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ABSTRACT

While agent-based models and simulations materialize in

multiple areas, the existing simulation-focused agent plat-

forms require in-depth programming knowledge, or are

overly simplistic. In this context, the Agents Assembly

(AASM) domain-specific language and platform have been

recently proposed. The AASM ecosystem is highly scala-

ble, as the software stack allows its straightforward deploy-

ment on multiple networked computers (physical or virtual

machines). The domain-specific language has been designed

to capture key concepts, needed to run agent-based simula-

tions, while hiding their technical aspects. It can be thus sti-

pulated that the AASMmay provide a mid-way point betwe-

en agent researchers and domain specialists. In this context,

the aim of this contribution is twofold. First, to outline the

reasoning behind, and details of, improvements introduced

to the AASM since the original release. Second, show how

the AASM can facilitate cooperation with researchers with a

medical background. Here, the simulation models of the be-

havior of theClostridium difficile bacteria in a hospital envi-

ronment have been jointly conceptualized and experimental-

ly explored. The developed model was focused on capturing

features that reduce the spread of the bacteria.While the pro-

posed scenarios are relatively simple, they illustrate the ease

with which the AASM can be used to capture real-life phe-

nomena.

INTRODUCTION

In recent years, there has been a growing interest in agent-

based simulations in a variety of fields [Madsen and Pilditch,

2018] [Gatti andDesiderio, 2015] [Castro et al., 2021]. Some

agent-based simulation tools, like HASHKAT [Raudeliūnie-

nė et al., 2018] or AgentSheets [AgentCubes, 2020], ena-

ble users without programming knowledge to utilize Multi-

Agent Systems (MAS) when designing their simulations.

However, such platforms have limited domain of applicabi-

lity, e.g., HASHKAT can only be used to simulate “Twitter-

like networks”, while AgentSheets was designed to be a

tool for teaching children programming in an interactive

way. Other tools are more robust, e.g., Mason [Luke et al.,

2005], Swarm [Iba, 2013], and Repast [North et al., 2013],

with the latter focused on facilitating the creation of high-

performance agent-based models. However, their use requ-

ires technical know-how, which complicates work on mo-

del development, when multidisciplinary teams are to work

together. Specifically, domain experts may have problems

“understanding the code”, while agent modelers may not be

able to easily model/represent domain concepts.

Here, worth mentioning is NetLogo [Tisue and Wilen-

sky, 2004], which tries to find a compromise between the

two extremes. It provides users with a mature tool for run-

ning complex simulations, which includes live visualization,

changing parameters during runtime, and a simple language

for defining the model. However, in NetLogo, agents are re-

presented as “turtles”, the environment as “patches” (squ-

ares in 2D or cubes in 3D), and relations between agents

as “links” (agents representing connections with properties)

which can limit the users’ ability to model the environment

in other ways. This is directly related to the ideas originating

from the Logo programming language and the roots of the

NetLogo in teaching programming to school kids. NetLogo

has been successfully used for deploying complex models in

various fields [Gatti and Desiderio, 2015] [Isha et al., 2021].

However, developing models in NetLogo requires the use of

concepts that bring a somewhat myopic perspective on the

capabilities of agent-based simulations.

To overcome the mentioned issues, the Agents Assem-

bly has been proposed [Hołda et al., 2022]. The developed

ecosystem comprises a Domain-Specific Language (DSL)

– Agents Assembly (AASM) – coupled with the modular

runtime architecture. The AASM has been designed to al-

low users without advanced programming skills to develop

multi-agent simulations with desired behavior and structure.

This has been accomplished by expressing high-level MAS

abstractions (e.g., agents, behaviors) as language keywords.

As a result, the implementation details are hidden behind

simple instructions, which are generated through a GUI.

The AASM code is translated into a realization running on

the Smart Python Agent Development Environment (SPA-

DE) [Palanca et al., 2020]. The choice of SPADE was based

on the fact that, at the time of AASM development, SPADE

was the most robust, general-purpose agent platform, which

was regularly updated (see, for instance, [Pal et al., 2020]).

After translation to SPADE, the obtained code can be distri-

buted through a Docker Swarm stack. As a result, simula-

tions can be run on multiple networked machines (physical

or virtual). Since the system runs within multiple Dockeri-

zed instances of SPADE, available resources are automati-

cally managed and can be easily scaled (by adding Docker
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instances). This also means that achieving scalability does

not require advanced knowledge of computer networks.

The original AgentsAssembly has been described in [Hoł-

da et al., 2022] and tested as a part of a thesis project [Hołda

and Rachwał, 2022]. Further testing has been done by stu-

dents who utilized the system for class projects at the War-

saw University of Technology. From these experiences, fe-

edback has been gathered to identify the system’s shortco-

mings. A description of the gathered feedback and how it

was used to develop the second release of the AASM is one

of the goals of this contribution.

As noted above, one of the overarching goals of the deve-

lopment of AASM was to deliver a tool that would be “un-

derstandable enough” to non-specialists to support the joint

development of agent models and simulations. To establish

if AASM can deliver the right level of conceptual granulari-

ty, collaboration with a team interested in modeling medical

phenomena (MPT) was established. As a result, an attempt

to model the spread of C. difficile bacteria has been made.

Here the project loop consisted ofMPT describing processes

happening in the hospital, the agent team (AT) formulating

them in terms of AASM constructs, and presenting them to

the MPT. The MPT reflected on the presented code and sug-

gested improvements that were realized by the AT. In this

way, the AASM became the “place” where the two teams

collaborated, while the developed was used to functionalize

the developed simulation.

The programming environment constitutes an innovati-

ve element in the conducted research, whereas the agent-

based approach to simulating C. difficile is relatively well-

known [Stephenson et al., 2020] [Barker et al., 2020]. While

the final simulation is relatively simple, at this stage, the go-

al was not to develop a realistic simulation. Instead, the aim

of the work was to initially validate the claim that the se-

cond release of AASM is closer to developing a collaborati-

ve agent simulation development tool. As will be discussed,

the perspectives are very positive, indeed.Moreover, lessons

learned and future directions for AASM improvements will

be summarized.

AGENTS ASSEMBLY ECOSYSTEM

The Agents Assembly ecosystem enables running simu-

lations defined using AASM. It consists of a complete solu-

tion providing the features for the end user, such as tools for

managing simulations, visualization of the simulation state,

or tools for data analysis. The large-scale agent simulations

can be run in the system based on a distributed microservice

architecture that can be set up to run on multiple networ-

ked machines. The ability to deploy the solution on a cluster

and the scalable behavior is achieved mainly due to Docker

and Docker Swarm usage. Utility scripts for deployment and

scaling are also provided, making the setup straightforward.

The AASM language provides the user with the ability to

describe multi-agent systems in simple terms. Specifically,

it features three top-level instruction environments – Agent,

Graph, and Message. Each instruction environment is an

enclosing scope in which the user can specify implemen-

tation details for the simulation elements. In particular, the

Agent environment uses Parameters to describe the internal

state of anAgent and to initialize it. Next,Behaviours consist

of Actions, which allow granularization of the description of

the simulation logic. Finally, Actions are described using In-

structions, such as control flow modifiers, arithmetics, list

operations, and more. The complete language definition can

be accessed at agents-assembly.com.
The system has been initially tested by students of the

Warsaw University of Technology for the development of a

traffic simulation involving a taxi service. Throughout the-

ir work, they have provided the authors of the system with

feedback, which has been used to improve the systems func-

tioning.

The primary point of feedback was that the scope mecha-

nism of AASM is too restrictive. In the original release, the

language did not provide any way to define parameters that

could be utilized in the definitions of all agents. In order to

address this, selected meta-programming features have been

added to the new release. These are const and makro defi-

nitions, which provide functionality similar to the #define
directive in the C programming language. They can be used

to define constants and code snippets, respectively, which

can be used in all environment scopes.

The second addition to the language based on the feed-

back from the simulation was the extension of the graph-

generating capabilities. In addition to the initially available

parameterized random graphs, two more methods have been

introduced. The user is now able to define graphs of particu-

lar structures using the matrix generation algorithm or uti-

lize the Barabási-Albert model [Barabási and Albert, 1999].

In the first case, the user explicitly defines every connec-

tion between agents in the simulation. In the language, this

is achieved by utilizing an adjacency matrix representation

of the graph. However, that can be a difficult concept for a

non-technical user. In order to account for that, a special UI

has been developed to allow users to graphically define the

structure as seen in Figure 1. The user can add and remo-

ve nodes of a selected type by clicking and connecting them

with edges by selecting a node and dragging a connection to

another one.

Fig. 1: Example of Graph Structure Definition using Gene-

rating GUI

In order to further simplify the use of these high-level abs-

tractions, in the current release of AASM, a dedicated code

generator has been developed. It utilizes Blockly [Pasternak

et al., 2017] – a library designed for enabling block-based

visual programming. Specifically, required blocks have be-

en implemented to accommodate language instructions. An

agents-assembly.com


example of an agent Action, represented using the code ge-

nerating tool, can be seen in Figure 2. The code generated

from that block definition has been depicted in Listing 1. As

can be seen, while the AASM is somewhat reminiscent of

assembly code, the generating interface is relatively easily

readable. Moreover, since users can interact with the code

by dragging and dropping dedicated blocks, defining simu-

lations should be relatively straightforward.

Fig. 2: Action Implemented using the Code Generating In-

terface.

ACTION update_carrier_level, modify_self
ILT carrier_level, 100

IEQ RCV.has_clostridium, 1
ADD carrier_level, carrier_level_inc

EBLOCK
EBLOCK

EACTION

Listing 1: AASMCode Generated from Blocks Represented

in Figure 2.

In comparison to the code generator presented in the pre-

vious release, the Blockly-based one offers two significant

advantages. The first one is that it provides a way to visu-

ally represent the scope – a feature unavailable in the pre-

vious text-based generator, requested in feedback. That can

vastly help users without programming experience under-

stand this inherently abstract concept. The second advanta-

ge is its ability to generate multi-instruction snippets using a

single block. An example of that can be seen by comparing

the block in Figure 2 with Listing 1. In AASM, every condi-

tional statement (ILT, IEQ instructions in the figure) has to

have a corresponding EBLOCK to signal the end of the con-

ditional block. In the generator, however, this implementa-

tion detail is hidden from the user, as EBLOCK statements are

implicitly added when using a conditional block. In general,

there is no limit to the amount of AASM instructions that can

be generated using a single GUI block, as AASM has been

designed with ease of generation as one of the primary go-

als. Other examples of implemented compound instruction

blocks include declaring a variable and setting it to a para-

meterized random value (2 AASM instructions) or adding

an element to the list only if it does not exist in it already (3

AASM instructions). The generator can be easily extended

to include more compound instruction blocks.

Previously [Hołda et al., 2022], the ecosystem was set up

to run on 15 physical computers with a total of 120 agent

containers (each agent container can run multiple agents).

However, while the distributed architecture can be success-

fully utilized in a computing cluster environment, it can be

too resource intensive for a single machine – it consists of

more than 20 microservice applications (that can be scaled).

This observation results from the feedback gathered from the

group of Warsaw University of Technology students. In this

context, an alternative lightweight solution that gives users

the essential features to run and test simulations on a single

device has been prepared.

To verify the proposed solution, the authors ran experi-

ments that measured the lightweight environment’s impro-

vements in performance on a single machine – the most

common setting during development. The authors prepared

a simulation with a single type of agent to run the experi-

ments. Each agent connects with some other agents. Later,

agents send messages containing numerical values to each

other. The experiments were run on a single machine with

a 16-core CPU and 32 GB of RAM. The performance of

the distributed environment and the lightweight environment

was compared. Initially, the RAM usage of empty (without

agents) environments was measured. Then, the number of

agents was scaled incrementally from 100 to 10000. The re-

sults are presented in Figure 3 – the dashed line represents

the distributed architecture, and the continuous line the new,

lightweight solution. One can observe that with the growth

of the number of agents, the amount of used RAM increased

monotonically. However, the initial cost of starting the emp-

ty environment is much lower in the case of the lightweight

environment (570MiB) compared to the distributed environ-

ment (5269 MiB) – the difference is almost 10-fold. Also,

the distributed environment includes more services varying

in resource usage over time. Hence, its line in Figure 3 is

more erratic than the one representing the lightweight envi-

ronment’s performance.

Fig. 3: RAM Usage Comparison

MEDICAL SIMULATION

As noted, the developed ecosystem should facilitate co-

operation between experts with domain knowledge and

agent system specialists. In this case, experts should focus on

accurately describing what is to be simulated and verifying

the results. On the other hand, agent systems specialists sho-

uld be responsible for setting up the system and helping the

experts translate their concepts into the “world of agents”.

Moreover, the Agents Assembly should be the “place” whe-

re the two sides can work jointly and cooperate. To establish

if the current version of the developed ecosystem is a step



in the right direction, a team from the Medical University of

Silesia was invited to jointly develop a simulation of C. dif-

ficile bacteria spreading in a hospital. The authors will now

report how the simulation was developed and what lessons

have been learned.

Clostridium difficile bacteria

What follows is the summary of key facts concerning the

medical phenomenon that has been modeled. The Clostri-

dium difficile is a Gram-positive anaerobic bacteria capa-

ble of producing spores. Its spores are widely distributed in

the natural environment and can be found in soil and open

water reservoirs, among others [Janezic et al., 2016]. Infec-

tion most commonly occurs through the ingestion of spores

excreted by infected individuals in feces. This route of in-

fection, combined with resistance to alcohol-based disinfec-

tants and requiring hygienic care for symptomatic patients,

poses fundamental difficulties in infection control [Mehlich

et al., 2015]. C. difficile hospital-acquired infections are a

growing problem in healthcare, particularly in conjunction

with antibiotic therapy. In particular, therapy with clinda-

mycin, cephalosporins, penicillin, and fluoroquinolones has

been identified as a risk factor [Kelly, 2012].

In 90% of cases, the infection appears within the first two

months of antibiotic therapy and is associated with an incre-

ase in the share of anaerobic bacteria in the intestinal mi-

crobiota. [Martirosian et al., 2018]. It is characterized by

intestinal colonization, with high virulence. [Mehlich et al.,

2015]. The main symptoms include diarrhea and toxic colo-

nic distension, while no other cause is easily identified. De-

spite this, some patients or personnel remain asymptomatic

despite the infection [Badurek et al., 2016]. It has been es-

tablished that in healthy adult populations, C. difficile colo-

nizes the gastrointestinal tract in approximately 3% of adult

individuals and even up to 80% of healthy infants but does

not cause any disease symptoms. However, no data suggest

that routine screening of patients and staff for latent infection

is justified [Martirosian et al., 2018].

Relatively few simulations based on agent-based pro-

gramming have been developed so far, and the ones publi-

shed so far have focused primarily on the interaction of pa-

tients and staff with the environment and attempts to develop

the most effective model of aseptic behavior [Barker et al.,

2017].

Difficulties arising from attempts to stimulate the hospital

environment in silico deserve attention. Variables impossi-

ble to measure in a simple way, such as the absolute proba-

bility of an event, are problematic in designing simulations

– an example here may be the problem of calculating the

infection in the vicinity of two patients, one of whom is an

asymptomatic carrier, or the efficiency of cleaning the ro-

om. In such a situation, it becomes necessary to simplify or

extrapolate such parameters. In order to maintain the values

of the work despite such simplifications, the authors usually

present the results of research in the form of a function de-

pending on the problematic parameters [Bintz et al., 2016].

Another way to run a simulation with incomplete data is

to interpret its results relative to an alternative scenario. This

type of approach significantly reduces the number of simu-

lations necessary to design and analyze but gives only ap-

proximate results depending on the assumptions made. This

is the approach we used in our experiment.

Simulation development process

The initial stages of planning and problem analysis have

been conducted jointly by the MPT and AT members. The

MPT has been introduced to the high-level AASM abstrac-

tions – Messages, Agents, and their Behaviours. Members

of the AT have been provided with insights regarding the

functioning of a hospital unit and C. difficile infections.

After the initial knowledge exchange, the MPT has desi-

gned an outline of a MAS, consisting of Agents that have

to be present in the simulation, actions they should perform,

and a communication schema to be employed by the Agents.

The AT has developed an initial implementation of the simu-

lation in AASM, providing a foundation for joint develop-

ment. From that point onward, the development proceeded in

the above-outlined loop consisting of joint development ses-

sions and evaluation of intermediate results. The MPT con-

sidered particular implementations of Actions and provided

feedback, suggesting needed improvements. Some ideas we-

re written by the AT after consultation, and some were im-

plemented by the MPT. The latter has been enabled by the

code-generating user interface. The process has proven suf-

ficiently intuitive so that even without prior programming

knowledge, multiple solutions implemented directly by the

MPT have been utilized in final simulations.

Details of developed agent model

The simulation consisted of four types of agents – nurses,

patients, hospital manager, and day manager. The day ma-

nager’s purpose was to manage the in-simulation time, i.e.,

informing all other agents about the beginning of new days.

The hospital manager kept track of all patients currently ho-

spitalized, as well as which of them were isolated. Based on

that data, it assigned patient rotations to the nurses.

The nurses were responsible for “testing” the patients. The

testing was performed in the rotation order provided by the

hospital manager. Each day a nurse was provided with two

unique rotations. Every rotation had a length of at most eight

patients (sometimes, the occupancy of the hospital was in-

sufficient to fill all rotations). During the testing, the nurse

can become a carrier by contact with a patient infected with

C. difficile. To model this, each nurse has a parameter reflec-

ting their “carrier level”, which increases upon repeated con-

tact with C. difficile (via multiple patients) during the day.

After the test, a nurse has a 39% to wash hands, which decre-

ases the carrier level by a random percentage between 40%

and 60%. The percentages were based on the available li-

terature [Lambe et al., 2019]. If the test results are positive

(C. difficile detected), the nurse sends the patient to isolation

and moves to the next patient. Each nurse performs two ro-

tations daily without washing hands in between, and at the

end of the day, they reset their carrier level.

Two variations of setting the rotation order have been im-

plemented and compared. In the first one, nurses were assi-

gned eight patients in a random order to visit. In the second

one, the nurses were assigned eight random patients divided

into isolated ones and not. They visited the isolated patients

at the end of the rotation to reduce the potential spread of C.



difficile.

The patients represent the general population. Half of

them begin the simulation in the hospital, where they are

vulnerable to C. difficile infections. Each patient has a 50%

chance of beginning the simulation already infected. In such

a case, they begin the simulation already at a certain point

in the infection – a random number of days drawn from a

uniform distribution between 0 and 7. If the random num-

ber of days exceeds the hidden period (2 days), the patient

starts in isolation. While hospitalized, each day, there is a

20% chance of getting better and leaving the hospital. These

percentages have been chosen experimentally to achieve a

sufficient occupancy rate of the hospital for the simulation

to yield meaningful results.

During each day, the patients not in isolation interact with

each other. This is the first vector of infection of C. difficile

modeled – upon interaction with an infected patient, there is

a chance of acquiring the bacteria. To model this, each pa-

tient has a parameter called “personal hygiene” randomly in-

itialized for each patient with a value drawn from a uniform

distribution between 0 and 100. Upon contact with an infec-

ted patient, a test is performed by drawing another number

from the same distribution – transmission_chance. Pa-
tient’s hygiene is then scaled by 0.2 and subtracted from

transmission_chance. If that number is greater than a

threshold (parameter set to 95), the patient becomes infec-

ted. The other vector of infection is the tests done by the

nurse agents. In this case, the transmission_chance, pa-
tient’s hygiene, and the nurse’s carrier level according to the

following equation: C = transmission_chance − 0.2 ∗
hygiene + carrier_level. Then if C is greater than the

threshold, the patient becomes infected. The above calcu-

lation is only carried out if the nurse’s carrier level is greater

than 0. Isolated patients do not move around, which means

they only interact with nurses. However, before the patient

can be moved to isolation, they have to develop symptoms.

C. difficile has a hidden period during which patients are

asymptomatic but still can spread the virus [Badurek et al.,

2016]. For modeling purposes, it has been assumed that on-

ly symptomatic patients can test positive. In addition, 2%

of the population is genetically asymptomatic [Ulatowska

et al., 2017] – these patients will never be moved to isola-

tion. The duration of C. difficile infection varies between 7

and 14 days, and after the infection passes, the patient le-

aves the hospital. Each day a randomnumber has been drawn

from a normal distribution with a mean of 10 and standard

deviation of 1 and clipped to the desired range. That number

has been compared to the patient’s infection duration, and if

the duration has been greater, the patient was released from

the hospital.

Experiments

The experiments were performed on 12 nurse agents and

60 patient agents, one hospital manager, and one day ma-

nager. The expected result was that imposing the restriction

on the rotation order would decrease the number of patients

with C. difficile. The simulations were performed five times

utilizing different random seeds, which allowed to average

their results and meaningfully compare the two settings.

Experimental results

After the design and development phases were over, the

AT preprocessed the data retrieved from the simulations.

Thanks to the MPT’s knowledge of implementation details,

they were able to assist in data processing, suggesting sta-

tistics of particular interest. The final analysis of the results

has been conducted jointly.What follows is the discussion of

results obtained from running the simulations, with different

ordering of visiting patients by nurses in the hospital. In sub-

sequent figures, the dashed line represents the setting where

the order of patients in the rotation is random (Srand), whi-

le the continuous line represents the simulation results when

the nurse visits isolated patients at the end of the rotation

(Sisol). In the following considerations, the µ symbol repre-

sents the mean, and the σ represents the standard deviation.

First, the results regarding the population size with C.

difficile are displayed (Figure 4). In the Srand configura-

tion, the average number of people with the bacteria on a

given day is µrand = 25.54 (σrand = 2.06). The Sisol

configuration yields the average result of µisol = 15.87
(σisol = 3.05). The trend is visible in the figure – the Sisol

configuration outcomes in lower bacteria spread inside the

hospital. The maximum values were reached after the initia-

lization of the simulations in both cases – maxrand = 30.80
and maxisol = 24.80, respectively.

Fig. 4: Population with C. difficile

As only some people in the simulation are inside the ho-

spital, the size of the hospitalized population (not necessarily

with the bacteria) in both settings has been considered (Figu-

re 5). The trends representing the occupancy of the hospital

presented in the accompanying figure are comparable. The

configurations average in µrand = 47.56 (σrand = 2.11)
and µisol = 46.20 (σisol = 1.62).

Fig. 5: Population in Hospital

Next, the metric describing the ratio of the population si-



ze with C. difficile to the hospitalized population size was

examined (Figure 6). The Srand case has the average ratio

of µrand = 0.53 (σrand = 0.03), and the Sisol case avera-

ges in µisol = 0.34 (σisol = 0.06). The obtained results are
a consequence of the previous two measurements (because

of the definition of the analyzed ratio). Thus, one can ob-

serve the similarities in the population size with C. difficile

and this metric (as the number of hospitalized people remain

similar in both configurations).

Fig. 6: Population with C. difficile to Population in Hospital

Ratio

Consequently, the number of isolated hospital patients

was investigated (Figure 7). This number oscillates within

specific ranges. In the case of the Sisol, the oscillations at-

tenuate faster than in the case of the Srand setting. Keeping

the rotation order (by nurses) of first visiting non-isolated

patients resulted in lower occupancy of the isolation rooms,

mainly due to the low spread of the bacteria inside the hospi-

tal. The average count of isolated patients in the Srand case

was µrand = 16.88 (σrand = 2.67), and in the Sisol case,

µisol = 9.03 (σisol = 2.80).

Fig. 7: Isolated Patients

Finally, the average carrier level of all nurses was compa-

red (Figure 8). For the Srand configuration the average car-

rier level was µrand = 28.57 (σrand = 2.71), for the Sisol

configuration – µisol = 10.05 (σisol = 2.87). In the figure,

one can observe that the Sisol design resulted in lower valu-

es, which is a consequence of the decision that a nurse can

increase their carrier level after having contact with a patient

with C. difficile.

Discussion

The results obtained from the simulation confirm the hy-

potheses – namely, that utilization of sanitary procedures

– isolation of the infected significantly lowers the spread

Fig. 8: Average Carrier Level of All Nurses

of bacteria. It is to be noted that the hospital environment

modeled in the presented simulation was characterized by

significant simplifications, and the results obtained in this

context cannot be used to analyze the results in a medi-

cal context. That being stated, all expected outcomes have

been realized through the simulation procedure. The initial

heavy increases of patients infected with C. difficile (Figu-

res 4 and 6) correspond to the initial outbreak, where the

infected are spreading the bacteria without displaying the

symptoms. These amounts begin decreasing in both scena-

rios after around ten days, which is the expected duration

of the C. difficile infection. A significant reduction in infec-

tions ofC. difficile has been observed in theSisol, not only in

the absolute numbers but also as a proportion of the infected

population compared to current hospital occupancy. An inte-

resting pattern can be observed in Figure 7, with the number

of isolated patients fluctuating in a seemingly periodic man-

ner (with some variation). The period of these fluctuations

corresponds to the duration ofC. difficile. During the simula-

tion, agents get infected at different moments, which leads to

them developing symptoms at different moments. Over time

this trend stabilizes, which can be seen in Figure 7 as lowe-

ring the fluctuation’s amplitude. It can be concluded that the

results confirm the recognized rules of asepsis.

CONCLUDING REMARKS

The results obtained from the simulations show that the

AASM ecosystem can be used to define simulations in the

medical field. Nonetheless, it should be noted that the me-

dical results are of limited generalizability as only stripped-

down scenarios were considered for the experiments. The

researched topic should be further explored usingmore com-

plex models. However, while the simplicity of the proposed

simulation limits the applicability of the achieved results in

the real-world medical context, it was a necessary prerequ-

isite to test how usable the proposed tools are by users wi-

thout a technical background. In this context, the results of

teamwork are very promising, with the members of theMPT

being able to actively participate in the model’s implemen-

tation – allowing for the direct application of their expertise.

The usage of Blockly-based code-generating GUI showed

that utilizing visual programming techniques can be inva-

luable in terms of cooperation between technical and non-

technical team members. Therefore, the smooth collabora-

tion confirms that the tested ecosystem has the potential to

facilitate cooperation with researchers with a medical back-

ground and increase their involvement in the development



of simulations.

Future work

The AASM ecosystem has proven itself as a valid tool for

making MAS-based simulations more accessible to resear-

chers in other fields. Throughout this project, feedback has

been gathered from the members of MPT in terms of any

difficulties they have encountered when using the system. It

has been pointed out that while certain concepts can be easily

expressed and modeled, the currently available abstractions

pose certain difficulties – for example, the usage of typed

variables can be slightly confusing. Thus a need has been

identified for the development of more complex compound

instruction blocks with more powerful capabilities. This fe-

edback will be implemented in the form of a more robust

block library and released in the near future.

The results achieved in this simulation have also shown

the potential of the AASM ecosystem to be utilized in more

complex models. Plans are being made for designing these

models in the medical and other domains. The planned mo-

dels will be extended in terms of the complexity of agent

behaviors and, more importantly – the scale of simulations.

The valuable experience gathered during the collaboration

between the two teams will be used in future projects.
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