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ABSTRACT 

Grid-interactive efficient buildings (GEBs) can provide 

flexibility services to the grid through demand response. 

This paper presents a novel predictive modeling 

methodology to estimate the availability of electrical 

demand flexibility in GEBs under demand response 

schemes. In this context, a physics-based energy 

simulation model of a reference building, considering the 

cooling demand in the summer season as the flexible 

load, is utilized. Accordingly, the impact of increasing 

the indoor setpoint temperature by 1.5 °C (for a 

maximum of 3 hours per day), which enables the demand 

side flexibility with a reduction of the cooling 

equipment’s electrical load, is simulated. Next, each 

demand response event is gathered, sorted, and then used 

to train the model to predict similar future events over the 

same time horizon in the following days. For this 

purpose, a deep neural network model trained using an 

expanding window training scheme is utilized to predict 

(15 minutes before the event) the load in the next 3 hours 

while undergoing the flexibility scenario. It is 

demonstrated that, with four months of training data, the 

model offers a promising prediction accuracy with a 

Mean Absolute Percentage Error (MAPE) of 3.55%. 

 

INTRODUCTION 

The energy systems in recent years have undergone 

fundamental changes driven by the integration of 

renewable energy sources (RES). By 2020, 22% of the 

European Union’s (EU’s) energy consumption was 

provided from renewables (European Commission 

2022c), but new targets have been proposed to achieve a 

share of 45% by 2030 (European Commission 2022b). 

Traditionally, electricity production has been vertically 

integrated between the large power plants and end-users, 

with only a one-way flow from the transmission to 

distribution lines. Given the vertical structure of the 

electric grid, the Distribution System Operators (DSOs) 

were responsible for dealing with security issues in their 

network development methods. However, this 

configuration has been transforming lately, with 

expansion in decentralized production boosted by 

implementing renewable energy sources in the 

distribution nodes (Knezovic et al. 2015; EvolvDSO 

2014). 

 

The high penetration of RES, such as photovoltaics (PV) 

and wind generation, with their intermittent and 

unpredictable nature (Koltsaklis et al. 2017), has created 

new challenges for real-time balancing in the grid 

between the demand and supply side without interrupting 

the advancement of decarbonization and efficiency 

(Minniti et al. 2018).  

Thus, the paradigm has changed and moved to a 

coordinated action between the DSOs and the 

Transmission System Operator (TSO) to balance and 

secure the system by integrating new flexibility 

measures.  

Therefore, grid-interactive efficient buildings 

(Neukomm et al. 2019) under the demand response (DR) 

scheme are presented. Buildings consume 36% of the 

worldwide primary energy produced (Santamouris and 

Vasilakopoulou 2021), up to 38% of which is attributed 

to the consumption of heating, ventilation, and air 

conditioning (HVAC) types of equipment, regarded as 

Flexible Loads (FLs) (González-Torres et al. 2022). 

Thus, the buildings that offer demand response 

employing the flexibility of the corresponding HVAC 

load, as individual participants or aggregated with other 
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entities, can become active bidders in the forthcoming 

flexible markets. Furthermore, the increasing penetration 

of smart meter readers across Europe (Bularca et al. 

2018), the growing number of smart/IoT devices, and the 

recent notable progress in the area of artificial 

intelligence are permitting the application of demand 

response strategies and forecasting the energy flexibility 

in buildings (Sharda et al. 2021). 

Flexibility in Energy Markets 

Currently, several markets for energy balancing, such as 

day-ahead or ancillary markets, are provided and 

coordinated by market operators strictly related to the 

TSO (EU4Energy 2020), with different bidding periods, 

contracts, and payment options in different countries. 

The integration of demand-side flexibility into the 

historic markets is still a subject under investigation 

owing to two existing core issues: first, the minimum size 

for biding, which expands the necessity for aggregating 

the actors to be part of a reserve market such as the 

manual Frequency Restoration Reserve (mFRR) that is 

the current Swedish flexibility project Sthlmflex 

(Chondrogianniset al. 2022); and secondly, the need for 

scheduling the load dispatching or reduction to be part of 

day-ahead balancing markets or congestion management 

markets controlled by DSOs.  

It is worth mentioning that the mFRR project previously 

mentioned allows the implementation of flexibility 

schemes, giving extra benefits based on the accuracy that 

the flexibility is delivered: a total payment of the 

delivered flexibility when the provider has been able to 

provide at least 80% of the flexibility scheduled, 

reducing then linearly the payment to 40%, and no 

payment if the provided flexibility is below 40%. 

Additionally, countries like the Netherlands with the 

GOPACS project (GOPACS 2019; Chondrogianniset al. 

2022) and Germany with the Enera Flexmarkt 

(Chondrogianniset al. 2022) have developed other 

projects to integrate demand flexibility under existing or 

new energy markets. In both cases, they provide short-

term local flexibility markets for congestion management 

following the intraday market gate closure time, with 

nominal values starting from 1 hour to 15 minutes. More 

regulated and rigid markets, such as the Italian ARERA, 

have started projects to include aggregated and non-

aggregated distributed energy resources (e.g., demand 

side flexibility) as a part ancillary service market with the 

ongoing project UVAM (Unità Virtuali Abilitate Miste, 

i.e., virtually aggregated mixed units) (Gulotta et

al.2020). Schwidtal et al. 2021 emphasized the positive

effect of the involvement of decentralized flexibility in

the Italian market, highlighting the need to reduce the

minimum bidding size of 1[MW] to extend the potential

for new flexibility resources.

Demand Flexibility in Grid-Interactive Efficient 

Buildings (GEBs) and the Need for Penalty-Aware 

Demand Prediction 

Grid-interactive efficient buildings (GEBs) are a 

category of energy-efficient buildings that provide 

demand flexibility by optimizing energy costs, network 

services, and occupants' needs and preferences with the 

integration of smart devices (Neukomm et al. 2019). 

GEBs can manage their demand and generation based on 

external grid signals such as price, CO2 emissions, or grid 

congestion (Jensen et al. 2017; Reynders et al. 2018). To 

allow this, the building should be capable of 

reducing/increasing its consumption following the 

requirements of the signal in a given period, which can 

be in the order of seconds (e.g., ancillary services, power 

control, or frequency containment) or for more extended 

periods that can go from 15 minutes to 1 hour to dispatch 

energy flexibility.   

Junker et al. 2018 named the load under a demand 

response scheme or penalty-aware demand as a flexibility 

function (FF), described in the following equation:  

𝐹𝐹 = ∑ (𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑡 − 𝐸𝑝𝑒𝑛𝑎𝑙𝑡𝑦−𝑎𝑤𝑎𝑟𝑒,𝑡)𝑇
𝑡=0  (1) 

Where, in period T of signal-aware demand, the energy 

that the building can provide is the difference between 

the estimated baseline energy demand of the building and 

the penalty-aware demand. 

Figure 1 illustrates the flexibility function, showing that 

in the period of unaware-signal demand, the function 

follows the typical baseline consumption, but when the 

building is aware of the signal, the load is reduced for an 

established period. Then a rebound effect is created when 

penalty-aware equipment returns to its normal behavior. 

Figure 1: The representation of the Flexibility Curve (FF) 

(Junker et al. 2018) shows the expected load behavior of 

buildings when flexibility is implemented in response to 

grid signals. 

Hence, if we consider one or more grouped buildings as 

active participants in energy-flexible markets, it is 

necessary to establish the amount of flexibility in terms 

of energy and time that this building/s can provide. For 

that, it is essential to develop predictive models for the 



 

 

baseline consumption and penalty-aware demand; the 

latter one is the focus of this work. 

CASE STUDY 

This work presents a novel approach for predicting 

demand response events in GEB, aiming to provide new 

sources of flexibility (upward and downward) for 

congestion management, tertiary services, or balancing 

of the grid. Therefore, a physics-based energy simulation 

is performed considering setpoint management to 

simulate the grid's penalty signal, creating a demand 

response event that involves a reduction in the energy 

consumption of the legacy HVAC equipment in the 

selected building. Accordingly, this general approach 

proposes load-shifting based on setpoint modifications as 

demand –side flexibility strategy, which is applicable 

from grid balancing markets (as an active participant in 

the bidding process) till voluntary energy/price efficient 

schemes for building management. 

 

Next, the local time series associated with the demand 

response scenario is utilized for training a deep neural 

network that can predict 15 minutes prior to the signal 

application (1 timestep of base electrical consumption) 

and the demand response scenarios for up to 3 hours (12 

timesteps of 15 minutes each), allowing the forecasting 

of the flexibility event from 15 minutes before it could 

happen. The training is based on the time-dependent 

values of solely three features: electrical consumption, 

solar radiation, and outdoor temperature of the previous 

20 hours before the DR event happens, which are 

considered as inputs for the neural network. 

 

DEEP LEARNING CONCEPTS 

The current section will present the basic theory used in 

the development of deep learning (DL) models for the 

prediction of the flexibility curve. 

 

Neural Networks 

Artificial neural networks (ANN) consist of fully 

interconnected neural networks under a parallel scheme 

(see Figure 2), where the first layer represents the inputs 

with which our model will be trained; the last layer 

corresponds to the output layer, which can have one or 

more neurons if multiple predictions are needed; and 

finally, it can include a set of intermediate hidden layers 

that increase the complexity of the model (Jain et al. 

1996). Each subsequent layer calculates the previous 

layer’s output, passing them to the next one until the last 

layer is reached. 

 

 
Figure 2: Typical structure of two hidden layers feed 

forward neural network. 

 

In the frame of this work, Multi-Layer Perceptron (MLP) 

(Murtagh 1991), a feedforward neural network 

commonly employed when sequential data needs to be 

processed (e.g., time series), is used. The workflow 

involved in the MLP training consists of calculating the 

associated weights with forward propagation and 

optimizing the model using the Stochastic Gradient 

Descent (SGD) with backward propagation. The loss 

gradient concerning the model’s weights is recalculated 

multiple times to minimize the loss and improve the 

model’s accuracy. 

Expanding Window Multi-Step Forecasting 

The training procedures utilized in this work correspond 

to an Expanding Window (Bergmeir and Benítez 2012) 

with multi-step forecasting. Here the forecast horizon is 

extended with each new data point becoming available, 

training the model gradually over time, emulating the 

online learning process. 

 

Multi-step forecasting is used when long-term 

forecasting is required to forecast long periods (Masum 

et al. 2018; Abedi and Kwon 2023). The application of 

multi-step forecasting is exemplified in Equation 2, 

where at a current time t, a model M trained with the data 

of the earlier n time steps to forecast τ time steps forward. 

 

𝐹𝑡+𝜏 =  𝑀(𝑡, 𝑡 − 1, . . . , 𝑡 − 𝑛 + 1)                   ( 2 ) 

It is important to consider that the case of expanding 

windows corresponds to a modification of time-series 

cross-validation; thus, the process of online training 

using expanding windows is equivalent to the validation 

process. 

METHODOLOGY 

The current section presents the methodology for 

generating the demand response scenario and the 

predictive model development. 



 

 

Physics-based Simulation 

For the development of this work, first, a physics-based 

co-simulation has been carried out using EnergyPlus 

V9.4 (Crawley et al. 2001) and its Python API (U.S. 

Department of Energy 2021) to exemplify the electrical 

consumption of a small office building (see Fig. 3) under 

a penalty-aware demand response scheme. The 

simulation consists of a sub-hourly frequency simulation 

of 4 timesteps per hour (every 15 minutes) and only in 

the summer season, from June to September. The 

frequency of the energy simulation's timesteps has been 

chosen per the information provided by the European 

Commission 2022a., where it is established that a 

minimum sampling frequency of 15 minutes is expected 

to be provided by the smart electric meter. 

 
Figure 3: Sample office building used on physical-based 

simulations in EnergyPlus. 

 

The model is a reference building model developed under 

the ANSI/ASHRAE/IES Standard 90.1 (ASHRAE 2010) 

representing small office buildings and provided by a 

study conducted by Deru et al. 2011. The complete 

specifications of the building are presented in Table 1. 

 

Table 1: Description of the building used in the physics-

based simulations in EnergyPlus. 

 

Type Office 

Location Rome, Italy 

Total Floor Area 510 [m2] 

Window Fraction 24.4% for South and 19.8% others 

Heating type 
Air-source heat pump with gas 

furnace as backup 

Cooling type Air-source heat pump 

Thermostat Setpoint 24°C Cooling/18°C Heating 

Thermostat Setback 30°C Cooling/15°C Heating 

 

The demand response scenario is generated by modifying 

the cooling setpoints’ thermostats in the different thermal 

zones of the building, with an increase of up to 1.5°C in 

a limited period. Therefore, a decrease in the electrical 

consumption related to the cooling system is produced 

with a posteriori rebound effect by the return to the 

typical setpoint temperature values in the zones. In the 

scope of this research, the penalty signal is triggered 

every weekday at 3 p.m.; thus, the prediction horizon of 

three hours will include 12 timesteps between 3 p.m. and 

6 p.m. There is one extra timestep between 2:45 p.m. and 

3 p.m., considering that the goal of the simulation is to 

allow the prediction of the possibility of providing 

flexibility 15 minutes before it occurs. 

Demand Response Prediction 

The second part of the work contains the data gathering 

obtained from the simulation and the development of 

predictive pipelines with Deep Neural Network models 

using Python and TensorFlow (Abadi et al. 2016) for 

predicting the time window in which the demand 

response is generated. 

 

Consequently, the predictive model is trained using the 

sequential data of electrical consumption, outdoor 

temperature, and solar radiation from 18:30 (the day 

before) to 14:30 (the current day), summing 80 triplets 

for a sampling frequency of 15 minutes, equivalent to an 

input of 240 features. The testing scenario considered an 

expanding window training with an online learning 

approach, emulating a real-time model deployment. 

Thus, the model is retrained each time a new flexibility 

event occurs, expecting an improvement in the model’s 

overall accuracy with the sequential addition of data. 

 

The novelty of this approach lies in predicting each 

timestep when the demand side response is generated, 

avoiding the error propagation that multiple predictive 

models can have when calculating the possible available 

energy flexibility. To accomplish this, a neural network 

is modeled with 240 perceptrons in the input layer, two 

hidden dense layers with 128 perceptrons with RELU 

activation, and a final layer with 13 outputs 

corresponding to each time step of the demand response 

event with linear activation. Additionally, the Adam 

optimizer, a variation of stochastic gradient descent, is 

employed to minimize the error in the training of the 

network. 

 

Mean Absolute Percentage Error (MAPE), presented in 

Equation 3, is implemented for calculating the training 

and test performance in each time window, considering 

350 epochs for the optimization. In the equation, y and 𝑦̂ 

refers to the real and predicted values, respectively, while 

n represents the total number of data included in the 

evaluation. 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
 ∑ |𝑦−𝑦̂

𝑦
|                                       ( 3 ) 

RESULTS AND DISCUSSION 

This section presents and discusses the results of the 

proposed deep learning model for forecasting energy 

consumption under penalty-aware events. The results are 

shown using Mean Absolute Percentage Error (MAPE), 

considering the accumulative results of only the first 

hour, the first two hours, and the overall three hours of 



 

 

prediction for the testing set to demonstrate the impact of 

increasing the prediction horizon.    

Table 2 shows the statistical results in terms of average 

MAPE for the training and testing of the DL model. The 

training of the considered model consists of 75 different 

window lengths, starting with only two flexibility events 

for the first training and then finishing the last training 

with 77 events, increasing one by one over time, 

simulating online learning. Figure 4 displays the 

distribution of MAPE obtained for different horizons of 

predictions and the training error. 

 

Table 2: Statistical information for test and training 

error, considering the forecasting horizon from 1 to 3 

hours ahead. all the results are in percentage [%]. 

 

Metrics 
Test [%] 

Training [%] 
1 hour 2 hours 3 hours 

Mean 2.75 2.46 3.55 2.66 

Std 2.75 1.87 1.95 0.45 

Min 0.15 0.50 0.63 1.7 

Max 14.72 10.19 11.01 3.92 

 

 
Figure 4: Boxplot representing the mean absolute 

percentage error obtained in training and testing one 

hour ahead, two hours ahead, and three hours ahead of 

the forecasting model. 

 

The prediction 3 hours ahead presents an average MAPE 

accuracy error of 3.55% for the total tested data, with a 

standard deviation of 1.95%. The average error is low 

considering, for example, the Sthlmflex project, where 

they have set a full payment if the flexibility source can 

dispatch at least 80% of the scheduled flexibility. 

Nevertheless, the error in some cases reached a minimum 

of 0.63% and a maximum of 11.01%.   

 

Next, for the prediction of one hour ahead and two hours 

ahead, we obtain similar average values of 2.76% and 

2.46%, respectively. But in the first case, the standard 

deviation is around 0.9 points higher since there exists a 

larger number of outliers in the predictions, with seven 

predictions having between 6% to 14.72% error. Thus, 

the error increases because the penalty signal induces a 

sudden change in behavioral patterns of the load time 

series, which has a non-linear dependency on the outdoor 

variables when part of the load is given by the cooling 

equipment. Therefore, accuracy improves once the model 

is retrained with the new flexibility event. 

 

In Figure 5, the error variation as the training window 

expands is observable. Initially, it is expected to have 

poor accuracy since the training data is not abundant. But 

given that the flexibility has been triggered at the same 

hour every day, it is probable that the weather conditions 

are similar for the first data; thus, the error in all the 

predictions is reduced. Then, in the northern hemisphere, 

the temperatures increase from June to August, then 

decrease towards September, corresponding to the last 

trained data in the model. Therefore, an increase in the 

testing error and the dispersion of the forecasted data is 

expected, given that the cyclical behavior of the weather 

is not totally generalized by the model, which also can be 

observed in the training values, where the error increases 

up to 3.92%.   

 

 
Figure 5: Mean absolute percentage error represented in 

the training process, considering the predictions 1-hour 

ahead (top), 2-hours ahead (middle), and 3-hours ahead 

with training score (bottom). 

 

Additionally, as expected, the average accuracy of the 

result is higher when the forecasting horizon increases, 

while having a higher error when three hours are 

predicted and the lowest error for the forecasting two 

hours ahead. In the case of a one-hour ahead prediction, 

as already mentioned, the error is highly influenced by 

the sudden drop in the electrical load. 

 

Finally, Figure 6 shows an example of the predicted 

versus actual demand response event for three hours. 

Between time steps 0 and 2, the load reduction is 



 

 

observable, with a rebound until timestep 6, when the 

system returns to its normal baseline load. 

 

 
Figure 6: Example of the predicted period for a penalty-

aware demand event. 

 

CONCLUSION 

This work presented a novel methodology for predicting 

the electrical consumption of a single office building 

under a demand response scenario triggered by a 

simulated penalty-aware signal from the grid. For this 

purpose, a physics-based simulation was conducted to 

emulate the load dispatching associated with the legacy 

cooling equipment of the building. The penalty signal is 

applied as a setpoint modification, allowing an increase 

of 1.5 °C for a maximum duration of three hours. Next, 

the demand response events are gathered and used to 

train a deep learning model based on a Multi-Layer 

Perceptron structure and an expanding window training.   

The study demonstrated promising results for all 

prediction horizons, which is 1, 2, and 3 hours ahead into 

the event, with a maximum average Mean Absolute 

Percentage Error of 3.55% for the testing in the whole 

period and 2.66% in the training process. There was no 

indication of significant overfitting of the model, even 

when the expanding window approach does not simply 

allow the hyper parametrization of the model. 

 

The sudden load reduction in response to the signal had 

an expectable effect on the predictions, where the 

predicted values in that period (one hour ahead) showed 

a higher average error and higher dispersion of the 

predictions than when the forecasting two hours ahead 

was considered. The error's dispersion increased towards 

the September training period, when the temperature and 

radiation started to decrease, making the model unable to 

generalize as accurately as before. Thus, it is essential to 

consider new features that can complement the model’s 

generalization toward cyclical data in future works. 

Finally, forecasting demand response events can be 

further expanded to consider its application in different 

moments of the day, making the deep learning model 

more generalized. Additionally, scenarios can be 

considered when the heating equipment load is 

considered flexible, spreading this work application in 

different weather conditions. Demand response 

forecasting, together with the baseline prediction, is 

required for accurate accountability of the flexibility that 

a building can provide, which can open further options to 

be part of the future of local flexibility markets. 

REFERENCES 

Abadi M.; P. Barham; J. Chen; Z. Chen; A. Davis; J. Dean; M. 

Devin; S. Ghemawat; G. Irving; M. Isard; and M. Kudlur. 

2016. “Tensorflow: a System for Large-Scale Machine 

Learning.” Osdi, No.16 (Dec), 265-283. 

Abedi, S. and S. Kwon. 2023. “Rolling-Horizon Optimization 

Integrated with Recurrent Neural Network-Driven 

Forecasting for Residential Battery Energy Storage 

Operations.” International Journal of Electrical Power & 

Energy Systems, No.145. 

ASHRAE. 2010. “ANSEASHRAE/IES Standard 90.1-2010. 

Energy Standard for Buildings Except Low Rise Residential 

Buildings.” American Society of Heating, Refrigerating, 

and Air-Conditioning Engineers, Atlanta, Georgia. 

Bergmeir, C. and J.M. Benítez. 2012. “On the use of cross-

validation for time series predictor evaluation.” Information 

Sciences, No.191, 192-213. 

Bularca, O.; M. Florea; and A.M. Dumitrescu. 2018. “Smart 

Metering Deployment Status Across EU-28.” International 

Symposium on Fundamentals of Electrical Engineering 

(ISFEE), 1-6. IEEE. 

Chondrogiannis, S.; J. Vasiljevska; A. Marinopoulos; I. 

Papaioannou; and G. Flego. 2022. “Local Electricity 

Flexibility Markets in Europe.” Publications Office of the 

European Union, Luxembourg. 

Crawley, D.B.; L.K. Lawrie; F.C., Winkelmann; W.F., Buhl; 

Y.J. Huang; C.O. Pedersen; R.K. Strand; R.J. Liesen; D.E. 

Fisher; M.J. Witte; and J. Glazer. 2001. “EnergyPlus: 

Creating a New-Generation Building Energy Simulation 

Program.” Energy and buildings, No.33(4), 319-331. 

Deru, M.; K. Field; D. Studer; K. Benne; B. Griffith; P. 

Torcellini; B. Liu; M. Halverson; D. Winiarski; M. 

Rosenberg; and M. Yazdanian. 2011. US Department of 

Energy Commercial Reference Building Models of the 

National Building Stock. 

European Commission. 2022. Commission Recommendation of 

9 March 2012 on Preparations for the Roll-out of Smart 

Metering Systems. Technical Report 2012/148/EU. 

European Commission. 2022. REPowerEU: Communication 

from the Commission to the European Parliament, The 

European Council, The Council, The European Economic 

and Social Committee and the Committee of the Regions. 

European Commission. 2022. Shedding light on energy in the 

EU. Interactive publications. 

EU4Energy. 2020. Electricity Market Functions – Short 

Overview and Description. 

EvolvDSO. 2014. D1. 2: Evaluation of Current Market 

Architectures and Regulatory Frameworks and the Role of 

DSOs. 

González-Torres, M.; L. Pérez-Lombard; J.F. Coronel; I.R. 

Maestre; and D. Yan. 2022. “A Review on Buildings 

Energy Information: Trends, End-Uses, Fuels and Drivers.” 

Energy Reports, No.8, 626-637. 

GOPACS. 2019. IDCONS Productspecificaties. 

Gulotta, F.; A. Rossi; F. Bovera; D. Falabretti; A. Galliani; M. 

Merlo; and G. Rancilio. 2020. “Opening of the Italian 

Ancillary Service Market to Distributed Energy Resources: 

Preliminary Results of UVAM project.” 2020 IEEE 17th 

International Conference on Smart Communities: 

Improving Quality of Life Using ICT, IoT and AI, 199-203, 

IEEE. 

Jain, A.K.; J. Mao; and K.M. Mohiuddin. 1996. “Artificial 

Neural Networks: A Tutorial.” Computer, No.29(3), 31-44. 



 

 

Jensen, S.Ø.; A. Marszal-Pomianowska; R. Lollini; W. Pasut; 

A. Knotzer; P. Engelmann; A. Stafford; and G. Reynders. 

2017. “IEA EBC Annex 67 Energy Flexible Buildings.” 

Energy and Buildings, No.155, 25-34. 

Junker, R.G.; A.G. Azar; R.A. Lopes; K.B. Lindberg; G. 

Reynders; R. Relan; and H. Madsen. 2018. “Characterizing 

the Energy Flexibility of Buildings and Districts.” Applied 

Energy, No.225, 175-182. 

Knezović, K.; M. Marinelli; P. Codani; and Y. Perez. 2015. 

“Distribution Grid Services and Flexibility Provision by 

Electric Vehicles: A Review of Options.” 50th 

International Universities Power Engineering Conference 

(UPEC), 1-6. IEEE. 

Koltsaklis, N.E.; A.S. Dagoumas; and I.P. Panapakidis. 2017. 

“Impact of the Penetration of Renewables on Flexibility 

Needs.” Energy Policy, No.109, 360-369. 

Masum, S.; Y. Liu; and J. Chiverton. 2018. “Multi-Step Time 

Series Forecasting of Electric Load Using Machine 

Learning Models.” In Artificial Intelligence and Soft 

Computing: 17th International Conference, ICAISC 2018, 

Zakopane, Poland, June 3-7, 2018, Proceedings, Part I 17 

(48-159). Springer International Publishing. 

Minniti S; N. Haque; P. Nguyen; and G. Pemen. 2018. “Local 

Markets for Flexibility Trading: Key Stages and Enablers 

Energies.” Energies No.11. 

Murtagh, F. 1991. “Multilayer Perceptrons for Classification 

and regression.” Neurocomputing, No.2(5-6), 183-197. 

Neukomm, M.; V. Nubbe; and R. Fares. 2019. Grid-interactive 

efficient buildings. US Dept. of Energy (USDOE), 

Washington DC (United States); Navigant Consulting, Inc., 

Chicago, IL (United States). No. DOE/EE-1968. 

Reynders, G.; R.A. Lopes; A. Marszal-Pomianowska; D. 

Aelenei; J. Martins; and D. Saelens. 2018. “Energy Flexible 

Buildings: An Evaluation of Definitions and Quantification 

Methodologies Applied to Thermal Storage.” Energy and 

Buildings, No.166, 372-390. 

Santamouris, M. and K. Vasilakopoulou. 2021. “Present and 

Future Energy Consumption of Buildings: Challenges and 

Opportunities Towards Decarbonization.” Advances in 

Electrical Engineering, Electronics and Energy, No.1. 

Schwidtal, J.M.; M. Agostini; F. Bignucolo; M. Coppo; P. 

Garengo; and A. Lorenzoni. 2021. “Integration of 

Flexibility from Distributed Energy Resources: Mapping 

the Innovative Italian Pilot Project UVAM.” Energies, 

No.14(7), 1910. 

Sharda, S.; M. Singh; and K. Sharma. 2021. “Demand Side 

Management Through Load Shifting in IoT Based HEMS: 

Overview, Challenges and Opportunities.” Sustainable 

Cities and Society, No.65, 102517. 

U.S. Department of Energy. 2021. Input Output Reference. 

EnergyPlus™ Version 9.6.0 Documentation 

AUTHOR BIOGRAPHIES 

Italo A. Campodonico Avendano was 

born in Santiago, Chile, and went to the 

Universidad de Chile, where he studied 

Mechanical Engineering and obtained his 

degree in 2019. He moved in 2020 to the 

Politecnico di Milano, Italy, where he 

studied a MSc. in Energy Engineering, moving after to 

NTNU Ålesund, Norway, where he is currently studying 

a PhD. in Smart Buildings. Email: 

italo.a.c.avendano@ntnu.no. 

 

Farzad Dadras Javan was born in 

Mashhad, Iran, and obtained his 

bachelor's in Mechanical Engineering 

from Ferdowsi University of Mashhad 

in 2016. His MSc. in mechanical 

engineering was obtained from 

Politecnico di Milano in 2021, and he is currently a Ph.D. 

Student at energy department of Politecnico di Milano 

with the focus on smart buildings. Email: 
farzad.dadras@polimi.it. 

 

 

Amin Moazami is an Associate 

Professor at NTNU and Research 

scientist at SINTEF Community in 

Norway. His focused areas of research 

are energy efficiency, energy flexibility, 

climate robustness and smartness level of existing 

building stocks. He was the initiator and coordinator of 

the ongoing EU H2020 project “COLLECTiEF” and 

currently, is leading the Norwegian digital infrastructure 

project “Smart Building Hub” funded by Research 

Council of Norway. Email: amin.moazami@ntnu.no.  

 

 

Behzad Najafi is an Assistant Professor 

(RTDb) at the Energy Department of 

Politecnico di Milano. He received his 

M.Sc. degree in Energy Engineering and 

his PhD in Energy and Nuclear Science and 

Technology from Politecnico di Milano. 

The research area of his activities include machine 

learning based simulation of indoor environments and 

HVAC systems, occupant-centered BMS, energy 

disaggregation, residential demand side management, 

and stochastic optimization of energy systems. E-mail: 

behzad.najafi@polimi.it. 

 

mailto:italo.a.c.avendano@ntnu.no
mailto:amin.moazami@ntnu.no
mailto:behzad.najafi@polimi.it

	KEYWORDS
	ABSTRACT
	INTRODUCTION
	Flexibility in Energy Markets
	Demand Flexibility in Grid-Interactive Efficient Buildings (GEBs) and the Need for Penalty-Aware Demand Prediction

	CASE STUDY
	DEEP LEARNING CONCEPTS
	Neural Networks
	Expanding Window Multi-Step Forecasting

	METHODOLOGY
	Physics-based Simulation
	Demand Response Prediction

	RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHIES



