fkruzel.

y address is: mateusz.nytko@pk.edu.pl.

fessor at the Institute of Computer Sci-
ence of the Cracow University of Technol-
ogy. His scientific interests focus on the
high-performance computing and the use
of various types of accelerators and non-

His

e-mail address is: filip.kruzel@pk.edu.pl
and his Webpage can be found at

! MATEUSZ NYTKO is an research
and teaching assistant at the Institute of
Computer Science of the Cracow Univer-
y sity of Technology. His research interests
= focus on multiprocessor architectures and
2 high performance computing. His e-mail

