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ABSTRACT 

Hydrodynamic simulation of marine structures is a 
complex and time-consuming task that requires large, 
refined models to accurately estimate the behavior of 
ships. During the conceptual phase, therefore, these 
estimations may be more efficient if done with a mix of 
surrogate models and simplified simulations. We believe 
that AI and the web environment can contribute to 
providing a more precise answer and fast solution, 
especially when the design domain can be narrowed and 
properly estimated. This paper shows an attempt in this 
direction, describing a web-based real-time flow 
simulator that is composed of a Tenforflow.js-based 
convolutional neural network model with an image-based 
hull form representation. Some case studies demonstrate 
the advantages of a novel web-based prototyping 
environment in the conceptual and initial design of ships. 
The image-based hull form representation method with a 
convolutional neural network enables the design of not 
only main dimensions but also local shapes in an 
interactive web-based concurrent engineering 
environment. Our approach extends the neural network 
model of wake flow estimation to models of the 
prediction of resistance and pressure distributions on the 
hull surface and develops a novel web-based prototyping 
environment for the conceptual and initial design of ships. 
 
THE PROBLEM OF DEMANDING 
HYDRODYNAMIC  SIMULATIONS IN MARINE 
ENGINEERING 

Design for the marine environment is a collaborative 
process that involves multiple disciplines, summarized 
by Andrews (2018) as the S5: stability, speed 
(propulsion), structure, seakeeping and style. A software 
system can modularize and classify individual disciplines 
as a separated analyses; nevertheless, a designer must 
later integrate multiple solutions into a whole ship model 
(Calleya et al., 2016). This true-model, shared among key 
stakeholders, is provided in a series of 3D/2D models, as 
well as CAD/CAE results, with different level of fidelity 
according to the lifecycle phase of the design (Gaspar, 
2019).  
 

One bottleneck in this iterative process is the 
hydrodynamic assessment of the hull, exemplified in the 
rest of this article by the case of the flow simulation 
around the ship and propeller. Such analyses are 
paramount to determine important ship performance 
indicators, such as selection of the propulsion system, 
fuel consumption and seakeeping. This calculation is 
usually time-demanding, based on Reynolds-averaged 
Navier-Stokes (RaNS-based) Computational Fluid 
Dynamics (CFD) methods. Specially during early stages 
of design, such time-demanding analyses may hinder the 
realization of multidisciplinary optimization and 
concurrent engineering. Therefore, dependeing on the 
stage that a project is, it may wise to introduce multi-
fidelity models, including surrogate models. Modern 
methods goes one level up above the traditional 
regression tables from the previous decades, using now 
machine learning (Ichinose, 2022). This is crucial for 
substantially reducing design time and expanding the 
explorable design space. 
 
The main objective of this paper is to combine modern 
approaches to tackle accurate hydrodynamic simulations, 
such as the work from Ichinose (2022) in a interactive 
and responsive web-environment, previously discussed 
by Fonseca and Gaspar (2019) and Gaspar (2017). We 
developed a web-based real-time flow simulator to 
realize concurrent engineering in the conceptual and 
initial design stages by surrogating the time-consuming 
RaNS-based CFD calculation with a convolutional neural 
network (CNN) model that is based on Tenforflow.js. 
This surrogate model not only enables the prediction of 
propulsive performance, which is an update to the 
standard design chart or regression formula, but it also 
enables the prediction of pressure distribution on hull 
surfaces and wake flow behind the ship, which is 
essential for propeller design.   
 
A PRAISE FOR WEB-BASED SIMULATION 

Fonseca and Gaspar (2019) summarizes, at the 33rd 
ECMS, the advantages of a web-based environment. It 
gives advantages regarding sharing, compatibility, open 
source development and interactivity of engineering 
simulations. The fact that it is possible to share web 
simulations with anyone who has access to an internet 
connection, without the need of installing new software, 
check licenses or configuring a server, makes the 
approach convenient to give distributed users access to 
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the same model. This centralization also allows unified 
support of the application, as once the developer deploys 
a new version of the source code online, all users 
instantly obtain access to it. 

Moreover, compared to traditional engineering 
programming environments, web technologies provide 
more options and freedom for the creation of 
sophisticated user interfaces. The developer of a web 
application may use sliders, text fields and buttons to 
gather inputs from the user. Results can be presented as 
formatted text, tables, plots or interactive visualizations, 
either 2D or 3D. By changing the CSS, the same code can 
be used for desktop, mobile (app) or tablet. Multiple 
textual and graphic elements can be combined in 
dashboards to present a cohesive experience to the user, 
allowing them to vary inputs and observe the effects of 
the variation on the results in real-time. 

Using JavaScript as main pillar (Gaspar, 2017) allows the 
extensive use of available open libraries, e.g., for solution 
of mathematical models, creation of 2D plots and 
rendering of 3D scenes. As this is aimed at the human 
user, interactive GUIs is a key point, allowing the 
simulations to convey meaning easily to users, including 
those who do not have an engineering background. 

The technology is backed by the big tech-companies, and 
nowadays JavaScript runs fast. A regular consumer 
laptop, or even a smartphone, is capable of executing the 
applications in real-time, solving the mathematical 
models and rendering the 3D scenes. Given the scope of 
the examples observed in Gaspar (2018; 2022), this 
includes simultaneous solution of differential equations, 
manipulation of 3D geometries and rendering of textures 
in the web browser. For such reasons, it becomes 
apparent that the approach is usefull, while still provides 
unexplored potential for further work. In this sense, we 
plan to explore the inclusion of neural networks (NN) via 

TensorFlow (https://www.tensorflow.org/), combined to 
existing optimization work towards more efficient 
hydrodynamic simnulation from Ichiniose (2022). 

FLOW PREDICTION BASED ON A 
CONVOLUTIONAL NEURAL NETWORK 

The hydrodynamic example here used to proof the 
concept is the flow prediction of a ship, based on a 
convolutional neural network. 

The flow simulation for ship design can be broken down 
into simulations of waves, propellers, and viscous flows. 
Of these three, the wave and propeller simulations are not 
much of an impediment to integrated design since they 
can be estimated with good accuracy using potential 
theory, which can be computed in a few minutes. On the 
other hand, a viscous flow simulation takes more than a 
few hours, because it should solves the nonlinear 
equation of Reynolds-averaged Navier-Stokes (RaNS) 
and the flow simulation with a high Reynolds number 
(actual ship 108-9, model ship: 105-7) necessitates 
detecting complex flow characteristics in a very thin 
surface layer on the hull. This causes drastically 
increasing the grid size. Moreover, contrary to wave 
simulation, viscous simulation should consider the 
interference effects of hull form and propeller shape. The 
interaction between the propeller and the flow field 
generated by the hull, known as the wake field, increased 
the propeller's performance by about 20%, allowing the 
propeller to be installed at the back of the ship (Carlton, 
2007). This interaction has a significant impact on fuel 
consumption and vibration, both of which are important 
factors in ship performance. In addition, despite the 
design for wave-making, the design for viscous flow 
should be accomplished in collaboration between a hull 
form designer in a shipbuilding company and a propeller 
designer in an equipment manufacturing company. 
Therefore, the viscous simulation of wake fields is one of 

Figure 1: Comparison of data flow between conventinal CFD analysis and convolutional NN model prediction 
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the root causes of stacking the entire ship design process, 
is the bottleneck of the expansion of the explorable 
design space, and hinders multidisciplinary optimization 
within the S5. 
 
Figure 1 illustrates the conventional framework of CFD 
calculation and proposes a neural network model as an 
alternative. Given that a three-dimensional surface has 
theoretically infinite shape parameters, it is difficult to 
generate a hull form automatically; therefore, each hull 
form is created by hand using CAD by a team of experts. 
Experts continue to create the hull shape and evaluate it 
using time-intensive CFD until the hull reaches the 
desired level. In this process, the conventional design 
system dismisses these candidates as unqualified for a 
design restriction, but they have the potential to be 
qualified hulls in another design condition and to be 
composed hulls from a database containing design 
knowledge from experts. 
 
The proposed system collects these legacy assets and 
employs them to construct a CFD surrogate model. In 
addition, the database of hull forms can be automatically 
expanded by the hull form blending method, which can 
generate a new hull form by morphing multiple hull 
forms, as proposed by Ichinose (2022) and Kim et al. 
(2019) . The surrogate model of a neural network is 
intended to be trained by these shipbuilding company or 
design firm assets. A shipbuilding company's surrogate 
model enables fast and accurate simulation of similar 
ship variations, which may be the most common of all 
design patterns in a particular shipyard due to the 
facility's limitations in terms of ship sizes and types. Even 
if a yard wants to design a novel ship type that is not in 
its database, a dataset and trained model from another 
ship yard or design farm could be traded, creating a new 
market for the transaction of design knowledge that is 
typically discarded during the design process.  
 
Ichinose (2022) proposed a CNN model for wake field 
prediction that, when the NN training is done, can be up 
to 105 times faster prediction than the RaNS solver with 
similar accuracy. To realize this prediction model, it was 
used an image-based hull form representation (IHR) 
method for representing three-dimensional curved 
surfaces that is suitable for machine learning, where a 3D 
hull is transformed into a RGB image. The idea behind 
the representation is to map a three-dimensional surface 
to two-dimensional structured data with (x, y, and z) 
values using a structured grid surface. This data can be 
translated into the same structure as image data, which is 
expressed by three primary colors on the vertical and 
horizontal pixels (cyan, magenta, and yellow). This 
method has significantly enhanced the quality of shape 
representation in artificial neural networks.  
 
Traditionally, design charts, empirical regression 
formulas, or in-house hull shape criteria are employed in 
the initial design stage to predict propulsion performance. 
Since parametrization of complex three-dimensional 

surface shapes is challenging, hull forms are represented 
by limited shape parameters with few parameters, such 
as dimensions or shape coefficients, which hinders the 
high-resolution consideration of local shapes and holistic 
design. The IHR and proposal prediction methods enable 
the capture of an entire form with high resolution by 
handling three-dimensional surface shapes with more 
than a few thousand parameters. This high-resolution 
illustration also fits very well modern NN models, as 
many of them are designed to receive an image as input. 
 
In addition, whereas the design chart or empirical 
regulation formula generates only a scalar value of the 
results in prediction, such as the resistance coefficient, 
the proposed method can generate not only a scalar value 
but also a pressure distribution or flow field, which is 
enabled by the generative network architects of the 
present neural network. This significant advantage has a 
substantial impact on the design of other fields. The flow 
field, for example, can be used as a detailed and specific 
design condition for propeller design, and structural 
engineers can use the distribution of forces on the hull as 
a key input for structural design. 
 

 
Figure 2: Overview of a surrogate model of ship flow 

simulation by CNN. 
 

Our work here extends the IHR-CNN method from the 
estimation of wake flow to the prediction of resistance 
and pressure distributions on the hull surface, as shown 
in Figure 2. The architectures of the proposed models for 
predicting wake flow field, pressure distribution and 



 

 

resistance are depicted in Figures 3, 4, and 5, respectively, 
all based on Ichinose (2022). All models have identical 
encoder parts, which are indicated with a gray 
background and are used to detect hull form information. 
The decoder parts are modeled using the DCGAN 
network (Radford et al., 2016). 
 

 
Figure 3: Architecture of neural network for prediction 

of wake distribution (Ichinose, 2022). 
 

 
Figure 4: Architecture of neural network for prediction 

of pressure distribution. 
 

 
Figure 5: Architecture of neural network for prediction 

of resistance coefficient (Cx). 
 

The loss function for the training is mean square errors of 
each of the flow velocity, the surface pressure, and 
resistance value, respectively. As the solver of 
optimization to reduce the loss function in the training, 
Adam method is applied in traing of all models.  

 
Tensorflow, wrapped by Keras in a Python environment, 
is used to build and train the convolutional neural 
network model on the powerful GPU machine in our 
facility. The trained model is exported as a JSON file to 
the TensorFlow.js in JavaScript environment. 
 
FAST AND INTERACTIVE FLOW PREDICTION 
–  SIMUALTION VIA WEB 
 
Our vision of web-based concurrent engineering expects 
the realization of a collaborative design environment 
involving your coworkers, customers, and various 
stakeholders in the new design discussion. To avoid 
disrupting a discussion regarding a new design, it is 
preferable to respond to the simulation result for the new 
design within a few seconds. Therefore, this paper 

defines fast as a couple of seconds of simulation response, 
almost as real-time feedback. To achieve interactivity 
and responsiveness, we make use of the modern GUI 
toolset for the web (HTML + CSS + JavaScript; Gaspar, 
2017). A great example is the use of oninput fuctions in 
sliders, which leads to a very intuitive way to modify 
variables, and the real-time update recalculates 
automatically every plot. It requires no compilation, no 
run button, no external installation, runs direct from the 
browser, can be shared online (in a standard configured 
webserver) or private (with .HTML file and additional 
libraries). From the user’s point of view, it requires 
almost no explanation when the GUI is made properly – 
sliders change variables, which changes the simulation 
and updates the plots. 
 
Figure 6 exemplifies shows the parametrization of a hull 
is done with two inputs, Sectional area curve in aft part 
and ship breadth. Each new value on the slider calls a 
function that updates in real time the 3D plot and wake 
prediction result (https://nmri.ntnu.co/spp/spp.html). 
 

 
Figure 6: Slides are used to interact with the simulation 

and explore de thesign space 
 

 
Figure 7: Pseudocode for the function in each slide. 

 
A pseudo-code representation of the iteration is shown in 
Figure 7. Prediction is invoked whenever the hull's 
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class Hull { 
 . Class represent a hull form 
 constructor(hullTensor, dataInfo)  

. Construct Hull class instance from 
hull data of tensor format 

} 
 
function changeHull() 

. READ user manipulated parameters  

. CREATE target hull form based on the 
parameters by blending method. 

 return hull 
 
function predict()  

. READ tensorflow.js model from external 
file 

. CALL changeHull() 

. CALL predict in tensorflow.js function 

. PLOT predicted data on screen 



 

 

parameters update (e.g., when the user chnegs the value 
of a slide). Tensorflow.js's imposition of code simplifies 
the code, which contributes to enhanced maintainability 
and scalability. It efficiently compresses an enormous 
amount of CFD database into a single model, allowing us 
to avoid complex database management on the backend. 
In addition, diverse open-source libraries accelerate the 
development of our prototypes, such as Plotly.js, which 
provides fantastic visualization in a simple manner (see 
Gaspar, 2017 for more). 
 
CASE STUDY AND DISCUSSION 

Two case studies are used to demonstrate the advantges 
of the interactive tool. A simple prismatic barge firstly 
exemplifies the fundamentals of the system configuration. 
The second case study, on tanker design, describes a 
more realistic approach to ship design using the current 
method. 
 
CASE 1 prismatic barge (parametrized hull form) 
 
Let's start with the straightforward scenario where design 
space is described by a mathematical expression. Figure 
8a depicts the entire process of building a database and 
machine learning model. 
 

a) b) 
Figure 8: A flow chart of prediction for simple hull 

forms (a) and for practical hull forms (b). 
 
Several mathematical expressions of the hull have been 
proposed; we adapt Lewis  form for the section form of 
the hull. The shape of Lewis enables us to manipulate the 
sectional shape of the hull. As shown in Figure 9, the 
sectional area is the first parameter of the Lewis form 
function in this demonstration. 
 

 
Figure 9: Sectional shapes of Lewis form expression 

and profile shapes 

We also impose control over profile lines, which are the 
outline of the side shape. The parameterized profile line 
is depicted as a combination of straight lines. In this 
demonstration, the second hull form parameter is 
employed to control the slope angles of the forward and 
aft part lines. 

 
In building the database, we divided each of the two 
parameters into 50 divisions that generate 2,601 (=512) 
individual hull forms. All the hull forms is used for 
simulation of flow field by RaNS CFD code NAGISA 
(Ohashi et al., 2019). 
 
Figures 10 shows comparisons between the pressure and 
wake flow predictions made by trained NN models and 
the truth. The pressure distribution results demonstrate 
that the proposed model can accurately predict the 
pressure distribution on the hull surface, which exceeds 
the level of practical accuracy required for ship design. 
 

 
Figure 10: Comparison of prediction and grand truth in 

pressure prediction and wake  for CASE 1.   
  

These predictions are implemented as a JavaScript web 
application with interactive responses, as shown in 
Figure 11. Based on the trained model, the Tensorflow.js 
application predicts the pressure distribution and wake 
flow field on the propeller plane in real time. This fact 
proves that the current approach for implementing 
concurrent engineering in the maritime industry is 
promising. 
 

 

 

 
Figure 11: Output from the WebApplication for case 1 

 
CASE 2) Tanker design (practical design)  

Prediction Grand Truth

Ex.1

Ex.2

Prediction Grand Truth

Ex.1

Ex.2



 

 

Since experts construct their own hull forms using CAD 
in practical design, it is difficult to parameterize them 
mathematically. As depicted in Figure 9b, the proposed 
method can include these expert hull forms directly in the 
database. On the other hand, there are cases in machine 
learning training where sufficient data for learning 
cannot be obtained from the data of these experts alone. 
In the proposed method, therefore, the hull blending 
method proposed by Ichinose (2022) is utilized to 
augment these data. 
 
In case 2, the interactive flow simulation for the practical 
design is demonstrated using a published hull form of a 
tanker called KVLCC2 (Van, 1998; SIMMAN, 2008), 
illustrated in Figure 12. 

 

 
Figures 12: KVLCC2 model (Van (1998), SIMMAN 

(2008)) 
 
Here, simulating a practical design, it is assumed that the 
KVLCC2 hull form is used as the initial hull form, and 
an expert uses CAD to construct four basic hull forms 
with two design intentions as shown in Figure 13. By 
using the blending of hull forms proposed by Ichinose 
(2022), the number of basic hull forms can be any number 
such as 2, 3, 4, 5, and so on, facilitating the development 
of a hull database. 
 

 
Figures 13: VLCC database  

 
The size of the database for study case two is 2,601 
designs, which is the same as the size of the domestic-
749-gross-tonnaged database that is used for quantative 
verification of the IHR-CNN method by Ichinose (2022). 
This database is organized on the 50 divied meshed for 
the each parameters, in the samemanner as study case one. 
 
The trained neural network model predicts the pressure 
distribution  on hull surface and wake flow at propeller 

plane as shown in Figure 17. The exploration of the 
design space is done via the web application, which 
simulates these complex flows in real time (Figure 18). 
The user can interact into any variation for Breadth 
between 40.6m – 58m, as well the fulness of the section 
area. Resistance coefficient, pressure distribution and 
wake flow are calculated immediately. 

 

   
Figures 17: Comparison of prediction and grand truth in 

pressure prediction and wake flow for case 2. 
 

 

 
 

Figure18: Results from the pressure distribution and 
wake flow calculation in the web-based applicartion. 

 
CONCLUDING REMARKS 

 
This paper presented a web-based interactive real-time 
flow simulator with a Tenforflow.js-based convolutional 
neural network model intended to extend the role of the 
design chart and substitute the time-consuming RaNS-
based CFD computation in the conceptual design stage. 
This surrogate model allowed for the prediction of 
propulsive performance as well as wake flow behind the 
ship. The core contribution of this work is the 
demonstration that, merging complex hydrodynamic 
simulation using neural networks in a web-based 
environment, is a reality. The examples here discussed 
are indeed running online in real-time. 
 
We reiterate that these types of tools are particularly 
beneficial in the early stages of design, during the 
exploration of the physical design space. Indeed, there is 
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an additional effort to prepare the GUI, as well as 
implement the code in JavaScript. This effort is 
compensated when the tool is used by multiple 
stakeholders, as the extra development time shows 
benefits when users can quickly and efficiently explore 
the design space, saving time over the whole process. 
Such examples must be available openly and online, in a 
similar way to the Vessel.JS library (Gaspar 2018; 2022). 
This allows peers to build on each other and create a 
larger library of similar problems, as discussed by Miquel 
et al. (2020), fostering collaboration in the field.  The 
method also allows for local installations and the 
handling of IP for commercial use. 
 
Future work includes the incorporation of potential flow 
and more advanced seakeeping. Our testing suggests that 
meshes in the order of 103 to 104 panels can be run online 
in close to real time, obtaining a result similar to complex 
simulations from the last two decades. 
 
We finish the paper with a call for our peers to consider 
implementing open and collaborative web-based 
methods in the everyday design tasks, both at academic 
and industrial environments. Simple practices, such as a 
a Github page for a project – either public or private 
(paid) is also an experience highly recommended. A core 
point defended in this paper is that technology is not a 
bottleneck for complex web-based simulation, 
exemplified by the current fast- paced stage of online 
web-development, neither the speed of the computer 
processors and memory size, but rather how modelling 
data is able to be transferred from books and experience 
to useful reusable models. Reusability, even when 
proprietary, means that a code can be reused internally 
for the next project and, when public, may be accessed 
by clients and suppliers. 
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