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ABSTRACT

Properly analyzing spatiotemporal patterns is of
paramount importance, especially in urban planning.
In this paper, we introduce two digital twins to sup-
port the analysis of spatiotemporal data associated
with urban topologies. In particular, both tools vi-
sually encode temporal changes in density maps con-
strained by a network. Moreover, we present the
software architectures and discuss their use in urban
planning usage scenarios.

INTRODUCTION

Digital twins have been established as a pivotal
technology for supporting decision-making based on
the analysis of different what-if scenarios [Shahat
et al., 2021]. According to [Verdouw et al., 2021],
a digital twin is defined as “a dynamic representa-
tion of a real-life object that mirrors its states and
behaviour across its lifecycle and that can be used
to monitor, analyze and simulate current and future
states of and interventions on these objects, using
data integration, artificial intelligence, and machine
learning.” In the context of urban planning, digi-
tal twins have been employed successfully to model
complex processes, leveraging the possibilities of defi-
nition of sustainable solutions for several relevant so-
cietal problems, including mobility assessment [Ma-
jor et al., 2021], [Major et al., 2022], waste manage-
ment [Nasar et al., 2020], light infrastructure design
and implementation [Hassan et al., 2022], environ-
mental pollution [Major et al., 2021], among others.
This paper is concerned with the development

of urban digital twins to support the analysis of
spatiotemporal changes over time associated with
density maps restricted by a network. Density
maps (often encoded as heatmaps) have been widely
used to analyze the spatial distribution of vector
fields [Hogräfer et al., 2020]. Examples of applica-
tions include the evaluation of different traffic condi-
tions [Xie and Yan, 2008], pollution distribution [Ren
et al., 2020], and demographic evolution [Feng et al.,
2020]. Recently, the work by [Feng et al., 2020] in-
troduced a very effective alternative for the compu-
tation of density maps constrained by a topology.

Their formulation for computing Topology Density
Maps (TDMs) encompasses three main steps: en-
coding of the network data (vertices, and edges and
their associated weights), computation of the acces-
sibility information (cost to connect to pre-defined
points of interest), and construction of a visualiza-
tion strategy based on surface mappings. Despite
the demonstrated effective results, related to its use
in traffic analysis applications, the method of [Feng
et al., 2020] relies on only spatial analysis.

Using digital twins in urban planning is especially
relevant considering monitoring and prediction anal-
yses. Monitoring digital twins focus on digitally mon-
itoring the state of the behavior of physical objects,
while predictive digital twins relate to the projections
of future states of such objects [Verdouw et al., 2021].
With this respect, the temporal evolution of density
maps plays an important role, especially in support-
ing the understanding of different what-if simulation
results associated with the future states of a city.
In this paper, we investigate the visualization of the
temporal changes related to density maps encoded
in topologies. We introduce two prototypes recently
proposed to support the analysis of Temporal Topol-
ogy Density Maps (TTDMs), discussing their archi-
tecture, main features, and usage scenarios.

The remainder of this paper is organized as follows.
Next section introduces the main concepts related to
topology density maps and our proposal for encoding
temporal changes. Next, we present the developed
prototypes that implement the different algorithms
for topology density computation and its assessment
over time. The final section covers our conclusions
and presents directions for future research.

BACKGROUND CONCEPTS

This section introduces the background concepts
related to the computation of Topology Density
Maps and Temporal Topology Density Maps.

Topology Density Maps (TDMs)

Topology Density Maps (TDMs) are defined as
maps that encode non-linear scalar fields on a topol-
ogy (e.g., road network). In a recent publication,
the work by [Feng et al., 2020] proposed a three-step
approach for computing TDMs. First, a network is
employed to encode vertices and edges. The network
is seen as a weighted direct graph in which weights
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represent the costs to move from one vertice to an-
other. The second step refers to the computation of
the accessibility of nodes given existing points of in-
terest (POIs). This process is performed by means
of the Dijkstra shortest path algorithm. The final
step concerns the calculation of the influence zones
for the whole 2D space.
Figure 1 provides an example related to the com-

putation of a TDM. The input network data includes
six nodes. We assume that H1 and H2 are POIs and
the other four nodes (A,B,C,D) are non-POIs. Af-
ter the encoding of network data, the graph G will be
wrapped up to two directed acyclic graphs (DAGs)
for POIs H1 and H2. The cost Fc is calculated from
the POI to non-POI nodes and finally to any point
in the 2D planar space. The density field is the com-
plete 2D planar surface for this network. In this fig-
ure, the color of the nodes and the tapered edges
reflect the accessibility data Gcost. The visualization
of GTDM concerns one density estimation field with
colors that represent the propagation of the density
values along the edges and the 2D planar surface.
For example, the blue region with the nodes H1, A,
and B has more variations in the intensities of den-
sity fields when compared to the red region with the
nodes D, C, and H2.
For more details regarding the computation of

TDMs, the reader may refer to [Feng et al., 2020].

Temporal Topology Density Map (TTDM)

The algorithm proposed by [Feng et al., 2020]
demonstrates great potential in the context of ur-
ban mobility analysis. Despite its promising re-
sults, the algorithm’s efficiency in determining den-
sity maps for regions outside the input network is
limited. Furthermore, the lack of support for repre-
senting changes in topology density maps over time
is a significant drawback. In several applications,
understanding trends and patterns over time associ-
ated with spatial data is a key element in supporting
better-informed decision-making.

Temporal Topology Density Map (TTDM) is an
optimized TDM algorithm, that supports urban data
analysis considering the spatial distribution of the
scalar field as well as the temporal variation. It com-
bines the representation power of Change Frequency
Heatmap (CFH) [Mariano et al., 2017] and the ef-
ficiency of Image-Foresting Transform (IFT) [Falcao
et al., 2004].

Figure 2 provides one running example with four
timestamps temporal changes (the size of the times-
tamps T = 4) on the introduced TDM example. This
stack of graphs, including temporal changes of edge
costs, is the input for the steps that compute a repre-
sentative TDM and encode temporal changes. After
the computation, it produces three outputs (the vi-
sualized 1D network, a 2D planar texture color map,
and a 3D mesh with a height map) for the final vi-
sualization.

More details regarding the computation of TTDM
can be found in the work by [Hu, 2022].

PROTOTYPES

Two prototypes were designed and implemented.
The first one, a desktop software prototype, aims to
support the performance and qualitative assessment
of the TDM and TTDM. This prototype allows al-
gorithm computation analysis according to different
parameter settings. The second one, a web-based
software prototype, aims to support the analyses of
diverse visual layouts associated with different case
studies.

This section overviews the main technologies em-
ployed in the implementation of the proposed algo-
rithms, as well as the prototypes created.

Implementation Aspects

Figure 3 illustrates the main technologies em-
ployed in the implementation of these two software
prototypes. The Python programming language and
the OSMnx package [Boeing, 2017]1 were utilized to
download and export geospatial data from Open-
StreetMap.2 The python module is responsible for
encoding the target network obtained from Open-
StreetMap (Label 1) to a comma-separated values
(CSV) file. The alternative supporting format (Label
2) of network data is GeoJSON,3 which is a geospa-
tial data interchange format based on JavaScript Ob-
ject Notation (JSON). The free Open Source soft-
ware QGIS4 and the commercial software ArcGIS
(Pro, Online)5 are the main popular tools to cre-
ate and edit GeoJSON files. Similarly, there are also
two additional formats (CSV and JSON) used for
loading weather data from two Norwegian providers:
Norwegian Climate Service Center6 (3 in the figure)
and Meteorologisk Institutt – Frost Application Pro-
gramming Interface (API)7 (4).
The TTDM computation analysis tool (Desktop)

(Label 5) is a software prototype that contains an
implementation of the TTDM algorithm in Unity8

with C# script and Mapbox Software Development
Kit (SDK).9 The input graph network is encoded into
two file formats (CSV, GeoJSON). This prototype
computes edge costs based on weather data recorded
in CSV and JSON. The prototype also integrates a
TTDM Dynamic Link Library (DLL) implemented
based on the IFT C source code package.10 The
software provides an approach to execute the TTDM

1https://github.com/gboeing/osmnx (As of Mar. 2023).
2https://www.openstreetmap.org/ (As of Mar. 2023).
3https://geojson.org/ (As of Mar. 2023).
4https://qgis.org/en/site/ (As of Mar. 2023).
5https://www.arcgis.com/ (As of Mar. 2023).
6https://seklima.met.no/ (As of Mar. 2023).
7https://frost.met.no/ (As of Mar. 2023).
8https://unity.com/ (As of Mar. 2023).
9https://www.mapbox.com/unity (As of Mar. 2023)
10https://github.com/tvspina/ift-demo (As of Mar.

2023).
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Fig. 1: A running example for Topology Density Map. The network data G includes two POI nodes (H1, H2)
and four non-POI nodes (A,B,C,D). For each POI node, GDAG is one DAG connecting non-POI nodes from
it. Gcost is the accessibility data, which includes the path cost and related POI label. It can be directly used
for the GTDM for the final visualization.
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Fig. 2: A running example for Temporal Topology Density Map.

Fig. 3: Overview of the different technologies used in the implementation of the prototypes.



algorithm on selected datasets with customized pa-
rameters. It supports 3D visualization as well as sav-
ing the algorithm computation result as a GeoJSON
format file (Label 6).
TTDM visualization analysis tool (Web server)

(Label 7) is a software prototype to visualize the
TTDM computation results on the web. It is mainly
implemented using Javascript, Mapbox GLJS li-
brary,11 and Bootstrap.12 This prototype supports
the assessment of generated visual structures with a
more user-friendly user interface (UI). Different kinds
of web clients (Label 8) are expected to access this
web server. Those clients allow users to upload a
TTDM GeoJSON file (Label 6) and compare associ-
ated visual results.

Overview of Prototypes

This section describes the main features of the de-
veloped prototypes.

TTDM Computation Analysis

The software prototype TTDM computation anal-
ysis tool (Desktop) is designed to support computa-
tion analysis. Its main functionalities are:
• Integration of a TTDM C source code package in
the TTDM computation.
• Execution of algorithms to support performance
and qualitative assessment and download of results.
• Execution of the TTDM algorithm on a selected
graph dataset with different parameters and visual-
ization of results in a 3D view.
• Saving of TTDM computation results as a GeoJ-
SON file for visualization assessment.

Figure 4 provides an overview of the implementa-
tion components. The external resources include files
or interfaces needed for the implementation. The
functions are programmed in C# script codes, and
visual structures are created by means of visual ob-
jects in Unity. Mapbox API (Label 1) is called by the
Mapbox SDK (Label 4) to construct a Mapbox street
map Layer (Label 9). The network and weather data
files (Label 2) are the data source for the core func-
tion in the TTDM computation (Label 5). This al-
gorithm needs to call the IFT algorithm available in
the created TTDM DLL file. The TTDM compu-
tation module uses the configuration defined in the
user interface (Label 11) to update the TTDM Visual
Layers (Label 10). Other features refer to exporting
the TTDM .geojson file (Label 6) and performance
assessment (Label 7). Finally, label and density maps
created during the computation can be exported (La-
bel 8).

Figure 5 presents a screenshot of the User Inter-
face of the TTDM computation analysis tool (Desk-
top). On the left region, there is a menu composed
of five panels (Labels 1-5). This menu allows the

11https://www.mapbox.com/mapbox-gljs (As of Mar.
2023).

12https://getbootstrap.com/ (As of Mar. 2023).

Fig. 4: The implementation architecture of the
TTDM computation analysis tool (Desktop).

definition of the configuration of the parameters be-
fore the TTDM computation. The users may select
the graph dataset, the method for encoding tempo-
ral changes, the weather dataset, and the daily data
filter (e.g., “all days,” “weekdays,” and “weekends”)
in the first Panel (Label 1). There are three choices
in the drop-down menu for the temporal change en-
coding methods. Available options include importing
predefined temporal changes, creating random tem-
poral changes, and computing the simulated tempo-
ral changes based on real weather data (e.g., in the
current version, snow data). The second one (Label
2) provides three choices to estimate the density field
on 2D planar surface TTDM with running Topology
Density Maps (TDM), IFT-based Topology Density
Map (ITDM) option 1, and option 2. It is also possi-
ble to use a slider to select any timestamp ITDM as
a representative. Another available option refers to
the definition of the representative based on an aver-
age function on the third panel (Label 3). The fourth
panel (Label 4) includes the parameter configuration
relating to the computation of a change frequency
heatmap. It allows the users to choose the density
or label maps as the input of the CFH algorithm,
the change binary pattern, and the time range (by
the sliders). The TTDM computation (Label 5) will
be started after the choice of the interpolation scale.
The top-right menu (Label 6) includes the display
control of the visualization components: loading and
saving of the TTDM computation result, saving den-
sity maps and label maps as figures, and executing
the performance test. In the center region (Label 7),
there is an area to display the 3D visualized results
with the fly control camera by the mouse. At the
bottom (Label 8), it shows some hotkey information
and one help button.

TTDM Visualization Analysis

The software prototype TTDM visualization anal-
ysis tool (Web server) is designed for visualization
analysis. Its main functionalities are::
• Decoding of the TTDM computation result (Geo-
JSON file) for the visualization analysis.
• Filtering the temporal changes with customized

https://www.mapbox.com/mapbox-gljs
https://getbootstrap.com/
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Fig. 5: Screenshot of the TTDM computation analysis tool (Desktop) created for TTDM computation analysis.

Fig. 6: The implementation architecture of the
TTDM visualization analysis tool (Web server).

parameters.
• Visualizing all data in the geographic coordinates
system.
• Providing a more user-friendly interface with some
features, such as the object track function by a mouse
hover and click, the playback function of the ITDM
for each timestamp, the camera positions synchro-
nization, etc.

Figure 6 shows an overview of its implementation.
Mapbox API (Label 1) is accessed by the Mapbox
GLJS (Label 3) to create all visual layers (Label
5). The TTDM GeoJSON file (Label 2) is uploaded
for the temporal change customized filter (Label 4).
This filter implements the main functions based on
the settings defined in the user interface (Label 6)
and exports the data to visual layers by Mapbox
GLJS.

Figure 7 presents a screenshot of the user inter-
face of the TTDM visualization analysis tool (Web
server) accessed by a web browser. There is one tog-
gle menu (Label 1) on the top left. It includes two
main tab pages (Label 2) “Load” and “Layers.” The
“Load” page (Label 3a) allows the users to choose
a remote TTDM GeoJSON file on the list directly
or one local file to upload before the visualization
analysis. It also supports the playback function with
the sliders for the selected timestamp data and the
waiting time for a load of each timestamp. Different
options are available for encoding temporal changes,
such as the selection of CFH input data (density map
or label map), the optional metric functions (change,
increase, decrease), the threshold for defining binary
maps, and the change binary pattern. The “Layers”
page (Label 3b) provides more options for advanced
visualization analysis. It includes layers to control
the different map layer views provided by Mapbox
GLJS, components of the visual integrator.In addi-
tion, some features like the camera position synchro-
nization by clicking copy and paste button and the
transparency alpha adjustment are also provided on
this page. The information on the object information
panel (Label 4) is updated when the mouse moves on
the map in the center main region (Label 5). This
center main region displays the final visualization re-
sult on the map, supporting pan and zoom opera-
tions with the mouse. The object screenshot panel



(Label 6) is activated after the left-click of the mouse.
This panel makes it easier to compare the data of one
marked position with another one shown in the ob-
ject information panel (Label 4). The snow depth
data may also be shown with various chart styles
if the user activates the option “Graph XY (snow
depth)” on the “Layers” page (Label 3b).
Figure 8 illustrates the visual effects of one exam-

ple with the default configuration. For instance, the
map style options include light (L), satellite (S), dark
(D), street (E), and outdoor (O). All of them are pro-
vided by Mapbox GLJS. The default configuration is
the light map style. It also supports the display of
the terrain and building data as additional features
with selected map styles. Next, three data layers
(POIs layer, intersections layer, and roads layer) will
responsively show points-of-interest nodes, intersec-
tions (nodes), and roads (edges). Here, we used la-
bels in the interface of the mobility applications in-
stead of the algorithm to support future user studies
with domain experts. At last, the three main mod-
ules (network color mapping, density color mapping,
and height mapping) of the visual integrator can be
configured. Also, it is possible to choose alternatives
to display the CFH result using height information.
The center region of the figure contains the visual re-
sult related to the integration of these selected mul-
tiple visual layers.

Figure 9 is one example of the object track func-
tion. It tracks and displays the object hovered by the
mouse. The priority from high to low is node, edge,
and point. In TTDM GeoJSON file, all information
is only saved in the geographic coordinates. TTDM
visualization analysis tool (Web server) is a proto-
type of visualizing and analyzing the TTDM compu-
tation result using GeoJSON format. It means it is
also feasible to visualize the TTDM computation re-
sult by the programming script in any software that
supports GeoJSON.

For most usage scenarios, the users are more inter-
ested in distinguishing the temporal changes in 3D
views. Figure 10 provides five typical configurations
for the usage. Here, we used the extrusion of poly-
gon13(Figure 10e) to create the 3D bars array for
demonstration. It is easiest to recognize the eleva-
tions accurately in our designed aspect.

We also explored the use of the proposed proto-
types in a visualization lab at NTNU Ålesund with
multiple projectors 14 as illustrated in Figure 11. It
has the capability to support several clients running
concurrently while simultaneously providing diverse
analytical perspectives. Moreover, it offers multiple
camera views of the same scenario, which can be con-
figured differently to facilitate improved analysis. 15

13https://docs.mapbox.com/mapbox-gl-js/example/
3d-extrusion-floorplan/ (As of Mar 2023).

14https://www.ntnu.edu/iir/
department-of-ict-and-natural-sciences (As of Mar.
2023).

15More related videos and materials can be down-

CONCLUSIONS

In this paper, we have introduced two prototypes
to support the assessment of Topology Density Maps
and their changes, referred to as Temporal Topology
Density Maps (TTDMs). The prototypes have the
potential to be employed by citizens and professionals
(e.g., urban planners, politicians) to analyse the tem-
poral features of urban data with pre-defined data
patterns, such as those encoded into binary strings.

The developed algorithms were embedded in two
software prototypes. One prototype focuses on the
Temporal Topology Density Map computation analy-
sis, including the support for the assessment of differ-
ent configuration settings. The other addresses the
visualization analysis itself. Both of them served as
tools for the conducted validation, involving perfor-
mance and qualitative assessments. The source code
of both prototypes can be found here16,17 The first
prototype focuses on the customization and analy-
sis of the impact of different parameters of the algo-
rithms. The goal, therefore, is to support the iden-
tification of the best configurations for a particular
usage scenario. The second prototype, in turn, sup-
ports the assessment of generated visual structures
by target users.

Future work will focus on integrating the TDM
and TTDM visual structures into the NORDARK-
DT, a digital twin has been developed to support
lighting infrastructure planning for green urban ar-
eas.18 We also plan to conduct user studies with
relevant stakeholders who are potentially interested
in identifying patterns and trends related to changes
in density maps that are associated with decision-
making processes in urban planning.
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