SIMBO - A FRAMEWORK FOR SIMULATION-BASED OPTIMIZATION
USING BAYESIAN OPTIMIZATION

Philipp Zmijewski
Nicolas Meseth
University of Applied Sciences Osnabriick
Oldenburger Landstra3e 62, Osnabriick 49090, Germany
Email: philipp.zmijewski @hs-osnabrueck.de, n.meseth @hs-osnabrueck.de

KEYWORDS

Simulation-based Optimization, Bayesian Optimization

ABSTRACT

SimBO is a flexible framework for optimizing discrete
event-driven simulations (DES) using sequential optimiza-
tion algorithms. While specifically designed for Bayesian
Optimization (BO) in the context of DES, SimBO can be
applied to any black-box problem with other optimization
algorithms. The framework consists of four encapsulated
components - the black-box problem, the sequential opti-
mization algorithm, a database for experiment configuration
and results, and a web-based graphical user interface - that
communicate via well-defined interfaces. Each component
can be run in different environments, allowing for cooper-
ation between different hardware- and software configura-
tions. In our research context, SimBQO’s architecture en-
abled BO algorithms to be run on a high-performance clus-
ter with GPU support, while the simulation is executed on
a local Windows machine using the Simio simulation soft-
ware. The framework’s flexibility also makes it suitable for
evolving from a research-focused tool to a production-ready,
cloud-based optimization tool for modern algorithms.

INTRODUCTION

Discrete Event Simulation (DES) is a commonly used ap-
proach for analyzing complex, dynamic, and stochastic sys-
tems. When enhanced with an optimization component, it
becomes a powerful decision-making tool for such systems
(Fowler et al. [2022)). The approach of optimizing a system
through a digital simulation is known as simulation-based
optimization (SBO).

According to Riley (2013), simulation-based optimization
(SBO) is often used as a static tool to address a specific
one-time question, rather than being dynamically integrated
into operational processes to improve day-to-day decisions.
However, achieving this integration requires fast delivery
of results, which implies short simulation and optimization
runtimes. Unfortunately, common SBO algorithms such
as genetic algorithms typically require a large number of
function evaluations, which translates into many simulation
runs. This becomes problematic for computationally inten-
sive simulations, where the time required for the simulation
runs and optimization process can be substantial. Bayesian
Optimization (BO) methods, which have a higher conver-
gence rate than genetic algorithms (Bull 2011)), could offer
a more sample-efficient solution for applying SBO in day-

Communications of the ECMS, Volume 37, Issue 1,

Proceedings, ©ECMS Enrico Vicario, Romeo Bandinelli,

Virginia Fani, Michele Mastroianni (Editors) 2023

ISBN: 978-3-937436-80-7/978-3-937436-79-1 (CD) ISSN 2522-2414

to-day decisions.

To make SBO more practical for day-to-day decision-
making, this research proposes SimBO (Simulation
and Bayesian Optimization), a flexible and component-
based framework with well-defined interfaces that applies
Bayesian Optimization algorithms to discrete-event simula-
tions. Currently, SimBO is focused on research and aims to
investigate how different BO algorithms can be used in sim-
ulation problems related to the manufacturing and logistics
domain. In the future, the authors envision SimBO evolv-
ing into a practical tool that offers default optimization con-
figurations for common problem classes, freeing decision-
makers from the need for specific knowledge about SBO
algorithms and Bayesian Optimization. Ultimately, SimBO
could be offered as an optimization-as-a-service (Bosse et
al. 2019)) in the cloud, enabling the broad use of novel ma-
chine learning-based optimization algorithms.

In the rest of this paper, the authors first give a brief in-
troduction to Bayesian Optimization and explain why it is
a promising approach for simulation-based optimization.
They then present a selection of BO algorithms that are cur-
rently implemented in SimBO. The paper goes on to de-
scribe the SimBO architecture and its ability to support a
high degree of flexibility and extensibility. The authors then
provide implementation details on the current version of
SimBO they developed for their research on BO with SBO.
The paper concludes with a summary and outlook on future
planned activities.

BACKGROUND AND RELATED WORK

Bayesian Optimization (BO), also known as Efficient
Global Optimization (Jones et al. [1998)), is a method to op-
timize expensive-to-evaluate and noisy black-box functions
(Balandat et al. |[2020). The term black-box function in this
context means that an analytical expression is not given or
hard to define, but we can observe the output of a given in-
put. This holds true for simulations, which in this paper are
considered black-box functions in that sense. In general, we
aim to solve max f(x) with x € X where f(x) is a black-box
function and X C R? a feasible set of d dimensions (Fra-
zier 2018; Balandat et al. [2020). In the context of SBO,
f(x) usually represents a performance indicator of the sys-
tem, like the achieved throughput or accumulated costs. d is
defined by the number of influenceable parameters, which
are also called decision variables or controls of the system.
Examples are the number of workers at a workstation or the
safety stock for a product.

Simulations pose special challenges that need to be ad-
dressed by the optimization algorithm. These challenges
are similar to those found in the problem of hyperparameter
tuning of machine learning algorithms, such as deep neural
networks. Here, BO algorithms are the state-of-the-art (Fra-
zier 2018). These special characteristics, in addition to the
aforementioned noisiness and expensive evaluations, are:

« Multi-Objectiveness: SBO problems often face mul-
tiple objectives that must be optimized simultaneously
without knowing an optimal trade-off in advance.

« High-Dimensionality: Dealing with large and com-
plex simulations can lead to hundreds or thousands of
parameters or dimensions. A threshold for the num-
ber of dimensions to call a problem high-dimensional
is not defined. Here, it is assumed that problems with
d >= 20 can be defined as high-dimensional. This
value refers to the soft limit d < 20 of “Vanilla BO”,
mentioned by Frazier (ibid.).

« Mixed Decision Variables: Real-world simulations
often contain mixed decision variables (continuous and
discrete), which can be challenging for algorithms that
typically deal with only one variable type (Pelamatti et
al.[2018).

« Constraints: SBO problems require consideration of
input- and output constraints to enable realistic opti-
mization.

There are numerous SBO algorithms that address the afore-
mentioned characteristics and can thus be suitable for the
optimization of real-world simulation problems. Some of
them are described in Amaran et al. (2016) and Nguyen
et al. (2014). However, most popular algorithms, such as
CMA-ES (Hansen [2016) and NSGA-II (Deb et al. [2002)
are designed for cheap-to-evaluate objective functions and
may not be efficient enough for complex simulations with
longer runtimes. For such simulations, more efficient al-
gorithms are needed that can achieve good results with
a small evaluation-budget (Bull 2011). The authors con-
sider Bayesian Optimization algorithms promising candi-
dates due to their proven high sample-efficiency.

BAYESIAN OPTIMIZATION ALGORITHMS

The ability to optimize expensive-to-evaluate and noisy
black-box functions makes BO a popular approach in fields
like materials and drug design (Packwood et al. 2017), re-
inforcement learning (Brochu et al. [2010) and simulations
(Schultz et al.[2018). The potential of BO for SBO has long
been shown by Chick (2006)), among others. Most BO algo-
rithms are computationally expensive (Osborne 2010), but
today’s powerful and at the same time relatively cheap com-
putation resources allow BO’s use in an expanding list of
applications. This led to a rapid development and improve-
ment of BO algorithms over the past years (Shahriari et al.
20165 Frazier2018|).

All BO algorithms share the same underlying structure.
They have two essential components: the surrogate model
(SM) and the acquisition function (ACF). For the surrogate
model, mostly Gaussian process regression (GPR) is used.
GPR can capture and quantify the uncertainty of the under-

lying function, which is crucial for stochastic simulations.
Further advantages of GPR are explained in Rasmussen et
al. (2000).

The surrogate model approximates the black-box-function
based on a given set of points (prior). In our context of
DES, a point is a set of evaluated simulation parameters.
The prior model is fed to the acquisition function, which
has the task of suggesting the next best set of parameters
to evaluate. It works by analyzing the surrogate model and
trading off new points that either lie in a promising area of
the dimensional space (suspected minimum or maximum),
or that are in an area with high uncertainty. Both could hide
a potential better value for f(x). The so-found point is eval-
uated (here: simulated) and the result is handed to the surro-
gate model to update itself (posterior). This process repeats
and is called the optimization loop. While the loops runs,
new points are added and the surrogate model is updated
sequentially. The loop stops when the abortion criterion is
met. This is typically the case when the evaluation-budget
is exhausted or a specific, satisfactory outcome is reached.
Like the surrogate model, the acquisition function can also
have different implementations depending on the use case.
Two widely adopted acquisition functions are Expected Im-
provement (EI) and Upper Confident Bounds (UCB) (Frazier
2018; Shahriari et al. [2016)).

Over the last few years, several algorithms from the family
of Bayesian Optimization were published. Each addresses
the challenges of SBO with different approaches. Based on
a first feasibility assessment, the authors selected a list of
currently six algorithms to be implemented in SimBO. In
the following, the six algorithms are briefly outlined, with
emphasis on their basic approach. Further details can be
obtained from the references given in each subsection.

Table I: Capabilities of selected BO algorithms regarding the challenges

of simulation-based optimization.

Multi- High- Mixed Decision

Algorithm Objectiveness | Dimensionality Variables Constraints
GPEI no no partial yes
TurBO no yes partial yes
MORBO yes yes partial yes
SAASBO no yes partial no
gNEHVI yes partial partial yes
gNEHVI-SAASBO yes yes partial no

GPEI is short for Gaussian Process - Expected Improve-
ment. It is similar to the EGO algorithm, presented by Jones
et al. (1998). It is used for continuous parameters with a soft
limit of 20 Dimensions (Frazier2018)) and can handle single
objective problems. It is also called “Vanilla BO” (Feurer et
al. 2018)) because it implements the idea of BO in its basic
form.

TuRBO is short for Trust Region Bayesian Optimization
(Eriksson et al. [2019). Instead of one large model, it fits
smaller local GP models (trust regions) in promising re-
gions of the search space and allocates samples across these
models globally. Depending on their success, trust re-
gions can shrink, grow, or ultimately die and restart in a
different area of the dimensional space. TuRBO is used
for high-dimensional, continuous, single-objective prob-
lems. There is an enhancement for multi-objective problems
called MORBO (Daulton et al. [2022a).

SAASBO stands for Sparse Axis Aligned Subspace Bayes-
ian Optimization and focuses on high dimensional, contin-
uous, single-objective problems. It assumes a hierarchy of
feature relevance and tries to identify these features (param-
eters) during the optimization, resulting in a more useful
model for exploration and exploitation of the most impor-
tant parameters (Eriksson et al. |2021b).

gNEHVI-MOBO is an algorithm for multi-objective
Bayesian Optimization (MOBO). Instead of a single best
point, the result in multi-objective optimization is a Pareto
front for the objectives, where for all points on this front
it holds true that none of the objectives can be improved
without compromising another one. MOBO uses Gaussian
processes (GP) to model the objectives, and draws samples
based on the expected hypervolume improvement (EHVI)
criterion. It allows parallel sampling (q) and considers noisy
objectives (N) (Daulton et al. 2021)).

Furthermore, combinations of different surrogate models
and acquisition functions were proposed, such as qNEHVI-
SAASBO (Eriksson et al. [2021a). For dealing with pa-
rameter spaces with mixed decision variables (continuous
and discrete/categorical), typically the one-hot-encoding ap-
proach is used, but other approaches are discussed. The in-
terested reader is referred to Garrido-Merchan et al. (2020),
Yang et al. (2019), and Daulton et al. (2022b).

While the author’s of most of the optimization algorithms
mentioned provide example implementations, they greatly
differ in the way they can be used and need customization
to be applied to simulations, for which the same can be said.
SimBO aims to consolidate the optimization algorithms as
well as the simulation models and create a common inter-
face for both.

SIMBO

Components Overview

SimBO consists of a user interface, a database, and the
SimBO core. Moreover, SimBO requires a simulation
model (or any black-box function that can be evaluated) to
optimize (figure|[T).

User Interface

SimBO has a web-based user interface that allows users
to manage optimization experiments. An optimization ex-
periment involves optimizing a black-box function (in this
case, a simulation model) using a specified optimization al-
gorithm, for which a set of hyperparameters must be config-
ured. The experiment also includes parameters such as an
abortion criterion.

Once set up, the user can schedule, run, pause, and stop
an experiment as well as view the optimization status while
the experiment is running and the optimization results after
the experiment has finished. All information about an ex-
periment, including the status and results, is stored in the
SimBO database.

SimBO Custom
User Interface User Interface

é Manage experiments l\

SimBO Database

Experiment configuration Experiment results

SimBO Core

Evaluation

Simulation Model

Figure 1. Components of the SimBO architecture and their interaction.

Database

SimBO utilizes a NoSQL database to store experiment con-
figurations and results. This approach offers greater flexi-
bility than a rigidly structured relational database and can
easily handle data in JSON format. This flexibility is
particularly important because the optimization algorithms
and simulation models managed in the database exhibit
significant heterogeneity in their attributes. Additionally,
the database must accommodate the inclusion of new al-
gorithms and simulation models, whose attributes are un-
known in advance. The JSON format is used mainly for
storing the experiments and their trial history.

The SimBO database acts as an intermediary between the
SimBO core and the user interface (UI). It is worth not-
ing that, although SimBO comes with a Ul, it is possible
to implement and use a different UI as long as it is com-
patible with the SimBO database. In the future, a custom
UI may prove useful for practitioners who seek to incorpo-
rate advanced optimization techniques into their day-to-day
decision-making processes. These users may not require the
full range of functionalities provided by the SimBO UI, but
instead prefer a pre-configured set of use-cases that can be
executed efficiently.

Core

The SimBO core comprises the SimBO manager, exper-
iment runner, and two types of abstract bridges, one to
connect to different optimization algorithms and another to
interface with the simulation models (see figure [2). The
SimBO manager is the entry point for running an experi-
ment. Its primary task is to retrieve information about the
experiment from the SimBO database and instantiate the
appropriate experiment runner. The experiment runner re-
ceives the information about the experiment and uses it to
create the required bridges for the specific algorithm and
simulation model.

There are two types of experiment runners: optimization-
driven and simulation-driven. The optimization-driven ex-
periment runs in a closed loop, which is suitable if the simu-
lation can be synchronously executed from the SimBO pro-

— — =

SimBO Database
— -
Experiment SImBO Core Experiment
f configuration ; f results ;
| SimBO Manager |
Experiment Runner
‘ Optimization-driven | OR ‘ Simulation-driven |

!

Optlmlzatlcn Algorithm Simulation Model
Bridge Bridge

Scolla
/smemon Model /

OR ‘ Off-the-shelf Simulation

‘ Code-based Simulation

Figure 2: A detailed view of the SimBO core architecture.

gram code. An example is a simulation model written in
the Python-based SimPy library (Matloff 2008)). In contrast,
the simulation-driven experiment runs asynchronously us-
ing an ask-and-tell interface. This approach is suitable if
the simulation model is executed by an off-the-shelf simula-
tion tool with a custom graphical user interface for running
experiments. Here, SimBO cannot directly initiate a simula-
tion run, but it can provide a web-service-based interface for
the simulation tool to request new parameterization sets for
evaluation. A critical prerequisite is that the simulation tool
offers a mechanism to extend the experimentation capabili-
ties, such as through the implementation of a custom add-in.
An example is Simio with its C#-API that allows writing ex-
perimentation add-ins that can be loaded in the UI and take
over the default experimentation process in Simio while still
utilizing Simio’s UL

In the optimization-driven case, the optimization compo-
nent controls the optimization process and calls the simu-
lation model during the run. In contrast, in the simulation-
driven scenario, the simulation component is in control and
actively asks the optimization component for points to eval-
uate, and afterward reports (tells) the results. The chosen
approach depends on the type of simulation model and the
software it was created with.

Regardless of the type of experiment runner, optimization-
driven or simulation-driven, two so-called bridges are re-
quired to conduct an experiment: one for the optimization
algorithm, and one for the simulation model. Both bridges
provide access to the respective components through an ab-
stract class with a standardized interface. Through this en-
capsulation, new algorithms and simulation models can be
added easily.

An optimization algorithm bride requires the following

three functions:

« Initialize: Define the search space and objectives and
initialize the optimization model by generating random
parametrization sets, using Sobol-sequences (Sobol
1967), which are evaluated by the simulation.

o Suggest: Suggest one or more parametrization sets,
based on the current surrogate model and acquisition
function. The parametrization sets are part of the same
trial. A single parametrization from this set is called a
candidate.

« Complete: Receive the evaluation results for a trial (or
a subset of candidates) and hand it to the model. It
should be noted that at this step the model is not re-
fitted (yet).

The simulation model bridge exposes an evaluation end-
point to synchronously evaluate a parameterization set for
headless and code-based simulation models. That is, the
experiment runner calls the endpoint, which is typically
a function, and waits for the simulation to return the re-
sults. For off-the-shelf simulation tools, the simulation
model bridge does not provide a such an endpoint for evalu-
ation because here, the simulation is the driver and does not
get called. Instead, the simulation model calls the exposed
web-services of the optimization bridge in an ask-and-tell
manner (suggest-compelete cycles). Additionally and for
both cases, the simulation model bridge provides access to
the important information about the simulation model, such
as its parameters (e.g., name and type), the objectives and
whether they should be minimized or maximized, and op-
tionally constraints that must be considered.

Simulation Model

As described above, SimBO can handle two types of simu-
lation models: code-based simulations and simulations cre-
ated with an off-the-shelf simulation tool. Code-based sim-
ulations are directly written in a programming language and
can therefore be executed by the optimization engine in a
synchronous manner. They typically expose a function with
corresponding parameters for the simulation model’s con-
trols. Off-the-shelf simulations tools cannot be run in that
manner and need an additional interface to communicate
with the optimization engine. Here, the logic is reversed,
and the simulation tool is responsible for the optimization
process.

Simulation tools like Simio allow for running so-called
headless simulations, which could be considered a third
type. However, a headless simulation behaves similar to a
code-based simulation. Instead of a function call, a headless
simulation is typically an executable file that can be run via
the command line. In this paper, both types are subsumed
under the code-based simulation models.

Experiments

To run an optimization, the user must first define an exper-
iment, preferably using the SimBO UI. An experiment re-
quires the specification of a simulation model and an op-
timization algorithm with all its hyperparameters. For the
experiment, the user is required to set an abortion crite-
rion with three options to choose from: evaluation budget,
threshold or desired improvement. Setting an evaluation

budget is the most common. Here, the optimization will
run for the specified number of simulation runs. Setting a
threshold means the user can define a result which should
be achieved at minimum. When reached, the optimization
will terminate. It could well be that the threshold is never
reached. To have a fallback, the user must additionally de-
fine an evaluation budget. As the third option, the user can
express a desired relative improvement / in percent with a
number of trials n. In this case, the optimization will termi-
nate when the desired improvement / was not reached over
the last n trials.

Once created, the user can run the same experiment setting
multiple times. This is particularly useful for recurring op-
timizations of the same simulation model and the same op-
timization configuration.

The user can monitor the execution of an experiment in
real-time using the SimBO UI. Here, the user can see the
progress in terms of completed simulation runs or the re-
maining evaluation budget. Furthermore, the UI displays
an overview of the most important performance metrics for
each experiment, including the current best solution. Cur-
rently, the user has to check manually if an experiment is
finished. Because experiments can run for many days, it is
planned to implement a notification service, for example via
e-mail, to inform the user about important events.

After an experiment is finished, the user can open the Ul
and view a compact version of the experiment result, such
as the best point found or the total run time. The experi-
ment data along with a standard PDF-report including data
visualizations is provided as a download.

PROTOTYPICAL IMPLEMENTATION

The SimBO architecture described in the previous section
has been implemented for evaluation and research purposes.
In this section, the implementation details for the user in-
terface, the database, the SImBO core, and the simulation
models are described.

User Interface

The prototype uses a web-frontend based on Vue, a modern
JavaScript framework (You|2023). It provides a minimal set
of masks to create and manage experiments. The website is
self-hosted and currently inaccessible from outside the uni-
versity’s network.

Database

The SimBO database is implemented using Firestore, a
NoSQL database included in the Google Firebase cloud
platform (Google Inc. 2023). It enables fast implementa-
tion cycles with an easy-to-use API and does not require
any manual installation or configuration. For applications
with data privacy requirements, one could use a self-hosted,
open-source alternative such MongoDB (MongoDB Inc.
2023).

Core

The SimBO core is running on a high-performance cluster
owned by the University of Applied Sciences in Osnabriick,
Germany. The cluster consists of multiple nodes, each with
a 40 GB GPU (Nvidia A100), 128-core CPU and 512 GB
RAM. Each optimization run is executed on a single node.

The SimBO core is fully Python-based. For the imple-
mentation of the optimization algorithms, SimBO builds on
top of BoTorch (Balandat et al. 2020), a Python-library for
Bayesian optimization based on the popular machine learn-
ing library PyTorch (Paszke et al. |2019). With BoTorch
at its core, SimBO can leverage GPU computation when
needed. In addition to the BO algorithms mentioned in
section “Bayesian Optimization Algorithms”, the SimBO
prototype implements two genetic algorithms, CMA-ES
(Hansen et al. [2023) and NSGA-II (Blank et al. [2020), for
benchmarking purposes. Further, the Sobol-algorithm, a
quasi-random point generator, is included as a baseline for
the convergence-rate benchmarking.

Simulation Models

For code-base simulations, we use SimPy, a python library
for discrete-event-simulation (Matloff 2008)). The simula-
tions are either executed on the same hardware as the op-
timization (for code-based simulations) or on a virtual ma-
chine (Windows 10, octa-core 3.1 GHz, 16 GB RAM) in the
case of the Simio simulation software.

For the Simio software, an experiment add-in was devel-
oped to create an interface to communicate with SimBO.
The add-in manages the optimization run by calling the
web-service endpoints mentioned earlier. All endpoints are
provided by the simulation-driven experiment runner. All
Simio simulation models are executed on the aforemen-
tioned Windows-based virtual machine.

Current use cases under examination are the optimization
of material requirements planning simulation and the opti-
mization of mold procurement to minimize the waste in the
injection molding industry.

Application Scenarios

Bayesian optimization is a versatile technique that can be
applied to a variety of scenarios involving black-box prob-
lems, where inputs and outputs are known and a mathemati-
cal relationship between them can be assumed. The authors
focus on discrete event-driven simulations in manufactur-
ing and logistics. Specifically, they use SimBO to address
two problems: Material Requirement Planning (MRP) sim-
ulations and resource allocation for waste reduction in the
plastics industry. While the latter problem is still at an early
stage and won’t be discussed further, the optimization of
the MRP simulation is well advanced, and the authors plan
to publish results in the coming months.

The MRP optimization problem is characterized by its high
dimensionality, which involves hundreds of parameters, as
well as its multi-objective nature, which considers both
costs and service level. Additionally, there’s a hierarchi-
cal linkage between the underlying materials and the cor-
responding parameters. In the optimization process, safety
stock and safety lead time are optimized per product to mini-
mize cost while providing a specific service level, or alterna-
tively, maximize service level in a multi-objective scenario.
The increasing popularity of Bayesian optimization has led
more researchers and practitioners to apply this technique
to their simulations (Shahriari et al. 2016). For instance,
Kiuchi et al. (2020) use Bayesian optimization to optimize
inventory levels in agent-based supply-chain simulations,
while Chepiga et al. (2023) apply it to optimize process pa-

rameters in stainless steel production.

CONCLUSION

This paper introduced SimBO, a framework designed for
simulation-based optimization using Bayesian Optimiza-
tion. Its purpose is to streamline optimization experimenta-
tion by consolidating the optimization and simulation com-
ponents and offering a user-friendly interface to pair differ-
ent algorithms with different simulation models. The algo-
rithms utilized in SimBO are tailored to address various as-
pects of simulations such as mixed decision-variables, high
dimensionality, and multi-objectiveness. The algorithms are
built on top of the BoTorch framework wherever possible
to take advantage of GPU acceleration. SimBO can handle
both code-based (including headless) and off-the-shelf sim-
ulations.

Currently, SimBO is primarily focused on facilitating re-
search into the suitability of modern optimization algo-
rithms for SBO. As an example, the authors are utilizing
SimBO in an ongoing research project that involves apply-
ing various BO algorithms to a simulation for material re-
quirements planning (MRP). In this project, SimBO serves
as the orchestrator for the optimization and simulation com-
ponents, automating all experiments conducted.

In the future, the aim is to transform SimBO into a tool that
is production-ready, and possibly cloud-based, with the in-
tention of serving both researchers and practitioners. The
next steps in the development of SimBO will be to provide
users with the ability to create custom user interfaces to in-
teract with the system. Additionally, SiImBO will integrate
more optimization algorithms typically applied in SBO, as
well as create additional interfaces for widely adopted sim-
ulation software available on the market.

The code for the current stage of SimBO can be found at:
https://github.com/pehzet/SimB0,

REFERENCES

Amaran, Satyajith, Nikolaos V Sahinidis, Bikram Sharda,
and Scott J Bury (2016). “Simulation optimization: a re-
view of algorithms and applications”. In: Annals of Op-
erations Research 240, pp. 351-380.

Balandat, Maximilian, Brian Karrer, Daniel Jiang, Samuel
Daulton, Ben Letham, Andrew G Wilson, and Eytan
Bakshy (2020). “BoTorch: A framework for efficient
Monte-Carlo Bayesian optimization”. In: Advances in
neural information processing systems 33, pp. 21524—
21538.

Blank, Julian and Kalyanmoy Deb (2020). “Pymoo: Multi-
objective optimization in python”. In: IEEE Access 8,
pp- 89497-89509.

Bosse, Sascha, Abdulrahman Nahhas, Matthias Pohl,
and Klaus Turowski (2019). “Towards an Auto-
mated Optimization-as-a-Service Concept.” In: JoTBDS,
pp. 339-343.

Brochu, Eric, Vlad M Cora, and Nando De Freitas (2010).
“A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and
hierarchical reinforcement learning”. In: arXiv preprint
arXiv:1012.2599.

Bull, Adam D (2011). “Convergence rates of efficient global
optimization algorithms.” In: Journal of Machine Learn-
ing Research 12.10.

Chepiga, Timur, Petr Zhilyaev, Alexander Ryabov, Alexey
P Simonov, Oleg N Dubinin, Denis G Firsov, Yulia O
Kuzminova, and Stanislav A Evlashin (2023). “Process
Parameter Selection for Production of Stainless Steel
316L Using Efficient Multi-Objective Bayesian Opti-
mization Algorithm”. In: Materials 16.3, p. 1050.

Chick, Stephen E. (Dec. 2006). “Bayesian Ideas and Dis-
crete Event Simulation: Why, What and How”. In: Pro-
ceedings of the 2006 Winter Simulation Conference.
ISSN: 1558-4305, pp. 96-106. po1: 10 . 1109 / WSC .
2006.323042.

Daulton, Samuel, Maximilian Balandat, and Eytan Bak-
shy (2021). “Parallel bayesian optimization of multiple
noisy objectives with expected hypervolume improve-
ment”. In: Advances in Neural Information Processing
Systems 34, pp. 2187-2200.

Daulton, Samuel, David Eriksson, Maximilian Balandat,
and Eytan Bakshy (2022a). “Multi-objective bayesian
optimization over high-dimensional search spaces”. In:
Uncertainty in Artificial Intelligence. PMLR, pp. 507—
517.

Daulton, Samuel, Xingchen Wan, David Eriksson, Maxi-
milian Balandat, Michael A Osborne, and Eytan Bak-
shy (2022b). “Bayesian optimization over discrete and
mixed spaces via probabilistic reparameterization”. In:
arXiv preprint arXiv:2210.10199.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan (2002). “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II". In: IEEE transactions
on evolutionary computation 6.2, pp. 182-197.

Eriksson, David, Pierce I-Jen Chuang, Samuel Daulton,
Peng Xia, Akshat Shrivastava, Arun Babu, Shicong
Zhao, Ahmed Aly, Ganesh Venkatesh, and Maximil-
ian Balandat (2021a). “Latency-aware neural architec-
ture search with multi-objective bayesian optimization”.
In: arXiv preprint arXiv:2106.11890.

Eriksson, David and Martin Jankowiak (2021b). “High-
dimensional Bayesian optimization with sparse axis-
aligned subspaces”. In: Uncertainty in Artificial Intelli-
gence. PMLR, pp. 493-503.

Eriksson, David, Michael Pearce, Jacob Gardner, Ryan D
Turner, and Matthias Poloczek (2019). “Scalable global
optimization via local bayesian optimization”. In: Ad-
vances in neural information processing systems 32.

Feurer, Matthias, Benjamin Letham, Frank Hutter, and
Eytan Bakshy (2018). “Practical transfer learning for

bayesian optimization”. In: arXiv preprint arXiv:1802.02219.

Fowler, John, Sondoss El Sawah, and Hasan Hiiseyin Tu-
ran (2022). “Recent advances in simulation-based opti-
mization for operations research problems”. In: Annals
of Operations Research, pp. 1-2.

Frazier, Peter I (2018). “A tutorial on Bayesian optimiza-
tion”. In: arXiv preprint arXiv:1807.02811.

Garrido-Merchan, Eduardo C and Daniel Hernandez-
Lobato (2020). “Dealing with categorical and integer-
valued variables in bayesian optimization with gaussian
processes”. In: Neurocomputing 380, pp. 20-35.

https://github.com/pehzet/SimBO
https://doi.org/10.1109/WSC.2006.323042
https://doi.org/10.1109/WSC.2006.323042

Google Inc. (2023). Firebase Cloud Service. Accessed:
2023-02-21.

Hansen, Nikolaus (2016). “The CMA evolution strategy: A
tutorial”. In: arXiv preprint arXiv:1604.00772.

Hansen, Nikolaus, yoshihikoueno, ARF1, Gabriela Kadle-
cova, Kento Nozawa, Luca Rolshoven, Matthew Chan,
Youhei Akimoto, brieglhostis, and Dimo Brockhoff (Jan.
2023). CMA-ES/pycma: r3.3.0. Version 13.3.0. DOI: |10.
5281 /zenodo . 7573532, URL: https://doi.org/
10.5281/zenodo. 7573532,

Jones, Donald R, Matthias Schonlau, and William J Welch
(1998). “Efficient global optimization of expensive
black-box functions”. In: Journal of Global optimization
13.4, p. 455.

Kiuchi, Atsuki, Haiyan Wang, Qiyao Wang, Takahiro
Ogura, Tazu Nomoto, Chetan Gupta, Takaharu Matsui,
Susumu Serita, and Chi Zhang (2020). “Bayesian Op-
timization Algorithm with Agent-based Supply Chain
Simulator for Multi-echelon Inventory Management”.
In: 2020 IEEE 16th International Conference on Au-
tomation Science and Engineering (CASE), pp. 418-425.
DOI:/10.1109/CASE48305.2020.9216792.

Matloff, Norm (2008). “Introduction to discrete-event sim-
ulation and the simpy language”. In: Davis, CA. Dept of
Computer Science. University of California at Davis. Re-
trieved on August 2.2009, pp. 1-33.

MongoDB Inc. (2023). MongoDB. Accessed: 2023-02-21.

Nguyen, Anh-Tuan, Sigrid Reiter, and Philippe Rigo (2014).
“A review on simulation-based optimization methods ap-
plied to building performance analysis”. In: Applied en-
ergy 113, pp. 1043-1058.

Osborne, Michael A (2010). “Bayesian Gaussian processes
for sequential prediction, optimisation and quadrature”.
PhD thesis. Oxford University, UK.

Packwood, Daniel et al. (2017). Bayesian optimization for
materials science. Springer.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. (2019).
“Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information
processing systems 32.

Pelamatti, Julien, Loic Brevault, Mathieu Balesdent, El-
Ghazali Talbi, and Yannick Guerin (2018). “How to
deal with mixed-variable optimization problems: An
overview of algorithms and formulations”. In: Advances
in Structural and Multidisciplinary Optimization: Pro-
ceedings of the 12th World Congress of Structural
and Multidisciplinary Optimization (WCSMO12) 12.
Springer, pp. 64-82.

Rasmussen, Carl Edward and Christopher K. I. Williams
(2006). Gaussian processes for machine learning. en.
Adaptive computation and machine learning. OCLC:
ocm61285753. Cambridge, Mass: MIT Press. ISBN: 978-
0-262-18253-9.

Riley, Linda Ann (2013). “Discrete-event simulation opti-
mization: a review of past approaches and propositions
for future direction.” In: SummerSim, p. 47.

Schultz, Laura and Vadim Sokolov (2018). “Bayesian op-
timization for transportation simulators”. In: Procedia
computer science 130, pp. 973-978.

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de
Freitas (2016). “Taking the Human Out of the Loop: A
Review of Bayesian Optimization”. In: 104. ISSN: 1558-
2256. DOI:110.1109/JPROC.2015.2494218.

Sobol, II’'ya Meerovich (1967). “On the distribution of
points in a cube and the approximate evaluation of inte-
grals”. In: Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki 7.4, pp. 784-802.

Yang, Kaifeng, Koen van der Blom, Thomas Bick, and
Michael Emmerich (2019). “Towards single-and multi-
objective Bayesian global optimization for mixed integer
problems”. In: AIP Conference Proceedings. Vol. 2070.
1. AIP Publishing LLC, p. 020044.

You, Evan (2023). VueJS - The Progressive JavaScript
Framework. Accessed: 2023-02-21.

AUTHOR BIOGRAPHIES

Philipp Zmijewski Philipp Zmijewski is a PhD student and
research assistant at the University of Applied Sciences Os-
nabriick. In his doctoral thesis, he is exploring the applica-
tion of Bayesian Optimization to discrete-event simulation.

Nicolas Meseth Nicolas Meseth is a Professor of Infor-
mation Systems at the University of Applied Sciences Os-
nabriick. His research focuses on applications of Al and
machine learning in the food industry.

https://doi.org/10.5281/zenodo.7573532
https://doi.org/10.5281/zenodo.7573532
https://doi.org/10.5281/zenodo.7573532
https://doi.org/10.5281/zenodo.7573532
https://doi.org/10.1109/CASE48305.2020.9216792
https://doi.org/10.1109/JPROC.2015.2494218

