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ABSTRACT 

Human-robot cooperation plays an increasingly 
important role in manufacturing applications. Together, 

humans and robots display an exceptional skill level that 

neither can achieve independently. For such cooperation, 

hand gesture communication using computer vision has 

been proven to be the most suitable due to the low cost of 

implementation and flexibility. Therefore, this work 

focuses on the hand gesture classification problem in 

view of human and robot collaboration. To facilitate 

collaboration, six of the most common gestures 

applicable in manufacturing applications were selected. 

The first part of the research was devoted to creating an 
image dataset using the proposed acquisition system. 

Then, pre-trained neural networks were designed and 

tested. In this step, the feature extraction approach was 

adopted, which utilises the representations learned by a 

previous network to extract meaningful features. The 

results suggest that all developed pre-trained networks 

attained high accuracy (above 98,9%). Among them, the 

VGG19 demonstrated the best performance, achieving 

accuracy equal to 99,63%. The proposed approach can be 

easily adapted to recognise a more extensive or different 

set of gestures. Utilising the proposed vision system and 

the developed neural network architectures, the 
adaptation demands only acquiring a set of images and 

retraining the developed networks. 

 
INTRODUCTION 

Hand gesture recognition constitutes an essential field of 

nonverbal communication that can be applied in many 
areas, such as clinical and health, sign language, robotic 

control, home automation or augmented reality (Oudah 

et al., 2020). In the beginning, hand gesture recognition 

was realised using various sensors attached to the glove, 

for example, curvature sensors, angular displacement 

sensors, flex sensors, optical fibre transducers or 

accelerometers sensors. Those sensors detected hand 

movements or finger bendings, further analysed by a 

computer connected to the glove with wires. Even though 

such systems achieved high accuracy, they were 

characterised by many limitations relevant to a 

prohibitively expensive manufacturing cost and a low 
comfort of use. These flaws resulted in the development  

of cost-effective and convenient techniques based on 

computer vision methods (Xia et al., 2019). 

Traditional computer vision utilises carefully hand-

designed features to understand the nature of an analysed 

scene. Many algorithms were developed to design 

features using edge detection (Żak & Hożyń, 2013b), 

image future detection (Bay et al., 2006), texture 

recognition (Hożyń, 2021), image segmentation 

(Zalewski & Hożyń, 2020), or particle image velocity 

(Piskur, 2022). They were deployed in various 

applications, such as robotics systems (Hożyń, 2020), 
autonomous surface vehicles (Praczyk et al., 2019), 

underwater platforms (Jurczyk et al., 2020), obstacle 

detection (Kot, 2022) or stereo vision (Żak & Hożyń, 

2013a). The difficulty with this approach is that it 

demands long trial-and-error processes to select the most 

promising feature, which the computer vision engineer 

must next tune. 

Deep Learning (DL) introduced a new approach where 

the neural network is responsible for discovering patterns 

in analysed images and automatically finding the most 

descriptive features. This approach allowed AlexNet 

(Krizhevsky et al., 2017), constructed by Krizhevsky et 
al., to win the ImageNet Large Scale Visual Recognition 

Challenge in 2012, proving that automatically learned 

features can exceed manually designed ones. After that,  

some disruptive network architectures, such as 

GoogleNet/InceptionV1 to V4 (Szegedy et al., 2015), 

ResNet (He et al., 2016), VGG16 or VGG19 (Simonyan 

& Zisserman, 2015) were proposed. They were trained to 

distinguish 1000 classes using ImageNet dataset (Jia 

Deng et al., 2009), which includes 1.5 million images 

divided into 20 000 categories. The obtained Top-1 

accuracies of the above methods are between 71% and 
79%, constituting outstanding results and making them 

especially suitable as pre-trained models in many 

computer vision applications. 

Pre-trained models establish a convenient approach to 

deep learning. They are previously trained on large 

datasets, which makes their spatial hierarchy of features 

effective as a generic model for various classification 

tasks. Two ways of deploying pre-trained models can be 

distinguished: feature extraction and fine-tuning. Feature 

extraction utilises previously trained convolutional layers 

as a feature detector. In this instance, the dense layers are 

only modified to develop a new classifier. Fine-tuning, 
apart from changing the classifier, also trains some 

convolutional layers that enable them to recognise a 

modified set of features (Szymak et al., 2020). Pre-

trained models have been utilised in many manufacturing 
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applications, such as object detection (Liu & Liu, 2018), 

object classification (Hożyń, 2023), system monitoring 

(Deng et al., 2020) or fault diagnosis (Di Maggio, 2022). 

Hand gesture recognition based on computer vision 

constitutes a very promising approach in manufacturing 

applications (Neto et al., 2019). In (Sheikholeslami et al., 

2017) the authors explored the efficacy of robot hand 

configuration in expressing instructional gestures for 

human-robot interaction. They addressed recognition 

confidence measures for the gestures that humans and 
robots express using different hand configurations. 

Multimodal data fusion and multiscale parallel 

convolutional neural networks for human-robot 

interaction were presented by Gao et al. (Gao et al., 

2021). The devised method was applied to a seven-

degree-of-freedom bionic manipulator to achieve robotic 

manipulation with hand gestures. 

A real-time human-robot interaction framework based on 

hand gesture detection was presented in (Mazhar et al., 

2019). The framework facilitated a real-time safe human-

robot collaboration using static hand gestures and 3D 
skeleton extraction. Nuzzi et al. (Nuzzi et al., 2019) 

utilised a Faster R-CNN object detector to find the 

accurate position of the hands in RGB images in view of 

a smart hand gesture recognition set up for Collaborative 

Robots. They acquired four different small datasets with 

different characteristics to evaluate the performances in 

various situations.  The developed system achieved good 

performances that could lead to real-time human-robot 

interaction with a low inference time. 

Even though some researchers have addressed the hand 

gesture recognition problem, this task is always closely 

related to the character of the individual implementation. 
It means that the number of gestures, meanings, and 

image acquisition conditions should always be adjusted 

to the application’s demands.  Therefore, the motivation 

for the present work was to devise a flexible and accurate 

approach to hand gesture recognition for human-robot 

cooperation in manufacturing applications. To achieve it, 

a vision system suitable for industrial applications was 

designed. Using this system, the database comprising six 

gestures was created. Then, the baseline model structure 

was proposed. The baseline model allows evaluation of 

the created dataset and constitutes a benchmark for more 
complex models. Finally, the most promising pre-trained 

models were selected and tested using feature extraction. 

For this purpose, five structures of dense classifiers were 

devised and evaluated.  

The proposed solution differs from the previous 

approaches since it focuses on both: hand detection and 

database creation. It facilities a convenient way of 

various dataset development and modification as well as 

a straightforward detector development based on pre-

trained neural networks. In this way, it delivers a simple 

methodology which can be easily adopted in similiar 

applications.The encouraging results demonstrate that 
the devised method classifies the specified gestures with 

high accuracy.  

The paper is structured as follows: Section 2 summarises 

the proposed method. In Section 3, the attained results for 

different network structures are presented, and in Section 

4, the obtained results are concluded. 

METHODS 

The research goal was to devise a gesture recognition 

method for human-robot cooperation. For this purpose, 

the technique based on image classification using neural 

networks was adopted. It demands an extensive image 

database of exemplary gestures for training, validation 

and testing neural networks. Therefore, the vision system 
was designed to acquire the necessary images in the first 

step. Then, the database was created, and a baseline 

model of a convolution neural network was generated. 

The baseline model served as a starting point for 

designing neural network architectures and testing the 

usability of the organised image dataset.   Those steps 

enabled to design of convolutional neural network 

architectures. Their programming implementation was 

executed utilising publicity available TensorFlow 2 and 

Keras library.  

Vision System 

The developed vision system comprises the Alvium 1800 

U-050 industrial camera (Fig. 1) and a PC-based image

processing unit. It enables acquiring images at 117

frames per second at 0.5 MPixs resolution. The PC-based

image processing system utilises Intel Core i7-6700HQ

CPU 2.6 GHz and 32 GB RAM. Its programming

implementation employs Vimba C++ API, delivered by

Allied Vision Company. The OpenCV and Qt libraries

were also adopted for image processing and graphical

user interface (GUI) development.

Figure 1: Alvium 1800 U-050 industrial camera 

Database description 

The dataset was created using the designed vision 

system. It incorporates 4483 images divided into seven 

classes: OK (2), STOP (5), FORWARD (0), 

BACKWARD (6), RIGHT (1), LEFT (4), and 

NOGESTURE (3) (Fig. 2).  
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Figure 2: Examples of the classified gestures 

 

Since the primary assumption was that the camera could 

be located at various distances from a human operator in 

the range of 0.5 to 3.5 meters, the images were divided 

into three folders: 0.5-1.5 meters, 1.5-2.5 meters and 2.5-

3.5meters. It was to ensure uniform distribution of the 

images in the train, validation and test sets. Irregular 

distribution could affect the training process since, for 

example, a more significant number of images from 

shorter distances could be located in a train set and, 

consequently, a smaller number in the validation sets.  
The dataset was divided into train, validation and test sets 

for each folder separately. The adopted procedure 

assumed that 80% of the dataset is devoted to 

training/validation steps, while 20% to a test step. The 

training/validation dataset was divided into 75% training 

data and 25% validation data.  

 

Baseline Model 

A baseline model was established to evaluate the created 

dataset and to provide a reference point for developing 

more complicated neural network structures. It represents 
the most straightforward architecture that achieves 

statistical power. In the presented approach, the baseline 

model consists of two convolutional layers and one dense 

layer (Fig. 3).  

 

 

Figure 3: Baseline model 
 

The convolutional layers are followed by pooling layers 

to downsample feature maps allowing successive 

convolutions to analyse increasingly more oversized 

windows. After the convolutional block, a flatten layer is 

inserted that enables employing dense layers, which 

output signals are utilised by a final softmax layer. A 

detailed description of the adopted architecture is 

depicted in Table 1. 

 

Table 1: Baseline model architecture 

 

Input (152 x 202 RGB image) 

conv3-8 
maxpool (2x2) 

conv3-16 

maxpool (2x2) 

FC-16 

Softmax-7 

 

The size of output images from the camera is 608x808x3 

pixels (in RGB format). It is too large to process in neural 

networks; therefore, it was reduced to 152x202x3 pixels. 

Additionally, the pixel values were normalised between 

0 and 1. 

The first experiments showed that the model overfits and 

presents a high variance. To mitigate this effect, data 

augmentation was considered. For this purpose, an in-

place data augmentation was deployed, ensuring the 
model does not process the same images at the training 

time. Based on the carried-out tests, the following data 

augmentation coefficients were established and utilised 

for further experiments: 

• Rotation range = 25; 

• Width shift range = 0.2; 

• Height shift range = 0.2; 

• Shear range = 0.1; 

• Zoom range = 0.1; 

• Horizontal trip = True; 

• Vertical flip = True. 
 

The baseline model was evaluated by deploying 

classification accuracy since each class contains a similar 

number of images. Therefore, the learning curves were 

considered to analyse the performance of tested 

networks. In Figures 4 and 5, the accuracy and loss 

curves for the baseline model are presented. They suggest 

that the model can learn patterns from the provided 



 

 

dataset and that the adopted network architecture is 

appropriate for the designed classification task. 

 

 
Figure 4: Accuracy of the baseline model 

 

 
Figure 5: Loss of the baseline model 

 

The classification results are summarised in a confusion 

matrix (Fig. 6). They suggest that the baseline model 

could not adequately differentiate mostly forward and 
left gestures as well as stop and forward ones. It stems 

from the convolutional base being too simple to discern 

enough useful features. The classifier is also 

uncomplicated and comprises only one small 

convolutional layer which hinders the correct 

interpretation of patterns in the images.  

 

 
Figure 6: Confusion matrix of baseline model 

performance 

 

Pre-trained Networks 

The following pre-trained networks were adopted for the 
experiments: 

• VGG16; 

• VGG19; 

• ResNet50; 

• Xception; 

• InceptionV3. 

 

Their convolutional layers were utilised while the dense 

layers were replaced with new classifiers. To find the 

most suitable classifier, five architectures were designed 

and tested for each network (Table 2). 
 

Table 2: Tested classifiers 

 

Class. 1 Class. 2 Class. 3 Class. 4 Class. 5 

FC-16 FC-32 FC-64 FC-128 FC-256 

FC-16 FC-32 FC-64 FC-128 FC-256 

 

The deployment of pre-trained networks demanded 

image normalisation. Therefore, the image processing 

step was utilised. It facilitated image conversion between 

RGB and BGR colour spaces and set the pixel values 

between the -1 and 1 range. 

 

RESULTS 

To validate the proposed models, numerous experiments 
were performed. Firstly, the pre-trained models with the 

defined classifiers were evaluated utilising learning 

curves and accuracy rates. Then, comparative analyses of 

the most promising model were conducted to assign the 

best architecture for the gesture classification task. 

Since the deep learning models are characterised by their 

stochastic nature, each network was trained and validated 

ten times for different train and validation splits. 

Additionally, checkpoint and early stopping mechanisms 

were deployed to reduce training time.  They facilitated 

saving networks’ weights for the highest achieved 
accuracy and stopping the learning procedure if the 



 

 

network did not improve its performance during fifteen 

epochs. 

The results of the first part of the experiments suggest 

that most networks can learn using even the simplest 

classifier (Class. 1). In this case, only VGG16 and 

InceptionV3 did not distinguish patterns in the images 

(see Table 3).  

 

Table 3: Accuracy of the compared models 

 
 Class. 

1 
Class. 

2 
Class. 

3 
Class. 

4 
Class. 

5 

VGG16 0,165 0,512 0,848 0,981 0,987 

VGG19 0,988 0,992 0,994 0,988 0,991 

ResNet50 0,657 0,987 0,982 0,991 0,979 

Xception 0,973 0,982 0,981 0,981 0,992 

InceptionV3 0,165 0,96 0,972 0,984 0,983 

 

The higher complexity of the models slightly increases 

the performance. Only the models with small accuracy 

for simpler classifiers exhibited rising performance 

(VGG16, InceptionV3). However, they finally achieved 
a lower accuracy than VGG19 for the medium complex 

classifier. Generally, VGG19 reached the highest 

accuracy (0,994) for Classifier 3.  

The obtained learning curves for this model are presented 

in Figures 7 and 8. 

 
Figure 7: Accuracy of VGG19 (Class. 3) 

 

 
Figure 8: Loss of VGG19 (Class. 3) 

 

They suggest that overfitting and variance are not present 

during the learning process and that the validation images 

are easier to analyse by the network. This is because data 

augmentation is only implemented for training input data. 

Consequently, since each image during the training stage 

is slightly distorted, while the validation stage remains 

images unchanged, the validation data is easier to 

interpret.  

Based on the results from the first step, the second step 

was devoted to finding the most promising structure 
among the distinctive networks. Therefore, the following 

models were considered for further research: VGG16 

(Class. 5), VGG19 (Class. 3), ResNet50 (Class. 5), 

Xception (Class. 5) and InceptionV3 (Class. 5).  Each 

model was trained three times using the whole data 

(training and validation sets) and assessed on the test set. 

Apart from accuracy, the training and execution times 

were also considered. The training time was measured 

during the training step, while the execution time was 

calculated as the time needed to predict the classes for all 

images in the training dataset (3578 images).  
 

Table 4: Performance of the compared models 

 
 Accuracy Training 

time (s) 

Execution 

time (s) 

VGG16 0,993 2200 8,48 

VGG19 0,996 2220 10,54 

ResNet50 0,991 1886 7,23 

Xception 0,991 3616 16,49 

InceptionV3 0,989 3480 15,32 

 

The results indicate that all the pre-trained models highly 
accurately classify hand gestures (above 0,989). The best 

one, VGG19, achieved an accuracy equal to 0,996 (Table 

4). The fastest network was ResnetNet50 attaining 1886 

seconds during training and 7,23 seconds during the 

execution test. The confusion matrix of the VGG19 

performance shows that the network incorrectly 

classified only four gestures from the test set (Fig. 9). 

 

 
Figure 9: Confusion matrix of the VGG19 performance 

 



 

 

CONCLUSIONS 

This article has addressed the problem of hand gesture 

recognition for human-robot cooperation. It describes all 

necessary steps, such as image acquisition, database 

creation and neural network development.  

The image acquisition system was designed in the first 

step of the experiments. Based on it, the database was 

created. The database was evaluated using the baseline 

model, which also served as a benchmark for more 

complicated pre-trained neural network structures.  
As pre-trained networks, the most promising 

architectures were selected. Then, their classifiers were 

replaced with the proposed ones, and the new structures 

were trained. Based on the obtained results, the best 

architectures were appointed for the final comparison. It 

showed that the VGG19 model achieved the highest 

accuracy, equal to 0,996. The other models obtained 

slightly lower accuracy. Among the tested networks, the 

fastest was ResNet50 which executed almost twice the 

time faster as the slowest InceptionV3.  

The proposed solution can be easily deployed in similar 
applications devoted to hand gesture recognition in 

industrial applications. However, it is only limited to 

gesture classification. In some cases, the applications 

should also be capable of localising a human operator’s 

hand. For this purpose, object detection methods should 

be employed. Therefore, future work will focus on 

applying object detection techniques to human-robot 

cooperation based on hand gesture recognition.  
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