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ABSTRACT 

Challenged by an unprecedented increase in product 

variety and demand variability, logistics systems are 

required to fulfill small customer orders at competitive 

costs and within short lead times, while keeping a high 

level of flexibility. In this context, companies are 

increasingly adopting flexible material handling 

solutions based on autonomous mobile robots (AMRs). 

This paper deals with AMR-based Automated Pick to 

Pallet Systems (APPSs), a novel solution for mixed-case 

palletizing that has never been studied in scientific 

literature. In these systems, palletizing robots pick 

boxes from single-item source pallets and place them on 

mixed pallets under construction. AMRs replenish the 

palletizing robots with source pallets and transport the 

mixed pallets to and from the different palletizers until 

completion. An agent-based simulation model for the 

estimation of AMR-based APPS performance is 

presented and validated. The developed model can be 

modified and adapted to consider different layout 

configurations and operating policies. Therefore, it 

provides support to companies evaluating the 

introduction of such systems and lays the grounds for 

further research on their suitability in different contexts, 

also in comparison with existing systems. 

 

INTRODUCTION 

In recent years, logistics systems have been 

characterized by an ever-growing need of flexibility. 

Changing customer requirements have led companies to 

shorten delivery lead times and increase product variety, 

shifting from a mass production to a mass customization 

strategy (Emde and Schneider 2018). This raises the 

pressure on logistics systems called to perform frequent 

small-lot deliveries to the assembly lines (Emde and 

Gendreau 2017) and to manage a large assortment of 

items in warehouses (Zhang et al. 2019). Such 

requirements, coupled with the need of coping with 

highly volatile demand, shortage of labor force, and 

tight fulfilment schedules (Boysen et al. 2019), have led 

to the replacement of traditional automated systems 

with robotized warehousing solutions able to replicate 

manual systems’ flexibility and scalability to varying 

workloads (Žulj et al. 2022).  

Among such systems are Autonomous Mobile Robots 

(AMRs), “industrial robots that use a decentralized 

decision-making process for collision-free navigation to 

provide a platform for material handling, collaborative 

activities, and full services within a bounded area” 

(Fragapane et al. 2021). Commonly seen as an evolution 

of Automated Guided Vehicles (AGVs), AMRs 

navigate autonomously, thus not depending on the 

surrounding infrastructure. AMRs’ adoption has been 

growing in recent years: in 2021, AMRs’ sales have 

surpassed the more established AGVs’ with over 82000 

AMRs shipped against 18000 AGVs (Interact Analysis 

2022). Logistics applications have been driving AMRs’ 

demand, mainly due to the growing adoption of AMRs 

for order fulfilment (Interact Analysis 2020). 

Also scientific literature has focused on AMR-based 

order fulfilment solutions (e.g., Žulj et al. 2022), 

developing either analytical or simulation-based models 

to estimate such systems’ performance, optimize their 

design, and evaluate the adoption of different operating 

policies. In their review of recent robotic automated 

picking systems, Azadeh et al (2019) show a 

comprehensive set of AMR-based systems, 

distinguishing more diffused “movable rack” goods-to-

person solutions, namely Robotic Mobile Fulfilment 

Systems, from recently emerged “static rack” solutions 

such as Pick Support Systems. Besides picking 

solutions, literature shows how recent AMR-based 

systems have been introduced also in other warehousing 

contexts such as parcel sorting hubs (Zou et al. 2021) 

and cross-docking terminals (He and Prabhu 2022).  

However, the extant literature does not cover the entire 

range of AMR-based systems recently developed by 

material handling providers. Among the latter are AMR-

based Automated Pick to Pallet Systems (APPSs), 

which have been lately introduced in food and beverage 

distribution centers to automate mixed-case palletizing 

operations, namely the creation of customer order 

pallets. APPSs are systems in which palletizing robots 

use a vision system to localize the different items’ boxes 

on single-item source pallets, pick the boxes from the 

source pallets and place them on target pallets (Wurll 

2016). In the AMR-based configuration, AMRs 

replenish the palletizing robots with single-item source 

pallets and transport the mixed pallets under 
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construction to and from the different palletizers until 

completion. Thanks to the introduction of AMRs for the 

transportation of pallets within the system, the newly 

born solution reduces the amount of fixed mounted 

equipment that characterizes the existing robotized 

palletizing systems while maintaining their benefits of 

higher performance and improved efficiency with 

respect to manual systems (Lamon et al. 2020).  

As no study has yet been made on AMR-based APPSs, 

the objective of this work is to develop a simulation 

model for the estimation of their performance, providing 

useful support to companies evaluating the introduction 

of such systems and laying the grounds for further 

research on their suitability in different contexts, also in 

comparison with existing systems. 

The remaining of this paper is organized as follows. 

First the layout and working principles of the system 

under consideration are presented, then the simulation 

model and its validation are described. Lastly, 

conclusions and further developments are presented. 

SYSTEM DESCRIPTION 

An AMR-based APPS is a fully automated parts-to-

picker configuration in which mixed pallets are created 

by palletizing robots picking from single-item full 

pallets. Such configuration includes two main systems. 

A mixed pallets’ fulfilment system manages the creation 

and internal transportation of customer order pallets. 

Concurrently, a full pallets’ replenishment system 

ensures that palletizing robots are fed with enough 

pallets to perform the picking activity. An area of length 

L and width W is dedicated to the system (Figure 1).  

Single-item full pallets that come from reserve storage 

enter this area through an input point. The empty pallets 

needed for mixed pallet construction are kept in a 

dedicated area within the system, while the palletizing 

activity is articulated in N picking modules. Every 

module contains 2nps palletizing stations (PSs). Each 

station (Figure 2) comprises an anthropomorphic robot 

that runs on a slide to reach all the pallets which are 

laying on both its sides. On one side of the slide 

(picking aisle) there are nfp locations for single-item full 

pallets, facing the slide with their short side. Behind 

each full pallet location, there is an additional location 

to store a full pallet waiting to be fed to the station 

(forward storage area). On the other side of the slide 

(output aisle) there are nmp locations for mixed pallets, 

facing the slide with their long side. Finally, mixed 

pallets leave the system through an output point. 

Transportation activities inside the system are 

performed by two distinct fleets of AMRs: fulfilment-

system AMRs and replenishment-system AMRs. Each 

fulfilment-system AMR is equipped with a lifting 

platform for the handling of mixed pallets and its travel 

path is bounded to output aisles and areas outside the 

picking modules. The areas outside the picking modules 

can also be travelled by replenishment-system AMRs. 

Beyond such areas, replenishment-system AMRs can 

move along picking aisles and are equipped with forks 

for the handling of full pallets. When idle, fulfilment-

system AMRs remain at the point of service completion, 

as they can stay under the pallet without taking up 

additional space. Instead, replenishment-system AMRs 

travel to predetermined dwell points.  

The allocation of tasks to the two fleets is managed by a 

Figure 1: Layout of the System 



 

 

central control unit that has visibility over the state of 

the system resources (AMRs’ fleets, picking stations). 

This centralized task allocation is the most commonly 

used according to previous literature in which only few 

studies report the possibility of decentralizing task 

allocation to AMRs (Fragapane et al., 2021). Starting 

from the list of pallets required by customer orders, the 

central control unit progressively releases palletization 

requests and sets the sequence of stations that each 

mixed pallet under construction has to visit. In this way, 

the control unit also regulates the number of mixed 

pallets that are being simultaneously built within the 

system. When a request to build a mixed pallet enters 

the system, the control unit assigns a task to the first 

available fulfilment-system AMR. Such task entails the 

transfer of an empty pallet from the area of empty 

pallets storage to a free location at the first palletizing 

station to be visited by the pallet under construction. 

Upon the mixed pallet arrival at the station, the transfer 

task is terminated, and the AMR is free to receive a new 

one. At the palletizing station, when choosing the mixed 

pallet to work on, the robot follows a “first come, first 

served” logic based on the pallets’ order of arrival at the 

station. Once the pallet has been chosen, the robot picks 

from the full pallets the needed boxes and places them 

onto the mixed pallet. Afterwards, the first available 

fulfilment-system AMR is tasked with the transportation 

of the pallet. If the pallet does not need to visit 

additional stations, it is transported to the system output, 

otherwise it is transferred to a new station. 

Concurrently, replenishment-system AMRs carry out 

the replenishment of the full pallet locations at the 

palletizing stations. The quantity remaining at a full 

pallet location is checked every time a robot picks from 

that location, triggering a replenishment in case such 

remaining quantity is less than the replenishment 

threshold. If this is the case, the control unit tasks the 

first-available replenishment-system AMR with the 

retrieval of the required full pallet from the forward 

storage area. From there, the pallet is brought to the 

location that needs to be replenished, eventually waiting 

if the current pallet on the location to be replenished has 

not been fully consumed yet. Instead, the replenishment 

of the forward storage area is considered out of scope. 

Hence, it is assumed that such replenishment is carried 

out outside the system operating hours and that the 

system is refilled with enough full pallets to never 

experience stock out. 

SIMULATION MODEL DESCRIPTION 

As the goal of this work is to estimate the performance 

of the AMR-based APPS, an agent-based simulation 

model has been developed. The agent-based 

methodology was deemed appropriate as the behavior of 

the system under analysis stems from the complex 

interactions among the palletizing robots, the two 

AMRs’ fleets, and the central control unit. The adoption 

of the agent-based technique to model warehousing 

operations problems has been recently growing, 

including examples of application for the analysis of 

AGV-based and AMR-based systems (Ribino et al. 

2018; Winkelhaus et al. 2022). In agent-based models, a 

system is modelled as a collection of autonomous 

decision-making entities called agents (Bonabeau 2002). 

Each agent is associated with a set of attributes, either 

static or dynamic, and methods. The latter represent the 

agents’ behavioral rules which connect their state, 

namely variables that represent their current situation, 

with their potential actions. Among an agent’s methods, 

some define how and with whom the agent interacts, 

comprising also eventual interactions between the agent 

and the environment it populates (Macal and North 

2010).  

The agents of the developed model are both AMRs’ 

fleets, palletizing robots, and the central control unit. 

Instead, the remaining elements of the system, namely 

customer orders and mixed pallets, have been 

considered as passive entities that need agents’ actions 

to advance in the simulation model, thus they have been 

modelled as standard classes of objects. Finally, the 

system area has been modelled by means of a graph 

through which AMRs can reach any point of the system 

area without crossing palletizing stations and storage 

racks.  

The model has been developed in Python language 

using Mesa, an open-source framework for building 

agent-based simulation models (Masad and Kazil 2015).  

 

Simulation Model Structure 

The developed model is structured in three main blocks. 

The first block corresponds to a pre-processing phase in 

which customer orders are generated and divided into a 

list of mixed pallets to be built. Each mixed pallet in the 

list is associated with the sequence of palletizing 

stations needed for its construction and the quantity of 

boxes required at each station.  

The second block corresponds to the simulation of the 

system’s operations. In this block, the agents’ behavior 

and interactions determine the advancement of the 

system’s operations, causing periodic changes in the 

states of the agents themselves. To represent this 

dynamic side of the modelled system, UML statechart 

diagrams have been produced. Statechart diagrams 

schematize the behavior of an agent by showing its 

possible states and the events-triggered transitions to 

and from the different states, with the agent’s eventual 

responses and actions (Booch et al. 1999). As an 

example, Figure 3 reports the statechart diagram of 

 

Figure 2: Palletizing station layout 

 

 



 

 

fulfilment-system AMR agents in the system. A 

fulfilment-system AMR agent stays idle until receiving 

a transfer task. Consequently, it starts moving and 

transitions to “Moving” state. AMRs move in the graph 

at constant speed from their origin node to their 

destination following the shortest path computed by 

means of the Dijkstra algorithm. Following previous 

literature (e.g., Bozer and Aldarondo 2018; Lienert et al. 

2018), acceleration and deceleration delays are 

considered negligible, and aisles are assumed to be wide 

enough to avoid congestion. The transfer tasks assigned 

to fulfilment-system AMRs correspond to the transfer of 

a mixed pallet to the next palletizing station or to the 

output point. Therefore, two separate paths are 

generated for the two portions of each task. The first 

path goes from the current position of the AMR to the 

node where the mixed pallet needs to be loaded. Such 

loading node coincides with a pallet location in one of 

the output aisles or, in case the palletization request has 

just entered the system, with the empty pallet storage 

area. The second path goes from this location to the 

unloading node. The latter corresponds to the station 

where the mixed pallet needs to be processed or, in case 

the mixed pallet is complete, to the system’s output 

point. Both in case of the first and the second path, upon 

the arrival at the last node before destination, the AMR 

checks the status of the loading/unloading node to 

ensure it is not occupied by another AMR. If the node is 

occupied, the AMR transitions to “Waiting” state and 

waits until the destination becomes available. Then, it 

resumes the “Moving” state. Else, if the node is empty, 

the AMR remains “Moving” and the loading/unloading 

node is declared occupied as the AMR is about to reach 

it. Once the AMR arrives at the loading node, it stops 

and loads the pallet. Then, its movement is resumed and  

the loading node is declared empty. Instead, upon the 

arrival at the unloading node, the AMR unloads the 

pallet and evaluates whether such destination is the 

system’s output point. If this is the case, the AMR 

assumes the “Moving_to_dwell_node” state and travels 

to a nearby area to make the output node available for 

other AMRs. Once arrived at the dwell node, the AMR 

returns to the initial “Idle” state. Otherwise, if the 

unloading node is a pallet location at a palletizing 

station, the AMR becomes “Idle” and remains at such 

location until receiving a new task.  

The third block of the model is a post-processing phase 

in which performance measures are computed. When 

the simulation time is reached, the model checks how 

many and which of the orders and related mixed pallets 

released into the system have been completed. At this 

point, the model also computes utilization and 

productivity measures. The utilization of AMRs and 

palletizing stations is computed as the percentage of the 

system operating time in which such resources are 

performing their tasks (i.e., not idle). Productivity is 

measured as the number of boxes palletized per 

operating hour at each station and in the whole system..  

 

Validation and Verification 

The design and development of the simulation model 

are not the sole activities to be performed in the process 

of modelling and simulation of a system. Indeed, model 

validation and verification activities are necessary to 

ensure simulation model accuracy (Balci 1997) and 

should be performed throughout the entire lifecycle of 

the modeling and simulation process (Yin and McKay 

2018). 

Figure 3: Statechart Diagram of the Fulfilment-System AMR agent 



 

 

 

Validation and verification concern the conceptual 

model, computer model, and simulation results (Franzke 

et al., 2017). 

Conceptual model validation aims at evaluating the 

accuracy of the model in representing the real-world 

research problem (Sargent 2010). As in Winkelhaus et 

al. (2022), considering that AMR-based APPS are a 

novel technological solution and their application in 

real-world cases is still scarce, the conceptual model 

was built and validated based on both relevant research 

on AMR-based order fulfilment solutions and on 

practical observations. Indeed, before building the 

model, the authors visited two grocery distribution 

centers where the AMR-based APPS solution had 

recently been introduced for the creation of respectively 

fresh produce and beverage order pallets. Although the 

systems were still in a testing phase and not fully 

operational yet, it was possible to gain some qualitative 

and quantitative insights on the systems’ structure and 

operating conditions. Furthermore, the model structure 

and assumptions were discussed with the technological 

provider that has developed the AMR-based APPS 

solution under analysis. 

For the verification of the computer model, namely the 

assurance that “the computer programming and 

implementation of the conceptual model are correct” 

(Sargent 2010), software engineering offers various 

techniques. Among these, dynamic techniques are 

among the most widely used (Heath et al. 2013; 

Winkelhaus 2022). Accordingly, a debugging activity 

was performed on the developed simulation model. As 

finding the source of error is often challenging, 

additional code lines and printed statements were 

inserted at specific locations of the model to monitor its 

behavior. Moreover, the computer model was created 

using a bottom-up testing approach which entails the 

development of the code “from the sub-model up” 

(Whitner and Balci 1989). Once terminated, each 

portion of the model was extensively tested both by 

itself and after being integrated with the rest of the code. 

Finally, the simulation model output validation aims at 

determining whether the model is sufficiently accurate 

for its intended purpose (Sargent 2010). To obtain the 

simulation output, the computer model must be 

provided with input data. The latter include layout 

parameters, operational parameters, as well as demand- 

and item-related parameters. These data have been 

selected from different sources (the visited AMR-based 

APPS, simulation studies on AMR-based warehousing 

systems, and material handling providers) according to 

their availability and appropriateness. Specifically, 

layout parameters are based on one of the two visited 

distribution centers. The considered layout includes 12  

 

palletizing stations (2 picking modules composed of 2 

rows of 3 palletizing stations each) and two areas for 

full pallets’ storage. On one side of each station there is 

a picking aisle with 12 full pallet locations. On the other 

side, there is an output aisle with 8 mixed pallet 

locations. Picking aisles are replenished by a fleet of 3 

replenishment-system AMRs, while output aisles are 

served by 15 fulfilment-system AMRs.   

Operational parameters characterize palletizing robots 

and AMRs. Palletizing robots pick one box at a time 

and place it onto a mixed pallet. For the picking and 

placing of the box a fixed time of 7 seconds has been 

considered, while the time palletizing robots spend 

running on the slide is estimated considering a speed of 

1 m/s. For fulfilment-system and replenishment-system 

AMRs a speed of 1,3 m/s and 1 m/s has been 

respectively considered. The pallet loading/unloading 

time has been set equal to 25 s for both AMR fleets.  

Finally, parameters related to the characteristics of the 

customers’ demand and of the items handled in the 

system have been set as follows. Based on the data 

gathered during the distribution centers visits and on 

relevant scientific literature (Winkelhaus 2022), the 

number of lines per each order has been generated from 

a triangular distribution (12,15,18). Similarly, each line 

has been associated a quantity of boxes chosen from a 

triangular distribution (2,5,8). Given such 

characteristics, each order corresponds to one or more 

mixed pallets composed of up to 60 boxes.  Instead, the 

number of boxes per full pallet goes from 50 to 80 

depending on the item features. The system handles 120 

items with different demand profile: 24 best-selling 

items account for 50% of the overall quantity of boxes 

to be palletized. Because of this difference, alternative 

allocations of the items to the palletizing stations can be 

evaluated. For the validation, the same choice made by 

the supplier for one of the visited distribution centers 

has been replicated: 4 palletizing stations are dedicated 

to best-selling items to minimize the expected number 

of stations needed for mixed pallet creation. 

Furthermore, these items are assigned 2 full pallet 

locations instead of a single one to avoid an excessive 

workload on the 4 dedicated stations.   

Given the presented input parameters, simulation results 

(Table 1) have been obtained by performing 10 

replications of a finite simulation horizon of 8 hours. 

The number of replications has been selected to obtain a 

ratio between the half-width of the 95% confidence 

interval and the mean value of system productivity over 

the sample of runs lower than 0,5%. The simulation 

horizon has been set to study the system under working  

conditions (e.g., working hours, overall material 

consumption and resources’ utilization) that are close to 

Performance measures (avg) System Palletizing robots Fulfil.-system AMRs Replen.-system AMRs 

Productivity [boxes/h] 2413 201 - - 

Utilization  - 83,4 % 82,5 % 22,2 % 

Table 1: Simulation model output 



 

 

the ones in which the visited distribution centers 

operate. 

The validation technique of directly comparing the 

model results with the results of a real-world system 

was not deemed feasible as both the performance and 

the complete set of parameters were not available yet 

for either one of the visited sites. Indeed, the systems 

were in an early implementation phase at the time of the 

visits, thus still undergoing fine-tuning and testing 

operations. Anyhow, the resulting performance 

measures (Table 1) are in line with the expected values 

discussed with the technology provider for the visited 

distribution centers. In particular, the relatively low 

utilization of replenishment-system AMRs was also 

expected by the technology provider because most 

replenishments are concentrated in a narrow time frame. 

Therefore, the small fleet size cannot be further reduced 

to avoid slowing down the palletizing operations due to 

delays in full pallets replenishments. Furthermore, to 

determine whether the model behaved as intended, its 

input-output behavior was evaluated. For this purpose, 

as in Franzke et al. (2017), several of the presented 

parameters were modified. For instance, by increasing 

the maximum number of boxes per mixed pallet, the 

number of stations visited by each pallet increases as 

expected and so does the time needed to create a mixed 

pallet. Even by changing the demand profile of the 

items the model behaves as expected. Indeed, as 

operations become increasingly more concentrated 

around few items, the average number of stations visited 

by a mixed pallet decreases, as the picking of best-

selling items is performed at few dedicated stations. 

 

CONCLUSIONS AND FUTURE WORK 

This work deals with AMR-based Automated Pick To 

Pallet Systems, a novel solution for mixed-case 

palletizing operations that has never been studied in 

scientific literature. Specifically, an agent-based 

simulation model for the estimation of such systems 

performance has been developed and validated. 

Although developed starting from real cases, the model 

can be adapted to different layout configurations by 

changing input parameters such as the number of 

picking modules in the system or the number of full and 

mixed pallet locations per station. With simple 

modifications to some of the agents’ methods, the 

model can also be adapted to consider different 

operating policies. Therefore, it can be employed both 

to support practitioners in the adoption and management 

of AMR-based APPSs and as a base for future research 

on such systems. A natural development of this work 

could leverage the presented simulation model to 

evaluate the robustness of AMR-based APPSs to 

varying parameters related to customers’ demand and to 

items’ characteristics. For instance, some preliminary 

experiments have been carried out, suggesting that the 

effect of changing demand profile on system 

performance is a worth-exploring aspect. Further 

experiments on the system could also study the effect of 

different operating policies on its performance, for 

instance by comparing alternative task dispatching rules 

to the AMRs or item allocation policies to palletizing 

stations. Moreover, future studies could perform an 

economic evaluation of AMR-based APPS in different 

fields, also in comparison with other systems in which 

palletizing stations are served by different transportation 

technologies. Finally, future works could extend the 

model to overcome some of its limitations, with a 

particular focus on considering the effects of congestion 

within the aisles and modelling the charging activity of 

AMRs.  
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