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ABSTRACT 

The rapid changes in social, political and economic 

policies in today’s European landscape create an 

increasingly turbulent and demanding market. In 

response to disruptive internal and external factors, the 

manufacturing industry strives to establish integrated, 

intelligent and digital solutions, targeting sustainable, 

reconfigurable and resilient systems capable of swiftly 

ramping up to maximum production capacity, enabling 

rapid adaptations in product functionality, process 

technology and production volume. In this context, 

Digital Twins (DTs) are means to map complex 

manufacturing systems and process chains for fast and 

efficient reconfiguration of production lines and entire 

value chains. This paper proposes a holistic architecture 

for digital twins spanning various hierarchical levels: (i) 

product level, (ii) process level, (iii) system level, and 

(iv) system of systems level. The benefits and 

challenges of the proposed approach are discussed in a 

real case study from automotive industry. 

 

INTRODUCTION 

Traditional manufacturing systems are vulnerable to 

sudden changes in their local ecosystem and market 

environment. Co-evolution of products, processes and 

production systems necessitates a transformation 

enabled by state-of-the-art technologies in order to 

remain globally competitive (Tolio et al. 2010). Early 

implementations of digitally-enhanced systems were 

oriented towards boosting system’s productivity, 

resource efficiency and mid-term responsiveness (Tolio 

et al. 2014). However, the adoption of digital 

technologies in the context of Industry 4.0 to date 

typically follows a gradual approach. Nowadays, this 

gradual adaptation falls short to proactively compensate 

production losses imposed by ever-fluctuating demand 

and higher customer expectations. Hence, 

reconfigurable manufacturing systems (RMSs) gain 

particular attention to cope with these issues. RMSs 

exploit the advantages of decision-making mechanisms 

and the set of technologies to design, develop, monitor 

and control manufacturing systems (Koren et al. 2018). 

Digital Twins (DTs) are one of the widely adopted tools 

in RMSs for representing both the physical and logical 

state of a specific product, process or multi-stage 

manufacturing system in a digital domain (Boschert and 

Rosen 2016; Schleich et al. 2017; Wang et al. 2019). 

DTs are able to elaborate in-line gathered heterogenous 

planning and process data (Tomiyama et al. 2019), 

which allows them to explore and evaluate a priori the 

possible future scenarios and provide the best strategy 

in decision support framework that optimizes certain 

production aspects: for instance, final quality (Yemane 

et al. 2018; Colledani et al. 2018; Ceglarek et al. 2020; 

Magnanini and Tolio 2021a;  Matta and Lugaresi 2021), 

predictive maintenance (Makris et al. 2019) or 

production planning (Magnanini et al. 2021b). On the 

other hand, the factors that are outside the process 

chain, such as inter-organizational circumstances and 

external environment dynamics (e.g., raw material 

shortage, technological advancements), also need to be 

considered for the consistent mapping of DTs (Hänel et 

al. 2021a). Indeed, the logistical disruptions and high 

market variability in demand-driven production (Just-

In-Time or Just-In-Sequence) continuously raise 

significant challenges in delivery strategy and 

warehousing. Therefore, logistics DTs can be utilized 

for supply chain networks to early detect changes and 
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simulate alternative intralogistics scenarios to respond 

promptly (Ivanov and Dolgui 2021; Moshood et al. 

2021). 

Even though these contributions to scientific 

literature are relevant, they primarily focus on the 

development and implementation of individual DTs at 

single level within a manufacturing system or their 

horizontal collaboration. The term horizontal 

collaboration here refers to the DTs collaborating at the 

same hierarchical level. On the contrary, to achieve 

completely sustainable, agile and smart manufacturing, 

a holistic approach that incorporates both the horizontal 

and the vertical linking of digital representations in the 

form of DTs is required. In RMS context, this means 

deriving the optimal network-level solution by 

embedding product, process, system and system of 

systems DTs in an integrated framework to provide a 

comprehensive reconfiguration strategy. 

This paper discusses the vertical integration of several 

DTs acting at various levels in a unified, human-centred 

architecture that leverages the benefits of digital 

technologies to demonstrate a synthetic view of the 

value chain and feasible reconfiguration options. In 

fact, the advantage of having a unique and 

comprehensive model for the performance evaluation 

and joint parameter adaptation of the manufacturing 

system, based on data gathered from the operating 

system and its surroundings, is discussed in particular 

when tactical, but also strategic decisions are to be 

considered.  

The paper is organised as follows: the proposed 

framework is presented in Section 2; in Section 3, a real 

case study is introduced, challenges and solutions are 

explained; lastly, the conclusions and future research 

directions are addressed in Section 4. 

PROPOSED VERTICAL FRAMEWORK 

The developed framework for rapid repurposing, 

adaptation and ramping-up of production lines and 

dynamic networks to match new production 

requirements is provided in Figure 1. 

DTs can fulfil divergent functions at each level. A 

uniform subdivision has not yet been established in the 

literature, as there are peculiar views on classifying part 

of a manufacturing system as a self-contained system or 

an integral part of a larger system. A systematisation 

into hierarchically arranged system levels is however 

widespread. While some industrial enterprises use 

production-specific terms such as equipment, process or 

plant (Wanasinghe et al. 2020; Cinar et al. 2020), a 

broader division is given as unit, system and system of 

systems in (Barth et al. 2020; Tao et al. 2019). In this 

article, the terms product-level, process-level, system-

level and system of systems-level DTs are considered.  

Product-level DTs include a product model, which 

can be based on data-driven, physics-based or hybrid 

approaches. It contains the material and product design 

information and correlates Key Quality Characteristics 

(KQCs) of the constituent components to predict the 

output product functionality and quality. This 

information is elaborated in process-level DTs, 

simulating the process behaviour and running an 

optimisation algorithm to select the optimal process 

parameters and settings for each associated unit (e.g., 

the trajectory of a robotic arm) depending on measured 

KQCs of incoming parts. The increased use of sensors 

              

            

          

                                 

                      

                        

            

                  

             

             

                   

                    

                          

               

                       

                              

          

                   

                              

       

                          

                             

                    

Figure 1. Vertically integrated DTs framework connecting product, process, system and system of systems-level DTs. 



   

 

   

 

and in-line measurement instruments allows the 

synchronous analysis of simulation models during 

manufacturing, using empirical data acquired through 

systematic in-line observations as an input, for 

downstream adjustment of machine settings for the next 

operations. Thus, before the actual physical 

changeover, simulation results in the virtual domain can 

support the decision-making of the operator, or directly 

adapt the process parameters, preventing the defect 

generation or their superimposition into end-of-line 

waste. In order to increase usability, scalability and 

interpretability, while reducing the computational 

burden of these models, proper order reduction and 

meta-modelling solutions are highly encouraged, 

simplifying model complexity but capturing the most 

relevant process dynamics and input parameters - 

output KQCs correlations. It is extremely critical 

especially for process-level DTs since they should not 

interfere with the processing time, turning DTs into 

system bottlenecks. 

System-level DTs, motivated by industrial needs, are 

innovative manufacturing flow models according to 

state-based representations of production systems. 

Thanks to system-level DTs, the production logistics 

and quality performance of alternative production line 

configurations and workforce allocations can be 

evaluated to support inventory and inspection station 

allocation and properly balance the trade-off between 

quality and productivity, which leads to an increase in 

system yield (Ysystem) defined as the fraction of 

conforming products produced by the system with 

respect to the total (Eeff/Etot). These models are 

continuously fed with shop-floor data, in order to 

provide a high-fidelity, dynamic, virtual representation 

of the production flow. The user (usually the production 

planner) can import the DTs of production modules 

(block-based approach) in the workspace from a 

catalogue, capturing machine failures, process 

deviations and disturbances, to select the capabilities 

and form an initial system layout. For already integrated 

modules, the available production data is analysed by 

process intelligence tools to let SBM of the production 

modules emerge. The SBM for the entire production 

system is generated starting from the reconfigurable 

module state models by using a physics-based 

composition approach. Both long-term and short-term 

performance measures are predicted under given 

process chain configurations.  

It is important to note that, during the reconfiguration 

of a manufacturing system, the intralogistics and supply 

chains need to be analysed as well. With the help of 

previously gained knowledge, early prediction of the 

impact of changes, for instance in shipping traffic, 

becomes available as a result of logistics DTs that 

continuously evaluate the supply chain on the level of 

system of systems. At this point, system-level DT and 

logistics DT can be unified in a multi-objective 

optimisation workflow to simulate the alternative value 

chains to generate KPIs (e.g. lead time, robustness, 

costs) and make them accessible for an interactive 

decision tool to choose the final reconfigured process 

chain based on a situation-adapted mix of KPIs. Here, 

each value chain is generated by exploring and 

combining feasible parameters of the two DTs that 

perform the accurate analysis of the individual value 

chains and related KPIs. Additionally, the alternative 

value chain generation and analysis allow the expansion 

of feasible solution space of supply chain and 

manufacturing process reconfiguration scenarios. The 

integrated formulation of the value chain, linking the 

product to process decisions in a factory to logistics 

process decisions in cross-sectorial business 

environment and vice versa, enables to derive the 

optimum network-level solution. The sequential 

approach, where the optimal logistics reconfigurations 

determine the manufacturing process decisions or vice 

versa, leads to suboptimal solutions. The iterative two-

way communication of these two DTs inside a unique 

framework is a missing aspect in most of current tools 

and is the key to deriving global optimal reconfiguration 

solutions. 

As explained, the proposed framework is based on the 

coupling and intertwining of four pillars, each of them 

exchanging data and information collected from their 

respective levels through PLC, MES, PLM or ERP. The 

acquisition and management of such unsynchronized, 

heterogenous, multi-resolution and multi-scale data 

about:  

i) Material/product, gathered by inspection 

technologies, both contact and non-contact, in-line 

and off-line, 

ii) Process, gathered by in-process sensors, 

iii) Machine state, gathered by production monitoring 

system, 

iv) Product flow, gathered by part tracking solutions, 

v) Codified feedback, gathered operators, 

vi) Market, gathered from external data lakes, 

pass semantic tagging, processing and integration steps 

in data management layer (Magnanini et al. 2020). This 

allows to achieve the observability of product, process 

and resource states. Hereby, certain data gathering and 

cybersecurity protocols need to be established for safe 

and secure upscaling of the framework. In this sense, 

one solution could be European activities such as 

GAIA-X (Seidel et al. 2022), which can, for example, 

realise trustworthy handling of data and its use at all 

levels of the value chain, especially in the area of high-

tech applications (Hänel et al. 2021b). 

The output of this framework is composed of a set of 

management decisions or control actions for 

dynamically driving the manufacturing value chain to 

the achievement of production efficiency and quality 



   

 

   

 

targets, with a continuous improvement loop, suitable 

for fast-changing, difficult-to-predict production and 

performance requirements. 

Lastly, the main challenges posed by the necessary 

seamless integration of DT technology into the 

manufacturing system and the cognitive loads on the 

operating personnel are taken into account with the help 

of a human-centred approach (Longo et al. 2022). This 

approach depends on the basis of experience and 

technical competencies of the employee. Firstly, the 

interaction and awareness with digital technologies are 

driven, particularly for skilled workers, using upskilling 

based on education levels and needs. This includes, for 

example, the application of Augmented Reality (AR) 

and Virtual Reality (VR) at product or process level. 

Furthermore, the application of sensor-equipped tools, 

for instance in fields involving highly manual work, 

enable process recording and down skilling process 

evaluation. On the other hand, KPI-based metrics can 

be made available to the user, i.e., decision-makers. To 

facilitate user interaction, a set of simplified GUIs and 

HMIs can be designed and developed to support 

production and quality planning managers as well as 

shop-floor operators, to quickly adapt production 

targets and line management strategies to the specific 

changing demand levels and features. In addition to 

that, a broad database enables the user to make 

predictions, which are particularly suitable for the 

system and system of systems level to make optimal 

decisions based on the observed situation. Hence, the 

human can actively participate in each manufacturing 

step and collaborate with developed DTs, putting into 

work also their knowledge to comprehensively 

compensate for the drastic changes implied by 

fluctuating market requirements. 

 

REAL CASE STUDY FROM AUTOMOTIVE 

INDUSTRY 

The challenges, benefits and preliminary 

implementation steps of the proposed architecture in 

previous section are elaborated under this section in a 

demonstrator from car body parts. 

Car body parts – Fontana Group 

Fontana Group is a leading Italian producer of luxury and 

sports car body parts. The process chain of Fontana 

includes manufacturing of dies, stamping of body panels, 

production of outer and inner body parts, assembling of 

complete body-in-white and sub-assembly of closures 

and fixed components, as shown in Figure 2. 

The expanding use of secondary and “green” 

aluminium, to answer the volatile market dynamics in 

terms of raw material availability, elevates the number of 

scraps in automotive industry since these alloys have 

variable mechanical properties that affect the final 

quality. Thus, it becomes very crucial to predict the 

forming behaviour before the defects accumulate and 

result in non-conforming products. Moreover, due to:  

i) The growing demand and customization for member 

of car models call for increasing number of 

production cells since each cell is customized for 

individual parts, not capable of being used for 

families (similar models derived from single 

versions) because the equipment is not modular and 

automated. Eventually, the space occupied for 

production operations and logistics management 

rises day by day, in addition to long cycle times 

caused by handling.  

ii) Increasing the grade of automation and quality 

standard requirements force greater investments, but 

manual production with low investments and high 

quality guaranteed by automation with high 

investments must be correctly balanced to achieve 

the desired quality in the scheduled time. 

iii) Short notice to produce, shorter time to market 

requests smaller batches and rapid reconfiguration. 

For this purpose, the production cells suitable for 

several types of pieces, instead of one-to-one 

matching, are preferred for a conversion in the event 

of a product change, rather than dismissing the cells 

Figure 2. Fontana Group Production Steps 



   

 

   

 

at the end. Furthermore, currently, the single cells 

are 100% saturated only for a brief time period, 

while the rest of the time they are stationary. Multi-

product cells can resolve this problem. 

iv) Process stability issues, where temperature and 

deformation rate must remain constant throughout 

super plastic forming process, and shrinkage of 

metal sheets due to uncontrolled cooling asks for 

rework operations for deviated parts.  

DTs carry immense importance to Fontana not only to 

predict the forming behaviour but also to simulate the 

assembly processes in order to anticipate any deviation 

from nominal feature values, activate downstream 

compensation by means of feed-forward control and 

reduce assembly setup time. To enable higher flexibility 

and resilience of Fontana Group’s manufacturing 

system, the DTs of the proposed architecture are 

explained in the following. 

Product-level DT: Constantly monitors the material 

database for the availability and type of raw materials. 

The impact of variability in mechanical properties of 

different materials is reduced by back-and-forth 

information exchange with product meta-model and 

optimisation algorithm that searches the solution 

domain constrained by inventory availability to adjust 

the product configuration. 

Process-level DT: The numerical model with an 

accurate digital description of the production processes. 

Simulation of forming, hemming and assembly 

processes in order to obtain quality improvements and 

best tooling performance under optimal process 

parameters for the next operation within a feasible range 

based on product-level DT outputs. Indeed, part FEM 

model is utilized for the automatic configuration of 

boundary conditions and loads. In addition to that, the 

lessons learned at the end deepen the product and 

process know-how that mainly depends on operator 

expertise (e.g., qualified or non-qualified), and provides 

valuable feedback for operator learning.  

System-level DT: In order to obtain a sub-assembled 

part “family”, a Multi-Product Line (MPL) is needed. 

MPL includes all the necessary manufacturing 

processes like hemming, bonding, self-piercing, spot 

welding and clinching for bodyside and door. This 

allows to optimise the MPL associated costs 

(investments, management and maintenance), part 

handling and assembly cycle time, and ultimately the 

overall cell performance for the production mixes and 

batches involved in the same MPL. The Discrete Event 

Simulation (DES) of the process chain is developed to 

foresee, through historical data and peculiar system 

dynamics, system operation, reachable throughput and 

bottlenecks: enabling the optimisation of resources and 

storage. Afterwards, when the system is working, the 

DES can be used to verify how the production capacity 

is affected by modifications of the different parameters 

or shop-floor layouts, to highlight possible criticalities 

and to evaluate the benefit of potential improvements 

that can be performed on the equipment. All those 

actions can be conducted by the simulation before 

proceeding with any physical activity. 

System of systems-level DT: Cross-enterprise supply-

chain and manufacturing cooperation. It includes 

various stages of the product lifecycle, where the data 

from all these cycles are combined. Thanks to system of 

system level DTs, possible value streaming scenarios 

for defective (3-4%), scrapped (0.5%) or post-use 

returned products are identified and based on the 

economic feasibility of the alternatives, in-line defect 

compensation, recycling or post-use returned product 

value retention strategies such as remanufacturing, 

reuse, repair are selected as a basis for reconfiguration. 

CONCLUSIONS AND FUTURE WORKS 

This paper puts modular DTs deployed on different 

manufacturing levels, from bottom (product and 

process) to top (system and system of systems level), 

into a unique human-centric framework to be used for 

short and long-term reconfiguration of manufacturing 

systems. The current challenges in a real case study 

from automotive industry and what possible benefits the 

proposed framework can bring by integrating the 

vertical solution are discussed. To tackle the vague 

standards of interfaces and software for interoperable 

design and use of DTs and to guarantee the data flow 

between multiple system layers, Industrial Internet of 

Things (IIoT) based on integrated data gateways, edge 

computing or Data Quality Management (DQM) 

platforms are considered. 

Future research will be focused on the 

implementation of a collaboration platform for 

capability-based matchmaking between the required 

production capabilities for reconfiguration scenarios 

under consideration and available skills in the local 

ecosystem for dynamic and agile production network 

cocreation. Based on the prognosis of the needed 

capabilities, additional production modules (machines) 

to be acquired in order to satisfy the new production 

needs will be identified. The platform will then provide 

the environment to enable the fast generation of focused 

connections among different actors of the value chain, 

where the end-users will be able to identify potential 

suppliers in their local ecosystems or outside, and adjust 

the production module configuration, product recipes 

and production flow in their manufacturing system, 

while minimizing their costs. 
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