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ABSTRACT

Batteries are becoming one important part to power va-
rieties of devices including electro-mechanical robots and
vehicles. Understanding the behaviour of the battery and
its state of charge can help the control systems to signifi-
cantly improve the decision-making and risk management
at run-time, after the device starts its operation. Currently,
there is an increased interest in tracking battery dynamics as
a function of health in both academia and industry. In this
paper, we propose a light-weight approach for modeling the
state of charge of lithium-ion (Li-ion) batteries during the
life-time of the system. We also consider the battery capac-
ity of charge degradation over its usage. To do that, we use
electrical equivalent circuit model (EECM) modeling as the
basis for modeling the battery and add the aging model to
it to consider the effect of battery usage in the long term.
Experimental results show that our proposed technique suc-
cessfully estimates the battery state of charge at different
states of health for the National Aeronautics and Space Ad-
ministration (NASA) randomized usage battery dataset in
comparison with the state-of-the-art. The obtained estima-
tion error in the worst case is 2.2%.

I. INTRODUCTION

Lithium-ion batteries are one of the most popular forms
of energy storage systems. It is estimated that in 2015 up
to 85% of deployed energy storage systems has been Li-ion
batteries [1]. These batteries are able to be recharged several
times and tend to have lower self-discharge rate compared
with similar energy storage systems [2]. One important as-
pect of optimizing an energy storage system’s usage is to
predict the behaviour of the battery at run-time [3]. This be-
haviour can be demonstrated through different parameters
such as state-of-charge (SOC) and state-of-health (SOH) of
the battery; the former is the level of battery charge over the
usage of the battery and the latter refers to the capacity of
the battery, in contrast with the nominal capacity value, over
the battery aging process [4]. This battery aging process re-
sults in a continuous battery energy capacity reduction over
the battery life-time. Accurate online estimation of battery
SOC/SOH results in more optimal battery-aware control and
risk management in autonomous systems. Another parame-
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Fig. 1: Schematic diagram of second-order equivalent cir-
cuit model.

ter that can be used to show the battery aging is the battery’s
internal impedance in the way that battery impedance is in-
creased by in the aging process [5]. Therefore, SOH usually
is quantified by the battery impedance or battery capacity.
Unfortunately, SOC and SOH can not be measured directly
and they have to be estimated by employing advanced algo-
rithms with the use of measurable quantities, such as current
drawn from the battery, output voltage and temperature of
the battery [6].

There have been several works on battery SOC and SOH
estimation. However, most of the proposed techniques do
not give a suitable approach that can execute continuously
at run-time during the battery’s life-time. Some problems of
the state of art are the heaviness of the estimation algorithm,
that is not suitable for run-time estimation of the parameters,
and ignorance of the effect of aging on the parameters. In
this paper, we use the EECM model to describe the battery
behaviour and we propose a light-weight method to iden-
tify the parameters of EECM model. Then, an extended
Kalman filter (EKF) is used to co-estimate of the battery
SOC and SOH during the activity of the battery in its life-
time. We show the robustness of our method by applying
the extracted model on different NASA datasets generated
by different instructions. The rest of the paper is organized
as follows. Section 2 describes and analyzes some related
works. Section 3 presents the EECM to model the battery
dynamics. Section 4 introduces the proposed method to es-
timate the battery parameters. In the section 5, used dataset
is introduced. Section 6 presents the results and validation
of the proposed model, while Section 7 provides some con-
cluding remarks.
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Fig. 2: Aging effect on open circuit voltage over SOC.
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Fig. 3: Aging effect on internal resistance over SOC.

II. RELATED WORKS

Several methods are presented to estimate SOC and SOH
that could be classified in offline and online approaches.
Coulomb counting is the simple way to compute the SOC,
but it has a less accuracy. Also, estimate the initial state of
SOC is the serious problem for employing this method [7].
Other simple method is to use the open circuit voltage
(OCV) to estimate the SOC, but this method has the dis-
advantage of requiring a long period of time to stabilize the
battery voltage. [8].

Data-driven approaches based on machine learning
(ML) techniques can give reliable SOC and SOH estima-
tion. There have been various learning-based methods for
SOH/SOC estimation [9]. Some of the common non-deep
learning methods are, e.g., nonlinear least squares regres-
sion (NLSR) [10], Gaussian process regression (GPR) [11],
[12], and relevance vector machine (RVM) [13]. In these
techniques, distinctive features, that are representative of
cell states, are extracted manually from the voltage and cur-
rent run-time/offline measurement data and then are given
to the learning unit as the input. In contrast, deep learn-
ing methods employ the complete set of raw data during the
cell charge/discharge process as the input without extrac-
tion and selection of distinctive features [14]. In Ref.[15],
the authors present a deep convolutional neural network
(DCNN) for battery cell level capacity estimation. In this
work, comparing to the other shallow neural network and
RVM method, proposed method shows high accuracy and
robustness in the online estimation. However, training the
proposed DCNN module is 7.6x longer than while using

Algorithm 1 EECM Parameters Identification Algorithm
1: n← number of DPPC Experiments ▷ number of SOH level
2: while n ̸= 0 do
3: m← number of pulse in DPPC ▷ number of SOC level
4: while m ̸= 0 do
5: if Pulse(i(t)) then ▷ beginning of every pulsed discharge
6: t0 ← t
7: V m

OCV ← V (t0 − Ts)

8: Rm
s ←

V (t0−Ts)−V (t0)
i(t0)

9: end if
10: m← m− 1
11: end while
12: m← number of pulse in DPPC ▷ number of SOC level
13: while m ̸= 0 do

14: VOCV (t)← (
V m−1
OCV

−V m
OCV

Tp
)t+ V m

OCV ▷ 0 ≤ t ≤ Tp

15: v12(t)← −V (t) + VOCV (t)−Rm
s i(t)

16: [A,B,C,D]← ssest(v12(t), i(t)) ▷ MATLAB function
17: canon(A,B,C,D) ▷ MATLAB function
18: calculate EECM parameters based on Eq.2.
19: end while
20: n← n− 1
21: end while

RVM model (around 500 seconds). The memory usage for
DCNN and RVM has been estimated around 144 MB and 20
GB respectively. It shows high computational and memory
resources are needed to implement machine learning based
approached for battery management systems.

In contrast with accurate by heavy ML-based techniques
for battery SOC/SOH estimation, some works use simple
model-based estimation methods such as electrical equiva-
lent circuit model (EECM), electrochemical model (ECM),
and empirical models (EM) [6]. Based on the established
EECM, some adaptively filtering algorithms such as, ex-
tended Kalman Filter (EKF) [16] , Particle filter (PF) [17]
and adaptive extended Kalman filter (AEKF) [18], were em-
ployed to identify the electrical parameters such as resis-
tance and capacity for the battery SOH estimation. In [19]
two extended Kalman filters have been used to model the
Li-ion batteries based on frictional order models [20]. One
EKF has been used to estimate the combined SOC and SOH
while the other has been used to update the EECM param-
eters. However, as mentioned in the paper, the SOH and
EECM parameters could not be fit at the different aging lev-
els of the battery, due to lack of proper data showing the
battery aging over the activity of the system.

In this paper, we try to employ the light-weight model
to estimate the battery behaviour by considering the aging
effect on battery performance. Proposed model provides the
accurate battery SOC estimation over the whole battery life-
time, while it degrades continuously. Less complexity and
light computation cost make the proposed model to worth
practical approach to implement on the battery management
systems (BMS) which usually have simple processors and
low memory capacities.

III. MODEL DESCRIPTION

A. Electrical equivalent circuit model

The schematic view of the second-order EECM that has
been used in this paper is shown in Figure 1. This model



(a) Open circuit voltage. (b) Internal resistance. (c) Resistance of first parallel RC.

(d) Capacitor of first parallel RC. (e) Resistance of second parallel RC. (f) Capacitor of second parallel RC.

Fig. 4: Fitting surface on identified EECM parameters.

TABLE I: Fitting function variables.

Parameter a0 a1 a2 a3 a4
Rs -0.0736 0.1059 -0.1487 0.3995 0.7725
R1 -2.25 0.1401 -0.1854 2.481 0.0513
R2 0.0013 2.887 -4.368 1.789 3.692
C1 1270 -0.0001 0.0001 -0.00001 -18.57
C2 13.89 -0.001 0.0011 -0.0001 -14.48

is used to calculate the battery voltage in response to the
current being drawn from the battery. The VOCV is the ideal
voltage source, which is dependant on the battery SOC and
SOH. Rs accounts for the ohmic internal resistance of the
battery, and the parallel RC circuits, i.e., R1, C1, R2 and
C2, represent the voltage diffusion phenomenon [21].

Let v1 and v2 denote the voltage across the subcircuits
consisting of R1, C1, R2 and C2. The measured battery
voltage, V (t), is calculated as follows:

V (t) = VOCV −Rsi(t)− v1 − v2 (1)

where i(t) denote the load current (assumed positive for the
discharging process) and v1 and v2 dynamics are:[

v̇1
v̇2

]
=

[ −1
R1C1

0

0 −1
R2C2

] [
v1
v2

]
+

[ 1
C1
1
C2

]
i(t)

v12 = v1 + v2 =
[
1 1

] [v1
v2

]
(2)

B. Definition of state of charge

The SOC is the ratio between the remaining capacity and
the current maximum available capacity which the battery
can deliver [22]. Then, the current remaining capacity in
the battery is used to quantify SOC:

SOC(t) = SOC(0)− 1

Cag
p

∫ t

0

ηi(τ)dτ (3)

where Cag
p indicate the current maximum available capac-

ity, which decrease with the aging of the battery. Also, η de-
note the Coulombic efficiency and in this study, is assumed
1 [23].

C. Definition of state of health

Over time, batteries will age and their performance will
degrade. They will eventually reach a point where they no
longer satisfy the expected requirements from the battery,
the time when is considered as the battery’s end of life..
SOH is defined as the following equation:

SOH(t) =
Cag

p

Cinit
(4)

where Cinit indicates the initial maximum available capac-
ity when the battery is new. According to the Eq. (2),
Eq. (3). and Eq. (4), can be discretized battery model as
the following equation:

SOCk+1 = SOCk − ηTs

CinitSOHcycle
ik

v1k+1
= (1− Ts

R1C1
)v1k +

Ts

C1
ik (5)

v2k+1
= (1− Ts

R2C2
)v2k +

Ts

C2
ik

where Ts is sampling time.

IV. PARAMETERS ESTIMATION

A. Identify the EECM parameters

The goal of the parameter identification algorithm is to
identify the six parameters of the second-order EECM, that
is shown in Figure 1, under specific SOC and SOH. In our
work, we use the proposed method in [24] to identify the
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Fig. 5: Jointly SOC/SOH estimation under the RW3 dataset.

Fig. 6: Estimation of SoC with different initial states.

EECM parameters. Algorithm 1 describes the parameter es-
timation method from discharge pulse power characteriza-
tion (DPPC) measurement. Based on this method, in each
DPPC cycle, that presents an SOH value, EECM param-
eters are calculated for discrete SOC values, Line 3-11 in
Algorithm 1, explain the proposed method to calculate open
circuit voltage and battery internal Resistance. At first, the
last value of the battery voltage before the onset of discharge
pulse, is considered as the open circuit voltage at the current
SOC. Then, initial drop of battery voltage, when the pulsed
discharge starts, is used to calculate the internal resistance.
Line 12-19 describe the method to calculate the RC subcir-
cuit values. Based on Eq. (1), the voltage of RC subcir-
cuits (v12) is calculated in one pulsed discharge period (TP )
and used to obtain a second-order linear time invariant (LTI)
model for RC subcircuit by using Matlab Estimate State-
Space Model (ssest) function. By transferring the obtained
LTI model to a diagonal state-space model and comparing
state-space matrices with Eq. (2), values for RC parameters
will be calculated. As mentioned before, battery capacity re-
duces by aging effect, in consequence, the number of pulses
in each DPPC experiment and number of extracted values
for the EECM parameters reduce by increasing aging effect.
Figure 3, shows this fact that the extracted values for the in-
ternal resistance are 12 when the battery is new, while they
are only 6 for the oldest battery.

Extracted values are used to fit the functions of SOC and
SOH on the EECM parameters. To keep the method simple,

exponential function of SOH with second-order polynomial
function of SOC is assumed for EECM parameters except
the VOCV . As shown in the Figure 2, VOCV is more depen-
dant to SOC than SOH. Therefore, proposed function for
VOCV is third-order polynomial function of SOC with first-
order function of SOH. Eq. (6) and Eq. (7) show the fitting
function on VOCV and other EECM elements, respectively.

VOCV (SOC, SOH) = p0 + p1SOH + p2SOC + p3SOHSOC

+p4SOC2 + p5SOHSOC2 + p6SOC3

(6)

f(SOC, SOH) = a0 + (a1SOC2 + a2SOC + a3)e
−a4SOH (7)

B. Jointly SOC and SOH Estimation

In order to achieve online estimation of the SOC and
SOH, an extended Kalman filtering algorithm is proposed.
Eq. (5) are used directly to estimate the SOC, while the
ohmic internal resistance is used to characterize the battery
SOH. As shown in Figure 3, extracted values for the inter-
nal resistance follows the same behaviour compared with
battery aging. In fact, the average value of the internal resis-
tance is increased by battery aging. Therefore, by monitor-
ing the internal resistance over the discharge cycles, battery
SOH is determined. In fact, by estimating the internal resis-
tance value and battery SOC, a fitting function on the inter-
nal resistance is used in order to calculate the SOH of the
battery. To do that, by defining xk = [SOC,Rs, v1, v2]

T as
a EKF states, the EECM model (5) can be rewritten as:

xk+1 =


1 0 0 0
0 1 0 0

0 0 1− Ts

R1C1
0

0 0 0 1− Ts

R2C2

xk+



− ηTs

Cag
p

0
Ts

C1
Ts

C2


ik

and the Jacobian matrix can be expressed as

Hk =
∂V

∂x
=

[
∂VOCV

∂SOC −ik −1 −1
]

(8)



2 4 6 8 10 12 14 16 18

Cycles

0

20

40

60

80

100
S

O
H

 (
%

)

Simulation

Measurement

(a) Real and estimated SOH of RW4’s DPPC measurements
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(b) Real and estimated SOH of RW5’s DPPC measurements
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(c) Real and estimated SOH of RW6’s DPPC measurements
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Fig. 7: Validation results of jointly SOC/SOH estimation.

where, to compute the ∂VOCV

∂SOC , extracted function in the
Eq. (6) is used. We update the battery SOH when the bat-
tery is operating in discharge mode rather than rest mode,
and when the SOC estimation is greater than 60%, other-
wise we keep the last estimated value of SOH. This avoids
a battery nonlinear dynamics effect and improves SOH cal-
culation accuracy. As shown in the Figure 2. and Figure 3,
VOCV has a linear relationship with SOC and internal resis-
tance has less fluctuations in the high SOC values. Opposite
to SOH estimation process, SOC and internal resistance will
be estimated in the whole discharge cycles. In fact, SOH is
a feature of the battery that changes slowly and there is no
expect SOH changes significantly at one discharge cycle.
Therefore, estimating the SOH in the part of the cycle is not
illogical.

V. EXPERIMENTAL SETUP

The experimental data of the half-year cycling test was
collected by NASA on a set of 18650 Li-ion batteries [25].
In our study, we used the second five groups of cells from
the NASA dataset. The five groups consist of a total of 20
cells, with each group being composed of four cells with five
different test instructions. Second group of NASA dataset’s
cells (RW3, RW4, RW5 and RW6) were cycled at room
temperature throughout the duration of the test. They were
continuously operated by repeatedly charging them to 4.2V
and then discharging them to 3.2V using a randomized se-
quence of discharging currents between 0.5A and 4A. After
every fifty randomized discharge cycles, a series of refer-
ence charging/discharging cycles with constant current and

DPPC were performed in order to provide reference bench-
marks for battery state health. In this paper, provide the
EECM model by the first measurement (RW3) of second
group of the NASA dataset, and use the other measure-
ments (RW4, RW5, RW6) as a test data to validate the pro-
posed method.

VI. RESULTS AND DISCUSSION

A. EECM parameter identification

In order to verify the accuracy of the proposed method,
the battery SOC and SOH estimation are conducted under
the NASA tests. As previously mentioned, the EECM pa-
rameters of battery model are computed by applying the al-
gorithm 1, then introduced functions in the Eq. 6 and Eq. 7
are used to fit the surface on them. Figure 4 , shows the fit-
ting surfaces on the EECM elements values over the SOC
and SOH. The fitting functions information are provided in
table I. Fitting results show that EECM parameters’ depen-
dence on SOC is reduced by battery aging. In addition, in-
ternal resistance and subcircuits’ resistances increase sig-
nificantly by battery aging, while capacitors’ capacities de-
crease. Also, the dual RC subcircuits in EECM present both
slow and fast dynamic of the voltage diffusion that means
one of them has a higher time constant than the other. The
calculated values reflect that fact when the parameter C1 is
almost 10 times larger than C2.

B. SOC/SOH online estimation

Before the proposed method enters the iteration, initial
values of the SOC and internal resistances are set to 0.8 and



0.1 ohm, respectively. Joint SOC/SOH estimation results
are shown in the Figure 5, where real SOH and SOC values
are calculated by Eq.4 and Eq.3 in every DPPC experiments,
respectively. EKF states are updated in every DPPC mea-
surement, while the battery SOH is updated by the estimated
internal resistance. As can be seen in the Figure 5a, the es-
timated SOH follows the real SOH behaviour over the 22
DPPC experiments. The results show the root mean square
error (RMSE) factor of SOH estimation is 1.62 %. Simulta-
neously, estimated SOH is used to estimate the battery SOC.
In every DPPC experiment, EKF estimates the battery SOC
in the whole period of experiment when the battery charge
decreases from 100% to 0%. RMSE factor of SOC estima-
tion for each DPPC experiments are shown in Figure 5b,
that illustrates SOC estimation errors remain under the 2 %
for all DPPC experiments.

Also, Figure 6 shows the convergence of SOC as a re-
sult of varying initial value of SOC. Furthermore, in this
figure we can see the estimation of SOC over the entire pe-
riod of DPPC cycle when the battery SOH is 0.8. The plot
show that the proposed EKF state estimation method is able
to converge to the actual SoC value after a transient period
(shown as close-up view inside the plot), regardless of the
initial value.

C. Method validation

To validate the proposed method, extracted model is used
to compute the battery SOC and SOH on other experiments
of the dataset group. As mentioned in section V, NASA
dataset has four different measurements with same type of
battery, while the discharging current profile is random.
Therefore, expect to have different degradation dynamics
in the measurements. Extracted model is applied on the
RW4, RW5, RW6 measurements and the simulation results
are shown in the Figure 7. Figure shows the EKF can es-
timate the battery degradation trend. However, accuracy of
SOH estimation improves by increasing the battery aging.
Probably, the low accuracy of the battery SOH estimation
when it is new has to do with the initial health state of the
battery when it was stored. Figure 7d shows the RMSE fac-
tor of SOC estimation over the battery operation during the
different measurements. In every DPPC experiments, SOC
estimation remains under the 2.2% that approve the accu-
racy and reliability of proposed EKF state estimation during
the different consuming way.

VII. CONCLUSION

In this paper, a light-weight second-order EECM is em-
ployed to model the battery, and based on the model a EKF
algorithm is proposed for co-estimation of the SOH and
SOC. However, EKF estimates the SOC and internal re-
sistance directly, while SOH is calculated by considering
the relationship between internal resistance, SOC and SOH.
We explained the EECM model’s parameters, their identi-
fication, applying the EKF method and model validation
by both in-sample and out-of-sample experimental DPPC
data. The model can accurately estimate the SOH of the
LTO cell in different dynamic experiments. In addition, the
results show that the proposed model can obtain more accu-
rate SOC value by considering the aging effect on the model

parameters.
An important topic for the future work is studying the

thermal effect on the EECM parameters. In a way, by adding
the temperature of the battery operation to EKF, one could
be able to estimate the SOC and SOH of the battery more
accurately. Another interesting future direction of this work
is to utilize this battery model and jointly SoC-SOH esti-
mation in optimal control of resource-constrained mobile
robots. Specifically, proposed battery model can be inte-
grated into robotic control systems to address energy effi-
cient resource-aware operation planning.

REFERENCES

[1] M. Assad and M. A. Rosen, Design and performance optimization of
renewable energy systems. Academic Press, 2021.

[2] T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-ion
batteries: outlook on present, future, and hybridized technologies,”
Journal of materials chemistry A, vol. 7, no. 7, pp. 2942–2964, 2019.

[3] M. Hannan, S. Wali, P. Ker, M. Abd Rahman, M. Mansor, V. Ra-
machandaramurthy, K. Muttaqi, T. Mahlia, and Z. Dong, “Battery
energy-storage system: A review of technologies, optimization ob-
jectives, constraints, approaches, and outstanding issues,” Journal of
Energy Storage, vol. 42, p. 103023, 2021.
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