
 

 

SCA-2023: A TWO-PART DATASET FOR BENCHMARKING THE 

METHODS OF IMAGE PRECOMPENSATION FOR USERS WITH 

REFRACTIVE ERRORS 
 

Nafe B. Alkzir 

HSE University 

20 Myasnitskaya Ulitsa, Moscow 101000, Russia; 

Institute for Information Transmission Problems, RAS 

Bolshoy Karetny per. 19, Moscow, 127051, Russia 

E-mail: nalkzir@hse.ru 

Ilia P. Nikolaev  

Institute for Information Transmission Problems, RAS 

Bolshoy Karetny per. 19, Moscow, 127051, Russia 

E-mail: i.p.nikolaev@visillect.com 

 

Dmitry P. Nikolaev  

Institute for Information Transmission Problems, RAS 

Bolshoy Karetny per. 19, Moscow, 127051, Russia 

E-mail: dimonstr@iitp.ru 

 

 

 

KEYWORDS 

benchmark dataset, visual accessibility, inverse filtering, 

image precompensation, ocular aberration, refractive 

error modeling, image deblurring 

 
ABSTRACT 

This paper considers the problem of precompensating 

images shown to users with various anomalies of 

refraction of the eyes (e.g. myopia or astigmatism) in 

situations where they are not equipped with glasses or 

other corrective devices. Researchers have proposed a 

considerable number of such precompensation methods, 

but to this day there has been no way to accurately 

compare their quality. We propose an original dataset, 

which we called “SCA-2023”, of images specially 

designed for this purpose. Its most important feature is 

the fact that it includes not only a set of ground-truth 

images for implementing the precompensation 

transform, but also a separate set of images 

characterizing specific types and degrees of 

manifestation of the refractive errors. The second part of 

the dataset is used for computer simulation of the so-

called retinal image (the distribution of light on the retina 

of an imaginary observer). We demonstrated the 

capabilities of our approach using three prior-art 

precompensation methods and found that not all the 

image comparison metrics provide adequate results when 

applied to precompensated retinal images. 

 
INTRODUCTION 

Most computer users with refractive errors, such as 

nearsightedness, farsightedness, and/or astigmatism, 

experience problems with deteriorating image clarity 

when these errors are not corrected with glasses or 

contact lenses. This situation can arise, for example, 

when using a virtual reality headset where there is no 

physical space for glasses. It is also quite common for 

users with minor refractive errors to not wear glasses or 

contact lenses at all, leading to discomfort when 

interacting with smartphone displays and other devices 

that communicate with the user through a self-luminous 

screen on which certain images are reproduced. Due to 

the refractive errors, the clarity of the perceived image is 

reduced to the state when certain parts of the image 

cannot be recognized, especially those with important 

fine details. 

 
Researchers consider the human eye as an imaging 

system, similar to any other optical system composed of 

lenses. For the discussed set of problems, the object 

viewed by the eye can be represented as a two-

dimensional array of points of a different brightness. An 

ideal eye would transfer each object point to a well-

focused point on the retina. However, no human eye is 

ideal: its refracting surfaces (primarily the cornea's front 

surface and both surfaces of the lens) refract light rays 

differently from what the ideal lens would do. This is 

attributed to the refractive errors: the stronger the 

deviation of the ray path from the ideal one, the greater 

the values of nearsightedness, farsightedness, and/or 

astigmatism that characterize the eye. The refractive 

errors manifest themselves as follows: light rays 

emanating from some object point (e.g., a computer 

screen pixel) cannot be focused at a single point on the 

retina, forming a blurred spot instead of a bright point 

(Alonso et al. 2005; Wilson and McCreary 1995).  

 

A review of the scientific literature reveals several 

approaches to improving image quality for individuals 

with refractive errors. Earlier works focused on methods 

for improving text legibility for users. In (Lawton 1992), 

it is shown that losses in contrast sensitivity in visually 

impaired subjects can be compensated for by using 

various normalizing filters. These filters increase the 

amplitude of spatial frequencies, which are perceived less 

by individuals with poor vision. In (Fine and Peli 1995), 

it was found that spatial filtering, increasing screen 

brightness, and enlarging text size affected reading speed 

for respondents. Later, images became the subject of 

research. Leat et al. (2005) aimed to experimentally 

compare the most common image filters and found, for 
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example, that participants preferred contrast-enhancing 

filters when viewing portraits, while filters with HSB 

histogram equalization were preferred when observing 

environmental images. 

The works described above considered the problem of 

improving the quality of images for people with 

refractive errors without taking into account the 

characteristics of specific eyes. This approach involves 

the same image processing for a large group of people, 

that is, it is not personalized, which leads to a low 

indicator of improving the perception of visual 

information by subjects. In parallel with it, another 

approach developed, based on explicit accounting of the 

individual parameters of the visual system of the subject. 

Ones of the first to suggest such an approach were Alonso 

and Barreto (2003). They conducted clinical trials on 

patients, who watched images of letters with personalized 

preliminary compensation, and came to the conclusion 

that such a technique overcomes the non-personalized 

approach in perceived image quality. 

It is important to note that it was the work of Alonso and 

Barreto (2003) where the term “precompensation” was 

first used in relation to the considered circle of tasks, 

although without a clear definition of it. In this work, we 

will call precompensation of an image, when showing it 

to an observer with imperfect vision, who, as a result of 

this, is unable to perceive this image in its entirety, such 

a pure-software conversion of this image (without 

changing the physical characteristics of the image 

carrier), the purpose of which is to approach the 

perception of the image to that of an observer with perfect 

vision. Note that the not-personalized methods also fall 

under this definition. In Figure 1, you can find some 

images illustrating how such a precompensation works. 

The simulated retinal images (c, d) model the visual 

perception of a short-sighted observer looking at images 

a and b, Figure 1b corresponding to our reproduction of 

the algorithm of Montalto et al. (2015). Note that the 

precompensated image (Figure 1b) looks pretty weird 

itself but becomes much closer to the ground truth after 

being blurred by the observer’s eye (Figure 1d). 

Figure 1: Image Precompensation Example: a Ground-

Truth Image Taken from our Dataset (a); the Result of 

its Precompensation (b); the Simulated Retinal Image of 

the Ground Truth (c); the Simulated Retinal Image of 

the Precompensated Image (d) 

The next significant step in the development of the 

personalized approach was taken as Huang et al. (2012) 

suggested their dynamic image precompensation, the 

essence of the technique being that the precompensated 

image was dynamically updated on the basis of the 

simultaneous measurement of the observer’s eye pupil 

size. Their idea follows from two well-known facts: 

refractive errors manifest themselves stronger as the 

pupil enlarges; and the pupil diameter, even at rest, 

experiences significant fluctuations in people (Fernández 

2012). They (Huang et al. 2012) carried out their testing 

on binary icons of various sizes and compared their 

precompensation with the static one (when a single 

average pupil size was taken). 

The paper (Montalto et al. 2015) was the first where color 

images were precompensated. Also the authors first used 

regularization via the total variation for controlling the 

artifacts arising in the course of optimization procedure. 

In this regard, it is important to note that the task of 

precompensation is an ill-posed inverse problem, which, 

in the general case, has no exact solution. The authors 

carried out their human studies on the public dataset 

“USC-SIPI Image Database”, however they did not 

provide the necessary data on the parameters of the eyes 

of the subjects, which makes it impossible to directly 

compare their results with that of other researchers.  

Later, Ye et al. (2018) conducted a study inspired by the 

previously noted fact that the precompensated image has 

a significantly higher dynamic range compared to the 

original image, and that there are problems with 

displaying such images. For example, the “ideal” 

precompensated image may require that some pixels of 

this image have a brightness exceeding the maximum 

brightness of the monitor on which it is displayed. And 

some other pixels must have a negative brightness, which 

is unattainable even theoretically. As a result, the real 

precompensation is always non-ideal, which manifests 

itself primarily in a low contrast of the image perceived 

by the subject, as well as in artifacts present in it. The 

authors studied how tone mapping can affect the artifacts 

and the contrast. According to them, a linear display of 

colors restores the image without significant artifacts, but 

at the same time there is a low contrast, and a nonlinear 

transform can raise the contrast, but only due to the 

residual presence of artifacts. In this work, the authors 

proposed an algorithm for finding the optimal balance 

between the contrast and artifacts. They used images 

from the public dataset “BSDS500 Database”, however, 

just like their predecessors, they did not provide the 

necessary data on the eye parameters of the subjects. 

In publications on image precompensation, various 

methods were used to assess the quality of problem 

solving. In (Lawton 1992), the quality metric was the 

speed of reading text, which required long-term 

experiments with subjects. Alonso and Barreto (2003) 

used as a metric the visual acuity score (LogMar) when 

viewing original and precompensated images, which also 

required human studies. The work (Huang et al. 2012) is 

interesting in that they simulated a myopic human eye 

with a defocused camera. This can help to partially 

automate benchmarking of various precompensation 

algorithms, but only for spherical refractive errors. 



 

 

Simulating even an astigmatism is already causing 

serious problems, not to mention higher-order refractive 

errors. The paper (Ye et al. 2018) is interesting in that 

they are the first to compare their method with previous 

ones using the SSIM quality metric, which does not 

require any human studies. The images were taken from 

a public dataset, but the parameters of the eyes of the 

“virtual subjects” were generated in a way that, 

unfortunately, was not described in the paper. This 

prevents their results from being compared with others in 

the future. 

 

From the foregoing, we can conclude that the problem of 

precompensation is still relevant. Its importance follows 

from the fact that the number of people with minor 

refractive errors continues to grow, and many of them do 

not want to wear glasses or lenses for vision correction. 

We see that today there are many different methods for 

solving the precompensation problem, however, none of 

them claims to be called optimal, because the problem 

does not have the exact solution, and the issue of 

comparing these methods has not yet been solved due to 

complexity and a high cost of clinical trials. It seems very 

appropriate to develop a relevant dataset for making such 

comparisons, as well as to introduce adequate 

computable quality metrics, which would automate this 

procedure. We believe that the solution of these problems 

will contribute to a significant acceleration of research in 

the field of image precompensation. 

 
DESCRIPTION OF THE DATASET 

In the works described above, the authors used various 

sets of ground-truth images to test their methods. For 

example, Huang et al. (2012) used binary images of 

single characters, as well as high-contrast monochrome 

icons, while Montalto et al. (2015) used more complex 

color images. But worst of all is the fact that the authors 

usually give only examples of eye refraction errors, 

without creating any coherent dataset of such errors that 

could be used in a bench to measure the quality of 

different methods. This approach has led to the fact that 

so far there is no way to check the validity of their results 

and to correctly compare the quality of the proposed 

precompensation methods with one another. 

 

Note that there are special datasets designed for blind and 

non-blind deblurring methods (Sun et al. 2013). From the 

mathematical point of view, the non-blind deblurring 

problem has much in common with the precompensation 

problem, but the former implies a fundamentally 

different kind of the blur kernel: it describes hand shake 

or other physical phenomena that lead to image blurring, 

while in the precompensation problem the blur kernel 

should follow the refractive errors of the human eye. 

Therefore, these specific datasets cannot be used for the 

precompensation problem. Typical kernels for these two 

kinds of blur are shown in Figure 2. It is clearly seen that 

the two kernels have hardly anything in common. 

 

 
 

Figure 2: Typical Kernels for Motion Blur (a) and 

Refractive-Error Blur (b) 

 

In this paper, we propose an original image dataset 

specially designed to compare different precompensation 

algorithms with one another. Its most important feature 

is the fact that it includes not only a set of ground-truth 

images for precompensating transformation, but also a 

separate set of images characterizing specific types and 

strength of refractive errors. This is the first dataset ever 

proposed, which has this feature.  

 

Part I: Categorized Ground-Truth Images 

The first part of the suggested dataset is a set of color 

ground-truth images, and it is deliberately divided into a 

few categories. The categorization was made to have a 

possibility of evaluating the performance of 

precompensation algorithms in different scenarios. 

 

The first category is text images, which were generated 

using quotes from news feeds in the NLTK Corpus 

(Loper and Bird 2002). In addition, we took into account 

that in modern media the text is not always placed on a 

white background and added backgrounds of different 

shades to the test. Recall that the speed of reading text 

images was used as a metric for improving image quality 

in (Fine and Peli 1995). 

 

The second category is icons. Such images make it 

possible to adequately compare algorithms that were 

tuned to work with binary images. In addition, 

precompensation artifacts show themselves brighter on 

binary images. This dataset portion was collected from 

flaticon.com, which allows one to use the icons for free 

for academic or educational purposes. 

 

The third category is real images, which in turn are 

divided into four subcategories: animals, faces, urban and 

natural landscapes. Images of animals and human faces 

are presented mainly in close-ups, which makes it 

possible to determine how well different algorithms 

restore large objects. In turn, urban and natural 

landscapes usually have many fine details, which allows 

us to conclude whether the restoration of small objects is 

effective. 

 

The categories of animals, urban and natural landscapes 

have been filled in using open sources, where the images 

are licensed to the public domain. The “face” category 



 

 

consists of computer-generated non-existing faces taken 

from the https://this-person-does-not-exist.com website. 

Small-size samples of our ground-truth images are shown 

in Figure 3. 

 

 
 

Figure 3: Sample Ground-Truth Images from our 

Categorized Dataset: Text, Icons, Animals, Faces, 

Urban and Natural Landscapes (from Top to Bottom). 

 

All the pictures from the ground-truth image set (735 

images in total) were resized to the same resolution of 

512x512 pixels. Such a resolution, on the one hand, 

allows one to study rather complex images, and on the 

other hand, does not lead to unacceptable amounts of 

computation when crossing the dataset parts (when each 

ground-truth image is checked in pair with each blur 

kernel). 

 

Part II: Characteristic PSFs of Human Eyes 

According to the classical approach (Dai 2008), the 

human eye can be considered as a linear, shift-invariant 

optical system, whose action is characterized by the 

function K(x,y), which in the general theory of linear 

systems is usually called the impulse response function, 

and specifically in optics – the point spread function 

(PSF). From both names it follows that this function 

contains the response of the optical system to a pulsed 

input, that is, the image of a point light source, produced 

by this optical system. According to the superposition 

principle, the image R(x,y) of an arbitrary input object, 

I(x,y), produced by our optical system, can be obtained 

through the convolution operation (*): 

 

       𝑅(𝑥, 𝑦) =  𝐼(𝑥, 𝑦) ∗  𝐾(𝑥, 𝑦).  

 

Note that in this paper the PSF is sometimes referred to 

as the blur kernel; these two being synonyms. 

 
The PSF of the human eye is determined by the strength 

of refractive errors and the current pupil size (Dai 2008): 

the stronger the errors and the wider the pupil, the wider 

the PSF. The technique for calculating the PSF of the eye 

is not an original part of our work, so we will not focus 

on it in detail, referring the reader to the relevant 

literature, for example (Dai 2008). From a computational 

point of view, this calculation presents no difficulties: 

first, taking into account the size of the pupil and the 

characteristics of the refractive errors, a two-dimensional 

array of the so-called generalized pupil function is filled 

in, and then it is subjected to the fast Fourier transform 

(FFT). The square of the modulus of the resulting Fourier 

image is the required PSF. An important fact is that the 

characteristics of the refractive errors, necessary for the 

calculation, can be measured in vivo using various 

ophthalmic instruments. The classic instrument for such 

measurements is the aberrometer. Traditionally, in 

aberrometry, the refractive errors of the patient's eye are 

described by Zernike polynomials, or more precisely, by 

the amplitudes of these polynomials (Dai 2008). 

 

The approach based on the Zernike polynomials makes it 

possible to describe PSFs of an arbitrarily complex 

shape: the more polynomials are taken into account, the 

more complex the PSF shape can be. But it should be 

borne in mind that the vast majority of people suffering 

from refractive errors have a refractive error which is 

either spherical (myopia and hypermetropia) and/or 

cylindrical (astigmatism); these errors corresponding to 

the Zernike polynomials of the second order. Therefore, 

for our task, we decided to restrict ourselves to these 

types of refractive errors, not taking into account the so-

called “higher aberrations”, characterized by higher-

order Zernike polynomials. It is important to note that for 

our calculations there is no need to use aberrometry data, 

a standard optometrist's prescription will be enough for 

us, containing only three numbers for each eye: the 

sphere error S, the cylinder error C, and the cylinder axis 

A. The first two values are measured in diopters, and the 

last – in angular degrees. 

 

It is easy to show that in the geometrical optics 

approximation, a spherical error generates a PSF having 

the shape of a circle (Strasburger et al. 2018), which turns 

into an ellipse when a cylindrical error is added. In Figure 

4, you can see sample PSFs from our dataset, which are 

shaped roughly like this. As we already mentioned, our 

calculation method is based on wave optics, not 

geometrical optics, which certainly affects the “fine 

structure”' of a PSF (generating characteristic diffraction 

rings at the boundaries of the ellipses), but does not affect 

its overall shape and size. 

 

 
 

Figure 4: Sample PSFs from our Dataset: Top Row – 

“Narrow” Ones; Second Row – “Medium” Ones; 

Bottom Row – “Broad” Ones 

 

We also divided the PSF set into three subcategories, this 

was done because different images require different blur 



 

 

kernels. For example, if a text is blurred with a too broad 

kernel, it will hardly be possible to extract any useful 

information by precompensation; and if an icon is blurred 

with a too narrow kernel, we will get an image that is 

hardly distinguishable from the ground truth and there is 

no need for precompensation at all. Figure 5 shows 

examples of blurring images with a narrow, a medium, 

and a broad kernel.  

 

 
 

Figure 5: Examples of Blurring Three Images from our 

Dataset with Different PSFs: the Ground Truth (First 

Column); Blurring with a Narrow (Second Column), a 

Medium (Third Column), and a Broad PSF (Fourth 

Column) 

 

It can be seen from Figure 5 that for the text (top row), 

the only candidate for checking the quality of 

precompensation is the image obtained with the narrow 

blur kernel; the other two look irretrievable. For the 

image from the “faces” category, such a candidate is, first 

of all, the image obtained with the medium blur kernel. 

For a large high-contrast “icon”', it is quite possible to 

work with the rightmost image, the other two blurry 

images are recognized even without precompensation. 

Note that these images were obtained with PSFs, which 

are enclosed in the red box in Figure 4. 

 

Quantitatively, the following parameters were used for 

the “narrow PSFs” (256 pcs in total): 

• S was randomly selected in the range of [-2.5..0] 

diopters; 

• C was randomly selected in the range of [-1.25..1.25] 

diopters; 

• A was randomly chosen in the range of [0..360] 

degrees. 

 

For the “medium PSFs” (256 pcs in total): 

• S was randomly selected in the range of [-5.0..-2.5] 

diopters; 

• C was randomly selected in the range of [-2.5..2.5] 

diopters; 

• A was randomly chosen in the range of [0..360] 

degrees. 

 

For the “broad PSFs” (256 pcs, as well): 

• S was randomly selected in the range of [-5.0..-7.5] 

diopters; 

• C was randomly selected in the range of [-3.75..3.75] 

diopters; 

• A was randomly chosen in the range of [0..360] 

degrees. 

 

It can be seen from these data that we considered only 

myopic eyes (the PSF width depends only on the 

modulus of S, but does not depend on its sign, so there 

was no loss of generality) and took the cylinder error, on 

average, twice as small in amplitude as compared to the 

sphere error, which is similar to what is seen in the human 

population. The eye pupil diameter (on which the PSF 

size also depends) was set at a typical value of 3.5 mm; 

and the angular width of the ground-truth image was set 

at 6°. With these parameters and with the maximum 

sphere and no cylinder (S= -7.5 diopters, C=0, and A=0), 

the PSF diameter was about 20% of the ground-truth 

image width. Conducting calculations with a wider PSF 

hardly makes sense when working with the ground-truth 

images from SCA-2023. 

 

Note that in our dataset PSFs are digitized with the same 

resolution as the ground-truth images: 512x512 pixels. 

This makes the convolution between the image and the 

PSF extremely convenient: it is calculated through any 

standard FFT routine. It should also be borne in mind 

that, if necessary, all our results are applicable to any 

actual observation conditions. In this case, the linear size 

of the observed image and the observation distance 

generate an angular grid on the corresponding ground-

truth image, and the PSF is also recalculated into the 

angle arguments (Dai 2008). 

 

The SCA-2023 dataset can be downloaded at 

https://doi.org/10.5281/zenodo.7848576 as a ZIP 

archive. There are two folders there: the “Images” folder 

contains our ground-truth images, while the “PSFs” 

folder contains the simulated PSFs along with the 

parameters used in the simulations. The former has three 

subfolders: “Texts”, “Icons” and “Real_images”. The 

“Texts” folder contains 225 text images. The “Icons” 

folder contains 104 icon images. In turn, the 

“Real_images” folder has 4 subfolders: “Animals” with 

100 images, “Faces” with 102 images, “Natural” with 

103 images, and “Urban” with 101 images. The “Faces” 

folder also contains a link to the site where the image data 

were generated, it is contained in the link.txt file. All the 

images are saved in the JPG format and have the same 

size of 512x512. 

 

The “PSFs” folder contains three subfolders: “Broad”, 

“Medium”, and “Narrow”, each of them containing 256 

PSFs saved in the CSV file format. The “PSFs” folder 

also contains the parameters.csv file, which describes the 

parameters corresponding to each PSF. All the PSFs are 

also sized 512x512. 

 



 

 

DATASET-BASED COMPARISON OF THREE 

PRIOR-ART PRECOMPENSATION METHODS 

To check the capabilities of our approach, we reproduced 

3 known image precompensation algorithms. As a 

starting point, we chose one of the classic non-

personalized precompensation algorithms proposed by 

Peli and Peli (1984). The idea of this algorithm implies 

amplifying high-frequency image components while 

shifting the local brightness to its medium level. The first 

allows you to enhance fine details, the second expands 

the dynamic range for visualization of these details. In 

Figure 6, column 3 shows some examples of applying 

this algorithm to images from our ground-truth set.  

 

 
Figure 6: Simulated Retinal Images for 3 Ground-Truth 

Images (A, B, C). Column 1– Ground Truth; Column 2 

– Non-Precompensated Retinal Images (“natural blur”); 

Column 3 – Peli-Peli Algorithm; Column 4 – Huang 

Algorithm; Column 5 – Montalto Algorithm. Rows A, 

B, and C Use the Three Red-Framed PSFs from Figure 

4 (Top to Bottom, Respectively). 

 

The retinal images were simulated on the basis of PSFs 

taken from the second part of our dataset. Note that our 

approach is suitable both for color and grayscale images, 

but we deliberately converted our ground-truth images to 

grayscale ones. The reason was to reproduce exactly the 

original Peli-Peli algorithm, which had been proposed for 

black-and-white images and tested by the authors on such 

images. It can be seen from Figure 6 that this algorithm 

shows perhaps the worst retinal image quality of the three 

(columns 3, 4, and 5). This is not surprising, since it is 

the only non-personalized algorithm among the three 

reproduced. 

 

The second algorithm that we reproduced is, in a certain 

sense, an extension of the first one for the case of 

personalized precompensation. While Peli and Peli 

(1984) emphasize high spatial frequencies always in the 

same way, Huang (2013) suggests pre-amplifying 

precisely those spatial frequencies that have suffered the 

most due to blurring. Knowing the blur kernel, Huang 

builds a precompensated image through Wiener filtering. 

In Figure 6, column 4 shows examples of applying this 

algorithm to images from our ground-truth image dataset. 

The Huang's algorithm was also proposed for grayscale 

images, and we did not change this. It can be seen from 

Figure 6 that Huang's retinal images are much clearer 

than those of Peli-Peli, but have much lower contrast. 

This is because, mathematically, the Wiener filter 

produces the optimal solution to the precompensation 

problem in the form of such pixel brightness values, not 

all of which can be reproduced on the image carrier. 

Many pixels must be brighter than the maximum 

achievable brightness, and the brightness of some other 

pixels must be even negative. To overcome these 

difficulties, Huang proposes to linearly map all the pixel 

brightness values onto the actual dynamic range of the 

imaging device. As a result of this mapping, the retinal 

image contrast dramatically decreases. 

 

The third algorithm that we reproduced in the framework 

of our approach is one of the modern precompensation 

algorithms that uses gradient optimization of images 

instead of their Fourier processing. It was proposed by 

Montalto et al. (2015). In this paper, the authors consider 

several modifications of their approach, and we would 

like to fix the setting that we have chosen. We will 

minimize the following functional: 

 
𝑝(𝜃, 𝑡) =  argmin0 ≤𝑝≤1(‖𝑘 ∗ 𝑝 − 𝑡‖2 + 𝜃‖∇𝑝‖1),  

 

where 𝑡 and 𝑝 are the ground-truth and the 

precompensated image, respectively, and 𝑘 is the blur 

kernel (PSF). In this functional, the first term in round 

brackets requires the proximity of the precompensated 

image convolved with the PSF to the original image in 

the 𝐿2-sense. The second term is regularizing, with the 

choice of the total variation of 𝑝 as the regularizer, 𝜃 > 0 

being the regularization weight. The total variation is a 

measure of the variability in the brightness of pixels in an 

image and is traditionally used to minimize the blur and 

sharpen the image. 

 

The algorithm takes two images as the input: the ground 

truth and the PSF, both from SCA-2023. Functional 

minimization is carried out using the gradient descent 

method, which makes this algorithm the slowest of the 

three, but the temporal performance is not the subject of 

this study. In Figure 6, column 5 shows examples of 

applying this algorithm to images from our ground-truth 

image dataset. It can be seen from Figure 6 that this 

algorithm shows, perhaps, the best retinal image quality 

of the three. This could have been expected, as it is the 

most recent algorithm reproduced. 

 

To complete our benchmarking, we need to choose an 

appropriate quality metric for measuring the error 

between the ground-truth and the precompensated image. 

In previous works, the SSIM and PSNR metrics (Tanaka 

and Kawano 2021) have already been used for 

comparison, which is quite common for works on image 

restoration. However, we have already mentioned above 

that precompensation algorithms can produce both low-

contrast but artifact-free images and high-contrast but 

significantly distorted ones. This trade-off seems to be a 

fundamental feature of the precompensation problem. 

Therefore, it makes sense to use metrics that react 



 

 

differently to the loss of contrast. The correlation 

coefficient (CORR) does not change with either 

contrasting or shifting the grayscale of any of the 

compared images. High CORR values, obtained when 

other quality scores are low, signal a contrast change. 

 

Loss of contrast is accompanied by brightness distortions 

at least at one end of the grayscale. It is known that 

humans have mechanisms to adapt to lowering the 

maximum brightness of an image, but there are no 

mechanisms to adapt to "bleaching the image", when the 

grayscale shifts up from zero. The standardized residual 

sum of squares (STRESS) metric does not penalize a 

linear transform of the image intensity (Garcia et al. 

2007), but it is sensitive to brightness shifts. Thus, 

combining the CORR and the STRESS metrics makes it 

possible to distinguish between different causes of 

contrast loss. When using the CORR and the STRESS 

metrics, it is natural to take as the basic metric not PSNR 

but the normalized root mean square error (NRMSE), the 

two latter differing only in scale. 

 

In addition to the previously used SSIM metric, we 

consider it reasonable to use the more modern MS-SSIM 

as well. To make all our metrics measuring image 

similarity, we subtracted NRMSE and STRESS from 

unity. Thus, we obtained 5 similarity metrics: 1-NRMSE, 

1-STRESS, CORR, SSIM and MS-SSIM. All the chosen 

metrics have a range of values from 0 to 1, where 1 means 

the exact similarity to the ground-truth image. 

 

Table 1 presents the results of comparing the Peli-Peli, 

Huang, and Montalto algorithms using the 5 image 

similarity metrics we chose. Corresponding values of the 

metrics obtained for non-precompensated retinal images 

are given for the reference. The leading results are 

bolded. We used all the three subsets of PSFs (each 

consisting of 256 PSFs) and applied each PSF to each of 

the 735 images from our ground-truth dataset in order to 

obtain the reference. Then we repeated this procedure 

with the precompensated images. It is important to recall 

that the Huang and Montalto algorithms used PSF in their 

precompensation calculations, but the Peli-Peli algorithm 

did not. Next, we compared each retinal image with the 

ground truth according to the above metrics, averaged the 

results over all the images, and summarized everything 

in the table below. 

 

Table 1: Comparison of Three Prior-Art 

Precompensation Algorithms with Five Image 

Similarity Metrics 

 

Methods Metrics 
Broad 

PSF 

Medium 

PSF 

Narrow 

PSF 

No 

precom- 

pensation 

1-NRMSE 0.785 0.847 0.863 

1-STRESS 0.736 0.775 0.849 

CORR 0.741 0.799 0.894 

SSIM 0.620 0.687 0.809 

MS SSIM 0.596 0.656 0.806 

Methods Metrics 
Broad 

PSF 

Medium 

PSF 

Narrow 

PSF 

Peli-Peli 

1-NRMSE 0.749 0.751 0.729 

1-STRESS 0.734 0.733 0.821 

CORR 0.595 0.620 0.770 

SSIM 0.504 0.502 0.591 

MS SSIM 0.451 0.506 0.647 

Huang 

1-NRMSE 0.654 0.688 0.701 

1-STRESS 0.568 0.588 0.655 

CORR 0.839 0.877 0.933 

SSIM 0.426 0.451 0.557 

MS SSIM 0.536 0.596 0.748 

Montalto 

1-NRMSE 0.835 0.897 0.921 

1-STRESS 0.766 0.803 0.871 

CORR 0.796 0.843 0.919 

SSIM 0.667 0.723 0.828 

MS SSIM 0.653 0.718 0.858 

 

Comparing the results we obtained for the algorithms 

chosen, we came to the following conclusions. First, the 

use of broader PSFs leads to a stronger deterioration in 

the numerically predicted quality of the precompensated 

retinal image, especially when using the SSIM and MS-

SSIM metrics. This confirms the “intuitive” idea that the 

precompensation technique cannot compensate for a too 

strong image blur caused by eye refraction errors. 

Second, the Montalto approach, on most of the metrics, 

shows better results than the Huang and the Peli-Peli 

algorithms do. However, at all the three PSF levels, the 

CORR metric announces the Huang method as the 

winner. This is quite natural, because the Huang method, 

by design, minimizes any deviations from the exact 

solution of the deconvolution problem, but at the cost of 

an arbitrarily large loss of contrast.  

 

Thus, the Montalto algorithm showed the best results in 

most of the metrics that give an idea of the quality of the 

precompensated retinal images from the point of view of 

a computer. However, it is not guaranteed that the metrics 

fully reflect the quality of the images in terms of human 

perception. For example, it looks strange that some of the 

metrics prefer the non-precompensated image to the 

precompensated one. Therefore, for a more complete 

understanding of the problem of correct automatic 

comparison of such images, it is quite promising to 

conduct additional research aimed at studying the 

perception of these images by human observers. 

 

CONCLUSION 

In this work, we have proposed a special dataset for 

benchmarking and comparison of image 

precompensation methods for displaying images to users 

with refractive errors. The most important feature of this 

dataset is the fact that it includes not only a set of ground-

truth images for precompensating transformation, but 

also a separate set of images characterizing specific types 

and strength of refractive errors. This is the first dataset 

ever proposed, which has this feature. 



 

 

The dataset is called “SCA-2023” and can be 

downloaded at https://doi.org/10.5281/zenodo.7848576 

as a ZIP archive. Our dataset contains both a categorized 

set of ground-truth images and a three-scale set of 

simulated kernels, aimed at blurring these images, along 

with the parameters used in the simulations. The blur 

kernels represent low-order errors of human eye 

refraction, such as spherical and/or cylindrical ones. All 

the ground-truth images are saved in the JPG format and 

have the same size of 512x512. The blur kernels are 

saved in the CSV file format and are also sized 512x512. 

 

While using the SCA-2023 dataset for benchmarking 

three prior-art precompensation methods, we have found 

that not all the image similarity metrics widely used in 

image processing are suitable for this task. In the future, 

we plan to conduct human studies to select the metric that 

would be most correlated with the assessments of people 

observing images such as those shown in Figure 6. 

Moreover, we believe that the very best precompensation 

method has not been yet found, and we are going to look 

for it, using the proper metrics as guides. 
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