
FUNCTIONAL ANALYSIS AND PERFORMANCE EVALUATION
OF DECODER DECISION TREE GENERATION ALGORITHMS

Lillian Tadros
Robotics Research Institute

Technical University of Dortmund
Email: lillian.tadros@tu-dortmund.de

KEYWORDS

Irregular instruction set architectures; Instruction de-
coders; Decision trees; Hardware modeling

ABSTRACT

Instruction decoders are indispensable components of
processor toolchains. The strenuous manual implemen-
tation of decoders can be greatly alleviated by decoder
generation tools. These need to handle the rising com-
plexity of modern instruction sets, notably irregulari-
ties such as non-uniform opcodes and logic propositions
on bit fields. Furthermore, tools need to provide cost-
optimized decoders, the efficiency of which can have
a substantial effect on the overall performance. This
paper analyzes five published algorithms for decoder
generators from two perspectives: First, in terms of
functionality, we systematically assess how each tool
handles different properties of modern instruction sets,
highlighting properties that are challenging, unhandled
by current algorithms or even result in functionally er-
roneous decoders. Second, we challenge seemingly in-
tuitive definitions of decoder optimality using a sophis-
ticated model of decision tree cost. We experimentally
validate this analytical model for generated decoders of
the SPARC, MIPS32 and ARMv7 instruction sets. For
our analysis, we implemented all five algorithms after
correcting conceptual errors and extending the func-
tionality to handle the above-mentioned ISAs. Our
work reveals that state-of-the-art decoder generation
tools are unable to fully and correctly handle complex
ISAs and adopt an erroneous notion of optimality.

INTRODUCTION

Instruction decoders are common components in SoC
designs, where they span a wide range of application
options: As part of ASIPs or COTS processor models,
inside instruction set simulators (ISS) or binary tools
such as assemblers or debuggers, for high-level system
simulations or cycle-accurate verification.
Designing decoders, however, is arguably one of the
most time-consuming, complex and error-prone model-
ing tasks and one that is still largely manual. There are
few tools that generate decoders given a high-level de-
scription of the instruction set. Typically, those gener-
ate a decision tree, where each node contains a decision
function over a set of instruction bits. The instruction
is thus fully classified upon reaching the corresponding
leaf.
As the trend is towards larger and more complex in-
struction sets, decoder generators face new challenges.

To accommodate new instructions with minimal impact
and maximum backward-compatibility, instruction set
designers often resort to non-linearities such as multi-
ple opcode fields, encoding sub-variants or logic propo-
sitions on groups of bits. The few tools that attempt
automatic generation of instruction decoders are not
fully equipped to address such irregularities.

Beside the functional requirements, the efficiency of the
decoder model, i.e. the speed at which it can classify a
given instruction, is crucial to the performance of the
final processor model and of the simulation platform at
large, and is still as relevant as ever even on modern
hardware. This becomes apparent when one considers
the extensive body of research that has been dedicated
to devising static, dynamic or partial code-translation,
relocation and caching techniques (e.g. [1, 2]), all of
which try to avoid interpretive simulation altogether.
While such techniques do improve speed, they are all in-
herently inflexible for simulation purposes, completely
unfit for debugging, and therefore ultimately unable to
replace interpretive decoding. Thus, it is incumbent
that decoder generation tools should seek efficient so-
lutions. Unfortunately, the available tools either make
incorrect assumptions regarding cost modeling, or do
not consider efficiency altogether.

This paper is organized as follows: We refrain from
including an extra section on related work since it is
the purpose of this paper to assess existing tools for
automatic decoder generation, making the respective
tools rather the main content of our work. We are not
aware of any related work that surveys different decoder
generation algorithms. We therefore proceed directly
with the required definitions in the following section,
which include the properties and challenges of modern
instruction sets. Our main contribution then follows,
consisting of a thorough analysis of five algorithms for
generating decoder decision trees, first in terms of func-
tionality, then in terms of cost. In terms of function-
ality, we identify certain properties of instruction sets
that are especially challenging to generator tools. We
show that some irregularities either cannot be handled
at all or even lead to erroneous decoders. In terms of
performance, we first discuss several popular definitions
of optimality that prove misleading. We then carry
out a theoretical cost analysis based on a sophisticated
model for decision tree cost. We verify these analytical
results by implementing, correcting and expanding the
five algorithms and experimentally benchmarking the
performance of the generated decoders for the SPARC
[3], MIPS32 [4] and ARMv7 [5] platforms. We finally
conclude with some open questions.

Communications of the ECMS, Volume 37, Issue 1,
Proceedings, ©ECMS Enrico Vicario, Romeo Bandinelli,
Virginia Fani, Michele Mastroianni (Editors) 2023
ISBN: 978-3-937436-80-7/978-3-937436-79-1 (CD) ISSN 2522-2414

TABLE I: Example of an Irregular Instruction Set

Encoding Condition Feature
A 11-- 1--- Non-uniform opcodes (A,B,C,D)
B 0-1- ---1 Non-identification bit b0
C -00- 0---
D 10-- 1--- ¬(b2 ∧ b1 ∧ b0) Boolean proposition
AA 11-- 111- Specialization
AB 11-- 10-1 Multiple specialization
AAA 11-- 1111 Nested specialization

The instruction encodings are defined using a notation where the bits
are listed in MSB order, set bits are written as ’1’, unset bits as ’0’
and don’t-care bits as ’-’. The formal mathematical notation for e.g.
instruction A in row 1 would be: b7 ∧ b6 ∧ b3.

BACKGROUND AND DEFINITIONS

Preliminary Definitions

We begin by defining an instruction instance or bit
string s as an n-length string over the binary alpha-
bet. Formally, s ∈ {0, 1}n.
An instruction encoding or bit pattern p is an n-
length string over the ternary-logic alphabet, i.e. p ∈
{0, 1,−}n where “–” designates an undefined or “don’t-
care” bit. Note that shorter encodings can be padded
with don’t-care bits to achieve a uniform encoding size.
The instruction set architecture defines the set of en-
coding entries as E = {(l, p, o)}m, where m is the total
number of instruction encodings. Each tuple thus re-
lates a pattern p to a unique instruction label l ∈ L and
occurrence o ∈ [0, 1], which denotes the probability that
a given bit string s will match p.
Within a decoding decision tree, each leaf is tagged
with an instruction label l, while every internal node
contains a decision function. A decision tree imple-
ments the function d : s → E: At every internal node,
the decision function is applied to a bit string s un-
til the correct encoding is determined upon reaching a
leaf. The classification to a given leaf is called match-
ing : Formally, s matches an encoding entry e along
with its corresponding pattern p iff ∀i, 0 ≤ i ≤ n − 1,
either s[i] = p[i] or p[i] = −. We denote a successful
match by writing s ∈ p. Note that all strings that do
not match any pattern can be trivially matched to an
invalid label. The definition of d as a function assumes
that the set E is well-formed, i.e. each string matches
exactly one entry. We define well-formedness as a string
distance greater than zero between every pair of encod-
ings, where an undefined bit in one of the encodings
contributes zero to the distance metric, whether Eu-
clidean, Hamming or otherwise [6].

Properties of Instruction Sets

We first identify some of the challenging features of
modern instruction sets. To this purpose, we analyzed
three ISAs: SPARC was chosen for historical reasons,
as we already had a working decoder definition to build
upon. MIPS32 was chosen as an exponent of clas-
sic RISC, while ARMv7 was chosen due to its mar-
ket dominance in the embedded world and as a hybrid
instruction set that has sparked a heated discussion
over whether it is, in fact, a CISC-disguised-as-RISC.
With the instructions numbering ≈ 350 and several
instructions that are anything but modular (LDMx,

PUSH/POP, etc), the question is, at any rate, not
trivial. Interestingly, despite the RISC label, all three
ISAs have non-trivial encoding complexity and exhibit
almost all of the below-mentioned irregularities: The
simplest, SPARC, got away without the most challeng-
ing attribute (propositions) and with uniform opcodes,
while ARMv7 boasts all the below-mentioned features.
Excepting SPARC, all ISA descriptions were written by
the author.

Non-identification bits. A reliable decoder needs to
test bits not only for differentiating between two in-
structions, but also for ensuring the validity of a single
instruction, even after it is fully classified. In the ex-
ample instruction set in table I, bit b0 in instruction
B is not relevant for classification but still needs to be
tested for validation.

Specializations. Instruction specializations, also
termed sub-instructions, share the same encoding with
a parent instruction, but define further bits that the
parent leaves undefined. Note that specializations are
not allowed to either redefine or undefine any bit set
by the parent – the first option would be considered a
different instruction altogether and the second an am-
biguity in the instruction set. Instructions AA and AB
are both specializations of A, in that case an example
of multiple specialization. Instruction AAA is a nested
specialization, as it is a descendant of AA. Another
way to view specializations is as an exclusion proposi-
tion over the parent instruction (see Section “Propo-
sitions”). We choose not to adopt this view, however,
because the instruction set architecture will typically
not explicitly mention the sub-instruction property nor
any exclusion proposition in the definition of the par-
ent instruction, requiring the decoder to automatically
deduce the relationship.

Non-uniform opcodes. An opcode denotes the
smallest set of bits that are sufficient to uniquely iden-
tify an instruction. Traditionally, opcodes comprised
the same contiguous set of bits in all instructions, which
implied that a simple masking of the opcode sufficed for
unique identification. In modern instruction sets this is
far from being the case. The constant addition of spe-
cial opcodes, sub-opcodes and so forth have resulted in
a plethora of instruction formats where there is hardly
any bit that does not contribute to the opcode of some
instruction. This can have two effects: First, the num-
ber of bits required to differentiate between instructions
can, in the extreme case, encompass all n instruction
bits, instead of the lower limit of ⌈log2(m)⌉ that are
strictly required to classify m instructions. For ex-
ample, differentiating instructions A,B,C,D requires
comparing bits b3, b5, b6, b7. This effect obviously en-
larges the search space for decision functions. The sec-
ond and more important effect is that there is no guar-
antee that there would always exist some bit that is
defined (i.e. not set to don’t-care) for all instructions
in a given group. Formally, this means that the inter-
section of the defined bits in a group of instructions can
be empty. This means that a decision function able to

 0

 5

 10

 15

 20

 25

 30
 0 5 10 15 20 25

Fr
a
ct

io
n
 o

f
In

st
ru

ct
io

n
 O

cc
u
rr

e
n
ce

 i
n
 P

o
ly

b
e
n
ch

 [
%

]

25 Most Frequently Occurring Instructions

Probability Distribution for Instruction Occurrence

SPARC
MIPS32

ARM
p(x) = a*x-b

The number of occurrences of each encoding in the PolyBench suite
is summed over all individual benchmarks and displayed as a per-
centage for the first 25 most frequently occurring encodings. The
curve is a regression of the SPARC histogram to a power-law func-
tion. Reprinted from [8].

divide a given set of instructions by testing some com-
bination of bits is not guaranteed to exist; there might
always be at least one instruction that returns ‘don’t-
care’ upon applying the decision function. If this situa-
tion is not handled at all, the decoder generation algo-
rithm may fail on perfectly valid instruction sets, such
as instructions A,B,C,D. One solution is duplication:
In this case, if the chosen decision function evaluates
don’t-care bits on some instruction, the instruction is
added to all matching branches.

Propositions. Propositions are restrictions on bit
fields that are more complex than the simple conjunc-
tion of bits that we assumed so far. Propositions are
often defined as a negation and should thus lead to re-
jecting some strings that would otherwise match an en-
coding. As with simple bit definitions, propositions can
either be required for identification (if another instruc-
tion defines the rejected encoding) or for validation
(where the encoding is not caught by another instruc-
tion yet should be rejected nonetheless). The proposi-
tion on instruction D pertains to the latter case.

Non-uniform probabilities. The distribution of in-
struction occurrence inside a given program, i.e. the
fraction of instruction instances that match a certain
encoding, is in general highly imbalanced. Figure 1
shows the probability of occurrence for some instruc-
tions inside the PolyBench benchmark suite [7] com-
piled for our three platforms. For all three instruction
sets, well over half of the encodings are not present in
PolyBench at all, while at most only 7% of the encod-
ings account for approximately 95% of the instruction
strings. While the details of the distribution and qual-
ity of the estimate are obviously dependent on, and
limited by, the selected benchmark, the general form
seems to comply well to a power-law (Pareto) distribu-
tion.

Non-uniform instruction sizes. Variable instruc-
tion lengths, as e.g. partially the case with the Thumb
extension to ARM ISAs, are only superficially relevant
to decoder generators. As mentioned above, during the
generation process, shorter encodings can be padded to
the maximum instruction size. During decoding, any

bits pertaining to the next instruction can easily be
discarded after identifying the current one.

Expanded Instruction Representation

The definitions provided so far sufficiently account for
all the instruction set properties presented in Section
except for propositions. To incorporate such proposi-
tions into our framework, we first need to choose an ap-
propriate logic language. For the purpose of representa-
tion, the language should primarily satisfy succinctness.
For manipulating the propositions, other language fea-
tures, primarily satisfiability, need to be considered.
We assume that the formulation of the propositions
in the ISA, since written for readability, is already in
the most succinct form – or if not the most, then at
least not unnecessarily unwieldy. Table II shows exam-
ples of propositions from the ARMv7 and the MIPS32
instruction sets, where we took over the notation of
the ISA with only slight syntactical adaptation. All
propositions encountered in the three examined ISAs
comply to first-order logic without quantification and
with predicates in the binary domain. If binary num-
bers are converted to decimal, all propositions, with the
exception of row 3, would also comply to the stricter
set of Satisfiability Modulo Theories (SMT) in combi-
nation with integers. Furthermore, if predicates over
bit fields are regarded as atoms, and negation pushed
inside parenthesized expressions, the notation would re-
duce to conjunctive normal form (CNF), expressed by
the following BNF:

term : := c lause ('∧ ' c lause)*
c lause : := pred ica te

| ' (' pred ica te ('∨ ' pred ica te)+ ') '

pred ica te : := n e g l i t e r a l
| ' (' l i t e r a l op l i t e r a l ') '

n e g l i t e r a l : := ['¬ '] l i t e r a l
op : := '= ' | ' ̸= ' | '< ' | '≤ ' | '≥ ' | '> '

l i t e r a l : := 'b1 ' | 'b2 ' | . . .

Row 3 applies an ISA-defined function Ones, which re-
turns the number of bits that are set to one, and which
would require expanding the SMT-domain. As this is
the case only for the ARMv7 PUSH/POP instructions,
we decided to convert the proposition to the following
SMT-compliant form, which can then be expressed in
decimals:

¬(R = 02) ∧ ¬(R = 12) ∧ ¬(R = 102) · · · ∧ ¬(R = 1000 0000 0000 00002)

FUNCTIONAL ANALYSIS OF DECODER
DECISION TREE ALGORITHMS

Since we are concerned with automatically generated
decoders, we will not consider manual decoders [9, 10,
18] that are traditionally implemented as nested con-
ditionals. Nor will we deal with decoder generators
that require human intervention or data-mining in pre-
grouping the instructions or providing extra semantic
information [11–13, 17]. Such pre-processing is cum-
bersome, error-prone and distorts optimization efforts.
Likewise, solutions that are automated but produce de-
coders that linearly traverse instructions are also con-
sidered inapplicable for instruction sets in the range
of several hundred [1, 14–16]. We will therefore con-
centrate on the five published solutions which output

TABLE II: Examples of Propositions in the ARMv7 and MIPS32 ISAs

ISA Instruction Encoding Proposition
ADD (sh-reg) CCCC 0000 100- ---- ---- ---- 0--1 ---- ¬(C = 11112)

ARMv7 ADD (imm) CCCC 0010 100S NNNN DDDD ---- ---- ---- ¬(C = 11112) ∧ ¬(N = 11012) ∧ ¬(N = 11112 ∧ S = 02) ∧ ¬(D = 11112 ∧ S = 12)
PUSH (block) CCCC 1001 0010 1101 RRRR RRRR RRRR RRRR ¬(C = 11112) ∧ (Ones(R) > 1)
BEQZALC 001000 SSSSS TTTTT ---- ---- ---- ---- ¬(T = 000002) ∧ (S < T)

MIPS32 BLTZC 010111 SSSSS TTTTT ---- ---- ---- ---- ¬(S = 000002) ∧ ¬(T = 000002) ∧ (S = T)
BLTC 010111 SSSSS TTTTT ---- ---- ---- ---- ¬(S = 000002) ∧ ¬(T = 000002) ∧ (S <> T)

The instruction encodings define named sets of bits using single capital letters that are repeated to indicate the size of the bit set. (The repetition
thus does not mean that the bits are of equal value.) The formal mathematical notation for e.g. ADD (shifted register) in row 1 would be:
¬(b31 ∧ b30 ∧ b29 ∧ b28) ∧ ¬b27 ∧ ¬b26 ∧ ¬b25 ∧ ¬b24 ∧ b23 ∧ ¬b22 ∧ ¬b21 ∧ ¬b7 ∧ b4.

TABLE III: Implemented Features in Selected Decoder

Generation Tools

Feature Decoder
Theiling Qin Fournel Okuda

PART EFF

Non-identification bits Yes Maybe1 Yes Maybe1 Maybe1

Specializations Yes Maybe1 Yes2 Yes2 Maybe1

Non-uniform opcodes No Yes Unclear3 Yes No4

Propositions No No Partially5Partially6Partially7

Optimization No Partially8 No Partially8 No

1Description missing or unclear.
2Sub-instructions are treated as exclusion propositions over the par-
ent.
3No algorithm for handling non-orthogonality described, but experi-
mental results indicate some workaround may have been applied.
4Non-orthogonality erroneously handled by trying to split on propo-
sitions.
5BDD expansion results to 216 − 17 instructions for the ARMv7
PUSH/POP instructions.
6Definition of optimality leads algorithm to fail in finding proposi-
tions of size larger than two bits.
7Descriptive formalism not sufficiently expressive. No combining of
propositions. Non-identification propositions unhandled.
8Optimization based on heuristics for memory consumption, decision
function cost and tree height. Significant restriction of set of possible
decision functions.

decision trees after autonomously processing an ISA
description.

Functional Evaluation of Greedy Algorithms

Theiling [19]. The first attempt at generating auto-
matic decoders uses a greedy algorithm where the de-
cision function is a mask over all bits that are defined
for every instruction in the current subset. This means
there is no support for non-uniform opcodes, causing
the algorithm to fail if no comprehensively defined bit
is found. Non-identification bits are tested for correct-
ness. Specializations are handled by tagging an inter-
nal node as a fall-back for the common, non-specialized
case. Propositions are not handled and no attempt at
optimization is done. Table III gives an overview of
implemented features. The algorithm set the stage for
the study of fully automatic decoder generation and
was later picked up by the four below-mentioned al-
gorithms as well as others (e.g. [20]). In our imple-
mentation, we could apply Theiling’s algorithm to the
SPARC, but not to the MIPS32 or ARMv7 instruction
sets, as the latter two contained a multitude of non-
uniform opcodes and propositions.

As to optimization, the fact that undefined bits are per
definition ignored rules out likely more efficient solu-
tions that involve duplication. Furthermore, no atten-
tion is given to the frequency of instruction occurrence,
running the risk of banishing more common instruc-

tions to the bottom of the tree. Lastly, the algorithm
takes no heed of the size of the mask: In instruction
sets where a large number of bits is defined, the result-
ing tree can metamorphose into a giant table with many
memory-consuming branches. The algorithm clearly fa-
vors shallow trees with many branches, equates perfor-
mance with tree depth and yet is not even guaranteed
to generate the shallowest trees.

Fournel/PART [21]. The authors present two al-
gorithms, the first of which, named PART, augments
Theiling’s solution to handle logic propositions. In a
preliminary step, propositions are written as binary de-
cision diagrams (BDD), solved, and the solutions in-
serted into the instruction set in place of the original
instructions. Theiling’s algorithm is then applied to the
expanded, proposition-free instruction set. The authors
recognize the notorious inefficiency of solving BDDs. In
the case of the problematic PUSH/POP block instruc-
tions in ARMv7, the BDD expansion of the represen-
tation discussed above that uses 17 exclusion proposi-
tions leads to a whopping 216 − 17 expanded instruc-
tions, which our test platform could not handle. To
circumvent this, we resorted to hardcoding 120 sepa-
rate instructions thus:

POP1 = · · · ∧ (R = ---- ---- ---- --11)

POP2 = · · · ∧ (R = ---- ---- ---- -101)

. . .

POP15 = · · · ∧ (R = 1000 0000 0000 0001)

POP16 = · · · ∧ (R = ---- ---- ---- -110)

. . .

POP120 = · · · ∧ (R = 1100 0000 0000 0000)

As for other features, sub-instructions are not han-
dled as done by Theiling, but rather by defining a
condition over the parent that excludes the child en-
coding. This is problematic for several reasons: First,
sub-instructions would typically be added later to an
ISA, meaning that, in most cases, the parent encoding
would not be changed to explicitly exclude the child.
This means that this relationship needs to be first de-
duced manually, which entails tremendous effort. Sec-
ond, this quickly gets unhandy with multiple or nested
encodings, which would have to be added to the en-
coding of all parents. Regarding non-uniform opcodes,
the authors explicitly mention that they are handled
by duplication, though it is unclear whether this ap-
plies only to their second (EFF) or to both algorithms.
If it applies to PART as well, then it is ambiguous: It is
unclear whether duplication is only restricted to non-
uniform cases, and, more importantly, how a decision
function is chosen if no comprehensively defined bit is

found. The authors seem to have implemented some
workaround, since, in our implementation of PART,
disregarding non-orthogonality leads the decoder gen-
eration to fail for both ARMv7 and MIPS32. We there-
fore decided to implement PART as follows: Duplica-
tion is used only when no other decision function is
found. The decision function then consists of a single
bit, which is the bit defined for the largest number of
instructions. If the bit happens to be set to the same
value in all instructions, the second best bit is chosen
and so forth. It is clear that this approach makes no
attempt at optimizing or balancing the tree, but, since
the authors left this point vague, we chose the most
straightforward implementation.

Okuda [22]. This work also specifically adapts Theil-
ing’s algorithm to instruction sets that include propo-
sitions. The authors state that the generated decoders
are identical to Theiling’s if the instruction set does not
contain propositions, leading us to assume that non-
identification bits and specializations are handled ac-
cordingly. Unlike Fournel, however, propositions are
neither converted to an alternative representation nor
expanded, but rather treated as first-class citizens, i.e.
as possible atomic criteria for decision functions. The
formalism chosen for representation is similar to ours
– an SMT in CNF over bit field predicates – but al-
lows only equalities between a bit field and a con-
stant. While the approach is promising, there are sev-
eral flaws: First, the formalism obviously lacks suffi-
cient expressiveness. It is unclear how the authors used
it to represent inequalities between a bit field and a con-
stant or relations between two bit fields, as in rows 4-6
in table II. The function Ones in row 3 is likewise not
expressible using this restricted formalism.

Second, the algorithm resorts to classification using
propositions iff Theiling’s original algorithm fails. This
presupposes the following: 1) That a proposition will
always be defined in case no common masking bit is
found. 2) That this proposition, if such indeed exists,
can be used for classification, as opposed to a non-
identification proposition. 3) That a proposition will
be successful in splitting the set on its own, not nec-
essarily in combination with other propositions in the
same instruction group. 4) That propositions need only
be used if the original algorithm fails, thus generally
omitting to check non-identification propositions. Ta-
ble IV illustrates a well-defined instruction set where
none of these assumptions hold. In the first iteration,
the instruction set will be split into three groups con-
taining the instructions Ai, Bi, and Ci, respectively.
All further splitting will then fail on all three groups.
Group A is valid but non-orthogonal. The algorithm
can handle this case only by resorting to propositions.
Since none are defined, the algorithm will fail. Group
B proceeds similarly and then attempts to split using
the defined proposition. Since the proposition is irrele-
vant for identification, the algorithm will likewise fail.
Groups C and D are not a case of non-orthogonality
but would, in fact, have been ambiguous without the
identification-relevant propositions. However, the iden-

TABLE IV: Irregular Instruction Set Challenging Okuda’s

Algorithm

Encoding Condition Feature
A1 11-- --00
A2 0-1- --00
A3 -00- --00

No proposition

B1 11-- --01 ¬(b4 ∧ b3 ∧ b2)
B2 0-1- --01
B3 -00- --01

Proposition not relevant
for identification

C1 00-- --10
C2 1--- --10 ¬(b6 ∧ b5)

C3 -1-- --10 ¬(b7 ∧ b5)

Identification only by
combination of

proposition and set bits

D1 ---- --11 ¬(b7 ∧ b6) ∧ ¬(b7 ∧ b6)

D2 ---- --11 ¬(b7 ∧ b6) ∧ ¬(b7 ∧ b6)
Identification only by
comb. of propositions

tification can only be accomplished by combining either
multiple propositions or propositions and set bits – a
case that is unhandled by the algorithm, which will fail
trying to use each proposition separately. Lastly, as-
sumption 4 means the algorithm will refrain from check-
ing the non-identifying proposition of Group B.

In order to successfully run their algorithm on our ISAs,
we applied the following modifications: First, we re-
sorted to the SMT representation discussed in Section
to be able to define such propositions as would have
otherwise not been possible (e.g. the MIPS32 BEQC,
BNEC, BOVC and BVNC instructions).

Second, we expanded the decision function population
step as follows: If the single propositions foreseen by
the algorithm fail in splitting the set, we successively
try combinations of bits and propositions until the en-
coding set can eventually be split, possibly by testing
all propositions of a given instruction in one go. Our
expansion involving multiple propositions was required
for 27 out of 267 decision nodes in the ARMv7 instruc-
tion set, without which the algorithm would have failed
(see table V for statistics on generated trees).

Third, we replaced the complex matching steps de-
scribed in their section IV.D, which are very specific to
the restricted representation chosen, with the following
generic matching steps: When a single proposition is
chosen to split the set, the unmatching branch is mod-
ified by removing the proposition from the containing
clause (false predicate inside a clause). On the match-
ing side, the whole clause is removed (true predicate
inside a clause). This concurs with the quintessence of
their algorithm and is applicable to our more generic
representation.

Functional Evaluation of Optimizing Algorithms

Qin [23]. Qin et al. pursue an altogether different
approach: Instead of using all defined bits as a mask,
they attempt to find the decision function that results
in an optimized search tree. From the functional view-
point, the search space for optimal decision functions is
reduced by allowing only two function types: The first,
termed table decoding, is similar to Theiling’s masks,
except that the bits are required to be contiguous. The
second, termed pattern decoding, allows non-adjacent
bits but restricts the branches to a matches/does-not-
match pair. The search space is thus reduced from
2n − 1 to n(n + 1)/2. It is obvious that, even should

their notion of optimality hold, the restriction on deci-
sion functions is significant and likely to exclude more
efficient solutions.
As for other features, Theiling’s main drawback of not
handling non-orthogonality is remedied by duplication
on undefined bits: If, after applying a decision tree,
an instruction complies with multiple branches, it is
replicated in each conforming branch. Apart from non-
orthogonality, duplication is also used voluntarily if it
entails lower cost. Non-identification bits and special-
izations are not specifically mentioned, but we assume
the authors treat them as in Theiling. We added them
to our implementation of Qin in order to be able to
process the SPARC ISA. Propositions are not handled.

To address optimization, we note that the authors de-
fine optimality in terms of execution speed, which we
also find plausible. During generation, however, this
cost is obviously not yet available, so the authors choose
the average path cost as an approximation. This is de-
fined as the product of path length and probability of
occurrence of the leaf. Nodes are considered of equal
cost independent of their complexity. This definition is
less convincing, since the complexity of the node (one
vs. multiple tests) size of a node (binary vs. multiple
branches) and the location of the edge (first branch vs.
rightmost sibling) might well have a significant effect on
the execution speed. To unsettle matters further, this
cost value is not available at generation either, since the
number of candidate subtrees is too large to analyze at
each node being generated. In order to, nevertheless,
exhibit some discrimination in choosing a candidate,
the authors approximate the average path cost by the
cost of a fictitious, best-case Huffman tree. To avoid
overly broad and shallow trees, they expand their cost-
formula by a “memory consumption” factor in relation
to tree breath. To summarize, the restrictions on deci-
sion functions exclude possibly more efficient solutions,
the algorithm remains very compute-intensive despite
limiting the search space, and the cost definition and
estimation heuristics are questionable at best.

Fournel/EFF [21]. The authors’ second algorithm
modifies Qin’s work to handle logic propositions. In-
stead of expanding propositions, the algorithm is ap-
plied directly to the BDD representation. Their algo-
rithm, however, is not guaranteed to find a decision
function for well-defined ISAs: The functions, whether
“pattern” or “table”, are grown one-bit at a time. They
thus start with an initial bit and estimate the cost
of the resulting Huffman tree, as suggested by Qin.
The next bit is then added. If the cost is larger, the
bit is discarded and not used in any further combina-
tions. Practically all propositions of size larger than
two will therefore never be regarded as potential deci-
sion functions, leading the algorithm to fail. The au-
thors vaguely mention “helping” the decoder with some
“special pattern[s]”, which presumably means hardcod-
ing the propositions which the algorithm would not oth-
erwise find. This means that, as with Okuda, we had
to augment the algorithm in order to prevent it from
failing on our ISAs: First, we used the same expanded

TABLE V: Decoder Generation Statistics

Generation Resources Decoder Properties
Time[s] Mem[MB] Num. TotalPlatform Decoder
P1 P2 P1 P2 Instr.

Leaves
Nodes

Theiling 0.38 0.33 54 59 214 214 323
Fournel/Part 0.37 0.32 54 59 214 214 323

Okuda 0.38 0.32 54 59 214 214 323
Qin 17 16 97 101 214 319 701

SPARC

Fournel/Eff 184 173 378 365 214 319 701
Fournel/Part 289 271 307 280 213 6345 6555

Okuda 233 195 192 197 213 213 336MIPS32
Fournel/Eff 313 287 443 396 213 350 705
Fournel/Part 75 68 618 606 564 12026 17288

Okuda 33 32 375 372 326 356 623ARMv7
Fournel/Eff 3109 3645 1785 1816 326 6543 13981

P1: Linux octa-core Intel i7-2600 CPU running (single-thread) at
3.40 GHz with 8 GB of RAM.
P2: Linux quad-core Intel i7-5600U CPU running (single-thread) at
2.60 GHz with 12 GB RAM.
Columns 5 and 6 denote the peak memory consumption during gen-
eration. Column 9 is the total number of leaves and internal nodes.

SMT representation for defining the instructions, from
which the BDD representation is derived. This step was
anything but intuitive for instructions that contain an
inequality predicate of the type fieldA ≤ fieldB such
as MIPS32 BEQC. Second, we expanded the decision
function population step: When no pattern or table
decision function is found, we fallback to the SMT rep-
resentation and extract the propositions. Single propo-
sitions are tried first. Propositions involving inequal-
ity w.r.t. immediates are passed as “pattern” decision
functions. Inequality predicates, as well as predicates
involving two fields, as required e.g. to differentiate
between the MIPS32 BGEZALC vs. BGEUC/BLEUC
instructions, can neither be expressed as a “pattern”
nor a “table” decision function. We therefore had to
pass them as-is, creating a binary node. Should sin-
gle predicates not prove sufficient, we successively and
exhaustively try combinations of predicates, as we did
with Okuda, until the instructions can finally be split.
This was required 26 times for MIPS32 and a stunning
2600 times for ARMv7. This number, however, can
be influenced by the γ factor defined by Qin, which
impacts the amount of duplication done. Obviously,
our extension is quite an upgrade to the algorithm and
might have well distorted the subsequent performance
measurements.

COST OF DECODER DECISION TREE AL-
GORITHMS

Generation of Decoder Decision Trees

In order to implement the five algorithms, we
largely rewrote the open-source processor generation
tool TRAP-Gen (TRansactional Automatic Processor
GENerator) [24–26] for our purposes. The tool could
initially generate SystemC processor models from a
common, high-level ISA description in Python 2.7 using
Qin’s algorithm. Neither MIPS32 nor ARMv7 could
be generated using this setup. We thus implemented
all five algorithms, together with our extensions dis-
cussed above, and used them to generate all decoder
combinations. Theiling’s and Qin’s algorithms could
not be applied to MIPS32 or ARMv7 because of their
inability to handle propositions. We used pysmt [27] for

TABLE VI: Decoder Execution Statistics

Cost Models Experimental Cost
Av. Qin Tadros Total Runtime[s]Platform Decoder
Path P1 P2 Instr. P1 P2

Theiling 2.925 3.241 0.1603 0.1371 28.40 28.93
Fournel/Part 2.925 3.241 0.1603 0.1371 28.42 29.68

Okuda 2.925 3.241 0.1603 0.1371 559 28.45 29.01
Qin 3.900 3.618 0.1515 0.1318 ·106 29.47 30.21

SPARC

Fournel/Eff 3.900 3.618 0.1515 0.1318 29.40 30.28
Fournel/Part 2.361 3.169 0.1641 0.1373 522.7 524.8

Okuda 3.188 3.589 0.1639 0.1380 463 428.8 430.0MIPS32
Fournel/Eff 3.120 4.356 0.2127 0.1755 ·109 581.0 607.6
Fournel/Part 22.83 5.172 0.263 0.2273 327.1 319.2

Okuda 6.764 5.905 0.1917 0.1803 480 274.3 267.4ARMv7
Fournel/Eff 4.319 32.06 1.025 0.9712 ·109 2296 2590

Platforms P1 and P2 are as described in table V. Cost(Qin) is cal-
culated according to their paper and using γ = 0.5. Cost(Tadros)
is likewise calculated according to the paper [8] using ETif (i) =
ETconjunction(i) = ETdisjunction(i) = k ∗ (a ∗ i + b)[ms] with k =
{0.018; 0.021}; a = {0.21; 0.16}; b = {0.79; 0.84} and ETswitch(n) =
m ∗ (a ∗ log(n) + 1)[ms] with m = {0.74; 0.45} for platforms P1 and
P2, respectively. Column 7 denotes the total number of instructions
for ten runs of 30 PolyBench benchmark traces.

handling BDDs in Fournel/Eff. Instruction probabili-
ties, required for training Qin and Fournel/Eff, were
obtained from PolyBench traces, as described in the
next section. As expected, the distribution was highly
imbalanced, much as in figure 1.

The statistics on generating the decoders are summa-
rized in table V. With respect to resources, SPARC
is the least challenging due to the absence of proposi-
tions. As to algorithms, Fournel/Eff is clearly the most
demanding, requiring up to almost an hour and nearly
2 GB of memory.

Regarding the properties of the generated decoders
(columns 7-9), the different number of ARMv7 in-
structions in Fournel/Part is due to the hardcoded
PUSH/POP instructions described above. The dif-
ferent number of terminal nodes versus number of
instructions is either caused by duplication on non-
orthogonality (Qin, Fournel/Eff), by using propositions
as decision functions (Okuda, Fournel/Eff), or by the
preprocessing step in Fournel/Part, where propositions
are converted to a set of satisfying instructions.

Cost Models of Decision Trees

Since decoder models are typically used in simulation
systems, the most prominent efficiency criteria is ar-
guably the execution speed. Since this can hardly be
tested for all decoder candidates during generation, we
need a cost model that can be applied statically dur-
ing generation. All the algorithms discussed rely on
two assumptions in this respect: First, that decision
function complexity can be regarded as O(1) regard-
less of content, and second, that tree cost is generally
a direct function of tree depth. The second assump-
tion comes in two variants, either as simply equating
the cost with the average path length (Okuda), or in
modulating the latter by the probability of occurrence
of the leaf (Qin). To somehow penalize obviously inef-
ficient trees of depth = 1, Qin introduces a notion of
memory footprint, which basically assigns a cost factor
to tree breadth.

A completely different approach to modeling the cost

is found in [8]: Assuming that the decoder is a C-like
implementation running on general purpose-hardware,
the model assigns varying complexities to each decision
function depending on its type (if-statement, switch-
statement, lookup-table, etc.), its size (number of con-
junctions or disjunctions), and the location of the first
negative resp. positive term inside a conjunction or dis-
junction. The probability of occurrence of the different
encodings is also considered, meaning that more fre-
quent branches contribute a cost weighted accordingly.
We performed separate measurements, as described in
the paper, to determine the correct coefficients of the
model on our platforms.

These different cost models are calculated in table VI
for each decoder. Since SPARC defines no proposi-
tions, Fournel/Part and Okuda fall back to Theiling,
and Fournel/Eff falls back to Qin, generating identical
decoders, respectively. The predicative power of each
model can be determined by comparing to the decod-
ing runtime in the last two columns: The average path
length exhibits no measurable correlation. The cost
according to Qin does well on ARMv7 (correlation co-
efficient 0.999 P1 and P2) but fails on MIPS32 (P1:
0.5; P2: 0.6). The cost according to Tadros does quite
a decent job predicting decoder speed on the last two
platforms (ARMv7 0.999 and MIPS32 0.8 both plat-
forms). We excluded SPARC from the correlation cal-
culation due to the similar runtimes of the algorithms
and the resulting distortion due to noise.

Experimental Cost of Decision Trees

We proceeded to determine the decoding runtimes as
follows: First, we cross-compiled the mini version of
PolyBench [7] using the GNU toolchains [28–30] with
no optimization. All 30 benchmarks were then run
on QEMU (user mode) [10] in combination with the
toolchain’s GDB and the instruction machine code
dumped to a text file. Next, a decoder test mode was
coded in TRAP-Gen, where, instead of executing bi-
naries, a text file is read and the hex code loaded into
the memory model, which, in the functional abstraction
level used in test mode, is a simple array. The instruc-
tion behavior is ignored in test mode, meaning that the
instruction is only read from memory, decoded, then
discarded. This avoids distorting the results by the
overhead of executing the instruction behavior. Code
for monitoring the time was also inserted in the decoder
C++ implementation just before and immediately af-
ter decoding each instruction and summed up for all
instructions of a benchmark.

The last three columns of table VI report the total num-
ber of instructions for ten iterations of all 30 PolyBench
benchmarks and their corresponding decoding time on
two platforms. The results are surprising, inasmuch
as the optimization effort done by Qin and Fournel/Eff
does not pay off in comparison to greedy algorithms. In
fact, they produce consistently slower decoders. This
is, in part, almost certainly due to the wrong notion
of cost used in the algorithm. It would be interesting
to find out to what extent a better cost model would

improve decoder speed, e.g. by adapting the algorithm
to use the more sophisticated cost model in [8].

CONCLUSION

We have presented a comprehensive analysis of state-
of-the-art tools for generating instruction decoders. We
implemented the five published algorithms and used
them to generate decoders for three platforms. We then
ran a benchmark suite on the generated decoders to
assess the execution speed. From a functional point of
view, the available tools are either incapable of han-
dling irregular instruction sets, or generate partially
wrong results. From a performance perspective, they
either do not fully consider the cost of the resulting de-
coder, or rely on cost models that are largely unusable.
Our future work is aimed at developing an algorithm
for generating optimized decoders in combination with
an accurate cost model.

REFERENCES

[1] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
O. Wahlen, A. Wieferink, and H. Meyr, “A novel method-
ology for the design of application-specific instruction-set
processors (ASIPs) using a machine description language,”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 20, pp. 1338–1354, 12
2001.

[2] M. Reshadi, P. Mishra, and N. D. Dutt, “Hybrid-compiled
simulation: An efficient technique for instruction-set archi-
tecture simulation,” ACM Transactions on Embedded Com-
puting Systems, vol. 8, pp. 20:1–20:27, 2009.

[3] The SPARC Architecture Manual, SPARC International
Inc. Std. Version 8, Revision SAV080SI9308, 1992.

[4] MIPS Architecture for Programmers. Volume II-A: The
MIPS32 Instruction Set Manual, Imagination Technologies
Ltd. Std. MD00 086, Revision 6.05, may 2016.

[5] ARM Architecture Reference Manual, ARM Ltd. Std.
ARMv7-A and ARMv7-R edition (C.b), jul 2012.

[6] L. Bortolussi and A. Sgarro, “Hamming-like distances for
ill-defined strings in linguistic classification,” Rendiconti
dell’Istituto di Matematica dell’Università di Trieste. An
International Journal of Mathematics, vol. 39, pp. 105–118,
2007.

[7] L.-N. Pouchet, “PolyBench/C,” http://web.cse.ohio-state.
edu/∼pouchet.2/software/polybench/, version 4.2.1.

[8] L. Tadros, “A cost model for decoder decision trees,” in
Proceedings of the 2020 European Symposium on Software
Engineering (ESSE). New York, NY, USA: Association for
Computing Machinery, nov 2020, pp. 142–147.

[9] Free Software Foundation, Inc., “GNU binutils,” http://
www.gnu.org/software/binutils.

[10] F. Bellard, “QEMU. Open Source Processor Emulator,”
wiki.qemu.org/Main Page, version 6.2.0.

[11] N. Ramsey and M. F. Fernandez, “The new jersey machine-
code toolkit,” in Proceedings of the USENIX Technical Con-
ference. Berkeley, CA: USENIX Association, jan 1995, pp.
289–302.

[12] G. Hadjiyiannis, P. Russo, and S. Devadas, “A methodology
for accurate performance evaluation in architecture explo-
ration,” in Proceedings of the Design Automation Confer-
ence (DAC), jun 1999, pp. 927–932.

[13] A. Baldassin, P. Centoducatte, S. Rigo, D. Casarotto,
L. C. V. Santos, M. Schultz, and O. Furtado, “An open-
source binary utility generator,” ACM Transactions on De-
sign Automation of Electronic Systems, vol. 13, no. 2, pp.
27:1–27:17, apr 2008.

[14] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau, “EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability,” in
Proceedings of the Conference on Design, Automation and
Test in Europe (DATE). New York, NY, USA: Association
for Computing Machinery, 1999, p. 100–es.

[15] T. E. Jeremiassen, “Sleipnir - an instruction-level simulator

generator,” in Proceedings of the International Conference
on Computer Design (ICCD), sep 2000, pp. 23–31.

[16] M. Abbaspour and J. Zhu, “Retargetable binary utili-
ties,” in Proceedings of the Design Automation Conference
(DAC), jun 2002, pp. 331–336.

[17] N. Y. Fokina and M. A. Solovev, “Automated generation of
machine instruction decoders,” vol. 45, pp. 390–397, 2019.

[18] Y. Klimiankou, “Rapid instruction decoding for IA-32,” in
Perspectives of System Informatics, N. Bjørner, I. Virbit-
skaite, and A. Voronkov, Eds. Cham: Springer Interna-
tional Publishing, 2019, pp. 1–9.

[19] H. Theiling, “Generating decision trees for decoding bi-
naries,” in Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems
(LCTES), jun 2001, pp. 112–120.

[20] T. Ratsiambahotra, H. Cassé, and P. Sainrat, “A versa-
tile generator of instruction set simulators and disassem-
blers,” in Proceedings of the International Symposium on
Performance Evaluation of Computer Telecommunication
Systems (SPECTS), jul 2009, pp. 65–72.

[21] N. Fournel, L. Michel, and F. Pétrot, “Automated genera-
tion of efficient instruction decoders for instruction set sim-
ulators,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), nov 2013,
pp. 739–746.

[22] K. Okuda and H. Takeyama, “Decision tree generation for
decoding irregular instructions,” in Proceedings of the Con-
ference on Design, Automation Test in Europe Conference
(DATE), mar 2016, pp. 1592–1597.

[23] W. Qin and S. Malik, “Automated synthesis of efficient bi-
nary decoders for retargetable software toolkits,” in Pro-
ceedings of the Design Automation Conference (DAC), jun
2003, pp. 764–769.

[24] L. Fossati, “trap-gen,” https://code.google.com/archive/p/
trap-gen/.

[25] ——, “Development of the systemc model of the LEON2/3
processor,” Politecnico di Milano, Tech. Rep., 2012.

[26] L. Tadros, “A SystemC register model for multiple levels
of abstraction using advanced object-oriented design pat-
terns,” International Journal of Computer Theory and En-
gineering (IJCTE), vol. 9, no. 3, jun 2017.

[27] M. Gario, A. Micheli, and F. B. Kessler, “PySMT: a Solver-
Agnostic Library for Fast Prototyping of SMT-Based Algo-
rithms,” https://github.com/pysmt/pysmt/, version 0.9.0.

[28] I. Free Software Foundation, “crosstool-NG,” http://
crosstool-ng.org/download/crosstool-ng/, version 4.9.4.

[29] ——, “GCC Linux GNU Toolchain,” http://codescape.
mips.com/components/toolchain/2017.10-07/index.html,
version 2017.10-05.

[30] ——, “GCC Linux GNU Toolchain,” https://developer.
arm.com/downloads/-/arm-gnu-toolchain-downloads, ver-
sion 11.3.0.

LILLIAN TADROS obtained her Dipl.-Ing. in electrical en-
gineering and information technology from the Ruhr-Universität
Bochum, Germany. She joined the Institute for Robotic Stud-
ies of the Technische Universität Dortmund, Germany, where she
is currently a research assistant. Her research focuses on simu-
lation models of multi- and many-core platforms for embedded
and cyber-physical systems.

