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Télécom SudParis, Institut Polytechnique de Paris
91120 Palaiseau, France

hind.castel@telecom-sudparis.eu

KEYWORDS

Stochastic modeling; DVFS; Multi-Objective Optimization;
Markov Chain; Performance; Power consumption analysis

ABSTRACT

The paper addresses the problem of performance-energy
trade-off in DVFS (Dynamic Voltage Frequency Scaling) sys-
tems. We propose a stochastic hybrid model between hysteresis
models and server block models. We provide a closed form
for the steady-state distribution probability and we establish
a ”st” type order to compare the performance measures. The
fast computation of power and performance measures leads
to a multi-objective optimization analysis in two forms: a
scalarization method and a Pareto based method. For the
two approaches, we propose fast and efficient approximate
algorithms that construct progressively an optimal solution. To
discuss results, the model is used to simulate a physical server
hosting several VMs (Virtual Machines) where we investigate
optimal thresholds for the performance-energy trade-off.

INTRODUCTION

High power consumption remains an issue in data centers,
cloud systems, and more generally in information and commu-
nication technology (ICT). Moreover, the advent of Artificial
Intelligence, Data Mining, IoT, High Performance Comput-
ing, Crypto-mining brings the issue of power consumption
into focus. Server virtualization provides a major reduction
impact on energy consumption due to on demand resource
allocation through many techniques such as consolidation, vir-
tual machine migration, scheduling, load balancing, dynamic
frequency scaling. In this work, we focus on the Dynamic
Voltage Frequency Scaling (DVFS) in virtualized context for
power monitoring and Quality of Service (QoS) preservation.
Many manufacturers of CPUs and GPUs (Intel, AMD, ... )
implement the DVFS approach in their computing devices as
processors or controllers. This mechanism operates the system
at several frequencies and voltages denoted as ”Pstates”. The
frequency and power increase in higher Pstates. The highest

Pstate runs the system at full rate and full voltage. But during
off-peak periods, the clock can go down considerably, saving
a significant portion of the power at full speed (AMD 2005).

This work is composed of two major parts. The first one
consists on modeling the DVFS system by a Markov chain
approach where we propose a closed form formula for steady-
state distribution probability. Then we proceed with a numeri-
cal multi-objective analysis by proposing two fast and approx-
imate algorithms for the performance and power consumption
trade-off. To model DVFS system, most analytical methods are
based on stochastic modeling as: in (He et al. 2020) a Petri
Net model is proposed for dynamic scaling and VM migration
in Energy-Aware cloud system; in (Dargie 2015) a random
variable analysis is set for estimating the relationship between
workload and power consumption in multi-core processor;
while in (Nguyen et al. 2020) a Hidden Markov Model is
used with a predicting algorithm for hidden states of the
system applied to a multi-core DVFS for energy-time trade-off;
Markovian Decision Process (MDP) also is proposed (Anselmi
et al. 2021), for models with tasks deadlines and unbounded
state space and speed rates. These models often suffer from the
explosion of the set of states. However, queueing theory offers
a range of models that can address this type of problems and
solves systems efficiently with less concern for the quality of
the solution or the scalability of the problem. In this regard one
notes Ghandi’s works, in particular, for the optimization of the
distribution of energy in k-server Farm (using DVFS levels)
(Gandhi, Harchol-Balter, et al. 2009). Some works also model
the DVFS system as an M/M/1 (Basmadjian et al. 2016) or
GI/G/K (Kühn et al. 2019) queue for power management
purpose. System modeling we propose is based on a threshold
policy that is similar to Hysteresis models (Golubchik et al.
2002; Lui et al. 1999) but adapted to DVFS systems. Hysteresis
models are based on two threshold vectors. When the number
of tasks exceeds an activation threshold, a new server is added
(instantaneously: Lui et al. 1999, or with non-negligible time:
Golubchik et al. 2002) and when the number of tasks falls
below an inverse threshold, a server is removed from the
system. Similar approach can be found in Mitrani’s model
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(Mitrani 2011), where system is limited to two thresholds to
manage a group of block reserved servers with exponential
activating time. Note that in the last two models, the servers
are homogeneous and therefore have the same service rate.
The DVFS model that we propose is a hybrid model be-
tween the classical hysteresis model and the block model of
Mitrani. Indeed, we have a single vector of thresholds that
instantaneously switches UP (with non-negligible power cost)
or switches DOWN (with negligible power cost) frequency
of a group of activate servers. We represent the system by a
birth-death process from which we obtain a closed form for
the steady state probability distribution, we derive the mean
response time, tasks dropping rate probability and mean power
consumption which we will optimize in the second phase.

The second part of this work consists in a Multi-Objective
Optimization (MOO). This process seeks to find optimal
threshold vector(s) that minimizes both response time and
mean power consumption. This matter is often related to a
decision problem. Many hysteresis studies address this prob-
lem with optimal control models through MDPs (Markovian
Decision Process). However, convergence of classical MDP al-
gorithms is subject to the hysteresis property of optimal policy.
This property is proven for M/M/1 queue in (Lu et al. 1984)
and M/M/C queue in (Szarkowicz et al. 1985). An interesting
comparative study is proposed in (Thomas et al. 2021) where
authors compare a panel of heuristic Markov chain resolution
approaches (using states aggregation) with an MDP decision
approach, stating that this later is more efficient for high scale
simulations. One notes that all the discussed methods consider
a scalarized global optimization reward function and provide
a single solution to service provider to ensure a given level
of QoS with reasonable energy consumption. In our study, we
address the non-convex problem of optimal thresholds with: (i)
A scalarization Weighted Sum Approach (WSM); (ii) A non-
dominated Pareto approach that consists in proposing a set of
optimal (i.e. compromise) solutions instead of a single one. In
both approaches, we propose a fast and greedy approximate
method to construct optimal vector(s).

This work is an extension and enhancement of our previous
study (Youssef et al. 2021), precisely, this paper is not limited
to systems with N = 2 Pstates. The stochastic modeling and
optimization approach considers vector of thresholds rather
than a single threshold value. This makes the optimization
process more complex with both a factorial decision space and
an objective space that is neither linear nor convex. Moreover,
we treat the modeling phase in the case of finite systems (thus
more realistic), and infinite denumerable systems.

The rest of the paper is organized as follows. In the next
section, we describe the Markov chain model. We present the
proof of the closed form of the steady state distribution dealing
with vector of N ≥ 1 Pstates. We derive the performance
and power consumption formulations. We also provide an
”st” (i.e. strong stochastic) comparison between the steady-
state probability distributions derived from processes with
comparable sequence of thresholds. This result induces the
comparison of the performance measures. In Section III, we
focus on the numerical multi-objective optimization, proposing
two approximate numerical algorithms either for the scalariza-
tion approach or the Pareto front approach. Finally, we present
numerical results by comparing the proposed algorithms to

some well-known MOO methods and analyze in more detail
the scenario of a physical server hosting multiple VMs under
DVFS policy.

MODEL DESCRIPTION AND MARKOV CHAIN
ANALYSIS

We first recall the Pstates support for a DVFS system (Table
I). The table represents the frequency fi (in GHz) from the
lowest Pstate P1 to the highest one PN . Power consumption pi
increases with the frequency fi and 0 < f1 < f2 < · · ·< fN and
0 < p1 < p2 < .. . < pN . In this work, we model the Pstate

TABLE I: Pstates support for a DVFS system

Pstates P1 P2 . . . PN

Frequency (GHz) f1 f2 . . . fN
Power (W) p1 p2 . . . pN

system as a multi-server queue. We assume that

• The system contains C computing units (or VMs).
• External arrivals of tasks follow independent Poisson

process with rate λ .
• Service rates are distributed according to exponential

distributions.
• Task scheduling discipline is FCFS (First Come, First

Served).
• Frequency is the number of cycles per second. CPI

is the number of Cycles per Instruction. Tasks may
require ”b” instructions (with b > 0). Hence service
rate of a single computing unit is µi =

fi
b∗CPI .

We represent the system as a birth-death process with N
Pstates and a capacity B that could be either finite or infinite
denumerable. Service rate increases (or decreases) dynamically
and progressively according to the amount of tasks in the
system. The latter is controlled by a vector of thresholds Γ=
[th1, th2, . . . , th(N−1)] with (0< th1 < th2 < .. . < th(N−1) <B).

TABLE II: Main notations for Markov process modeling

Notation Description
P Entry Pstates vector of size N
Γ Thresholds vector of size N−1
B Maximum number of tasks in the system
C Total number of computing units (i.e. VMs)
λ Tasks arrival rate
µi Service rate of a unit in Pstate i
pi Power consumption of a unit in Pstate i

pi,Id Power consumption of an idle unit in Pstate i
si Power consumption of a switching unit to Pstate i
SΓ System described by {X t

Γ, t ≥ 0} CTMC and
steady-state vector ΠΓ

E[XΓ] Mean number of tasks in the system
T i or TΓ Mean response time of a mono-Pstate system in

Pstate i or multi-Pstates system with thresholds Γ
PWΓ Mean power consumption of a multi-Pstates sys-

tem with thresholds Γ

Model and closed form for the steady-state distribution

Let (x) be the number of tasks in the system, then DVFS
system instantly and dynamically adjusts its frequency and
power to the corresponding Pstate. In next, we analyse the
system in both finite B < ∞ and infinite case B → ∞. The



existence of a steady-state distribution in infinite models is
subject to the stability condition λ < CµN . We suppose that
all systems we study are stable. The system contains C
computing units. Therefore min(C,x) tasks are in service, and
(x−min{C,x})+ are queued. Under the classical assumptions
mentioned previously, {X t

Γ, t ≥ 0} is a Continuous Time
Markov Chain (CTMC) with transitions

(x) → (min{x+1,B}), with rate λ ,
(x) → (max{0,x−1}), with rate min{x,C}·µ(x)

and service rate

µ(x) =



µ1 =
f1

b∗CPI i f (x≤ th1),

µ2 =
f2

b∗CPI i f (th1 < x≤ th2),
.
.

µN = fN
b∗CPI i f (th(N−1) < x≤ B).

(1)

Theorem 1: The Markov chain is a birth-death process.
Then, under stability condition λ < CµN if the system is
infinite, we can derive ΠΓ(x) the steady-state probability.

Let Ψ(x) =
x

∏
k=1

min{k,C}µ(k),

and R = max{C, th(N−1)}, then (2)

ΠΓ(x) =


λ x

Ψ(x)ΠΓ(0) ∀ 0 < x≤ R,

λ x
[
Ψ(R)(CµN)

x−R
]−1

ΠΓ(0) ∀ x > R.
(3)

where ΠΓ(0) =

(
1+ λ R+1

(CµN−λ )Ψ(R) +∑
R
x=1

λ x

Ψ(x)

)−1

, i f B→ ∞,(
1+ λ R+1

(CµN−λ )Ψ(R)

(
1−
(

λ

CµN

)B−R)
+∑

R
x=1

λ x

Ψ(x)

)−1

,

i f B < ∞.
(4)

Proof: In Equation (5), we present the classical birth-
death equations for the steady-state distribution of that model.

ΠΓ(x) =


λ

min{x,C}µ(x)ΠΓ(x−1) ∀ 0 < x≤ R,(
λ

CµN

)x−R
ΠΓ(R) ∀ x > R.

(5)

After simple substitutions (i.e. to express ΠΓ(x) as a function
of ΠΓ(0) for all x > 0), we get Equation (3). Finally, after the
normalization of probabilities ∑

B
x=0 ΠΓ(x) = 1, either in finite

of infinite stable system, we obtain Equation (4).

Mean performance measures and power consumption

Let SΓ be the queuing model of a DVFS system defined
by thresholds vector Γ.

Corollary 1: In infinite system SΓ, we express the mean
response time as :

TΓ =ΠΓ(0)

[
(CuN)

R+1

(CuN−λ )Ψ(R)
+

R

∑
x=1

xλ
x−1

(
1

Ψ(x)
− (CuN)

R−x

Ψ(R)

)]
(6)

Proof: The proof derives directly from Theorem 1. From
Little’s law, mean response time is expressed as :

TΓ = E[XΓ]
λ

= 1
λ

∑
+∞

x=1 xΠΓ(x)

⇒ TΓ = 1
λ

[
∑

R
x=1 xΠΓ(x)+∑

+∞

x=R+1 xΠΓ(x)

]

⇒ TΓ = 1
λ

ΠΓ(0)

[
∑

R
x=1

xλ x

Ψ(x) +
λ (CuN)

R−1

Ψ(R) ∑
+∞

x=R+1 x( λ

CuN
)x−1

]

⇒ TΓ = 1
λ

ΠΓ(0)

[
∑

R
x=1

xλ x

Ψ(x) +
λ (CuN)

R−1

Ψ(R)

(
∑
+∞

x=1 x( λ

CuN
)x−1

−∑
R
x=1 x( λ

CuN
)x−1

)]
.

Using the derivative of the converging geometric summation,
and after simplification of terms, we obtain Equation (6).

Note that, in finite model, mean response time formula is

TΓ =
E[XΓ]

λ (1−ΠΓ(B))
=

∑
B
x=1 xΠΓ(x)

λ (1−ΠΓ(B))
.

It becomes harder to simplify and much more verbose. There-
fore, we decide to only present the equation in infinite denu-
merable case.

The power consumption model we consider is as follows:
we recall that DVFS technique allows a system to remain
switched ON while changing frequency to match the traffic.
This avoids successive shutdown and restoration costs of big
systems that can result in waste additional power and further
latency to restore the same regime (Gandhi and Harchol-
Balter 2011). Thus, the proposed system is initially in the
lowest Pstate and then progressively adjusts its speed to
workload. Power formula we propose supports three forms
PW (a)

Γ , PW (Id)
Γ and PW (s)

Γ which are, respectively, the mean
power consumption of the system in activity states, in Idle
states and in switching UP frequency states from a lower Pstate
to a higher one. Switching DOWN of Pstates is assumed to be
negligible (refer to nap mode in Sampaio et al. 2016).

The power consumed by each active unit while the system
hosts x tasks is :

p1 i f (x≤ th1),
p2 i f (th1 < x≤ th2),
.
.
pN i f (th(N−1) < x < B).

(7)

We note pi,Id = α pi with 0≤ α ≤ 1 the idle power and si the
extra power consumed when switching to a higher Pstate i. A
system that scales to a higher Pstate requires all computing
units to be placed at a higher frequency, resulting in a total
additional cost of C ∗ si times the probability of being in
switching states.

Lemma 1: Let PWΓ be the total power consumption of
a stable DVFS system SΓ. For the simplicity of the power
consumption equation, we fix th0 =−1 and thN = B (effective



thresholds are [th1, th2, . . . , th(N−1)]). Then

PWΓ =
N−1

∑
j=0

[
p j+1

th j+1

∑
x=(th j)+1

(
αC+(1−α)min(x,C)

)
ΠΓ(x)

+s j+1CΠΓ(th j)1 j>0

]
. (8)

Proof: We first decompose the mean power formula as :

PWΓ = PW (a)
Γ +PW (Id)

Γ +PW (s)
Γ , (9)

where

PW (a)
Γ = ∑

N−1
j=0

[
∑

th j+1
x=(th j)+1 ΠΓ(x)

(
min(x,C)p j+1

)]
,

PW (Id)
Γ = ∑

N−1
j=0

[
∑

th j+1
x=(th j)+1 ΠΓ(x)

(
C−min(x,C)

)

p j+1,Id

]
,

PW (s)
Γ =C ∑

N−1
j=1 s j+1ΠΓ(th j).

(10)
After simplification of terms, we obtain Equation (8). Note
that PWΓ ≥ 0 since 0≤ α ≤ 1 and all other terms are positive.
The last summation uses s j+1 as the switching UP power is
supposed to be related to the arriving Pstate j+1.

Comparison of performance measures

We first recall the ”el” comparison between vectors of
thresholds.

Definition 1: Let Γ1 and Γ2 be two thresholds vectors,
then: Γ1≤el Γ2 ⇒ Γ1( j)≤ Γ2( j) ∀ j ∈ {1, . . . ,N−1}.
In the next corollary we prove the existence of ”st” (i.e.
strong stochastic comparison) between steady-state probability
distribution vector for two systems.

Corollary 2: Assuming that, either finite or infinite sys-
tems, SΓ1 and SΓ2 has comparable thresholds, then :

Γ1≤el Γ2 ⇒ ΠΓ1 ≤st ΠΓ2. (11)

Proof: Let µ
(SΓ1)
x = min{x,C}µ(x) (the same for µ

(SΓ2)
x )

be the services rate transition generated at state x in system
SΓ1 (resp. SΓ2) then

Γ1≤el Γ2 ⇒ µ
(SΓ1)
x ≥ µ

(SΓ2)
x ∀ state x,

also for all x, we have λ
(S1)
x = λ

(S2)
x = λ . Thus, from Stoyan

theorem of birth-death processes (in Stoyan 1983, page 196-
197, Theorem 5.2.21), we deduce that {X t

Γ1, t ≥ 0} ≤st
{X t

Γ2, t ≥ 0}. Since both systems are stable, then steady-state
probability distributions are comparable. We get ΠΓ1 ≤st ΠΓ2.

Lemma 2: (Comparison of mean number of jobs and re-
sponse time, Youssef et al. 2021)
Let E[X1], E[X2] (resp. T1,T2) be the mean number of jobs

(resp. the mean response time) for two infinite stable DVFS
systems, then : Π1 ≤st Π2 ⇒ E[X1]≤ E[X2] and T1 ≤ T2.

Corollary 3: In finite systems SΓ1 and SΓ2 with compara-
ble thresholds, rejection rate is higher in SΓ2 :

Γ1≤el Γ2 ⇒ λΠΓ1(B)≤ λΠΓ2(B) (12)

Proof: As a consequence of Corollary 2 we have :

Γ1≤el Γ2 ⇒ ΠΓ1 ≤st ΠΓ2.

Note that ”st” comparison between vector of probabilities is
expressed as :

ΠΓ1≤st ΠΓ2 i f f ∀k∈{1,2, . . . ,B},
B

∑
j=k

ΠΓ1( j) ≤
B

∑
j=k

ΠΓ2( j)

Hence taking k = B, we deduce that λΠΓ1(B)≤ λΠΓ2(B).

From the last two proposed corollaries and Lemma 2, we
deduce the Corollary 4 that we consider in the optimization
process when one only intends to optimize the response time.

Corollary 4: In finite or infinite systems SΓ1 and SΓ2 with
comparable thresholds, mean response time and mean number
of jobs are higher in SΓ2.

Γ1≤el Γ2 ⇒ E[XΓ1]≤ E[XΓ2] and TΓ1 ≤ TΓ2 (13)

Proof: In finite or infinite system, from Corollary 2
we have ΠΓ1 ≤st ΠΓ2. For infinite systems we derive from
Lemma 2 that E[XΓ1] ≤ E[XΓ2] and TΓ1 ≤ TΓ2. However,
for finite systems, response time formula (Little’s law) is
different since rejected tasks are not considered. But, mean
number of jobs in the system formula remains the same and is
bounded by the limit capacity of the system (B tasks). Hence
it is straightforward, from Lemma 2 that E[XΓ1] ≤ E[XΓ2]. It
remains to demonstrate the response time comparison in the
finite case. From Corollary 3 we have :

ΠΓ1(B)≤ΠΓ2(B) ⇒ 1
λ (1−ΠΓ1(B))

≤ 1
λ (1−ΠΓ2(B))

,

⇒ E[XΓ1]
λ (1−ΠΓ1(B))

≤ E[XΓ1]
λ (1−ΠΓ2(B))

≤ E[XΓ2]
λ (1−ΠΓ2(B))

,

⇒ TΓ1 ≤ TΓ2.

Hence, Equation (13) is proved in finite and infinite case.

In the following, we propose an upper bound and lower
bound for performance measures. These bounds will be used
for the normalization of objectives in optimization phase.

Corollary 5: Let S1 (resp. SN) be the mono-Pstate DVFS
system, i.e, system that considers only Pstate1 (resp. PstateN).
Let {X t

1, t ≥ 0} and Π1 (resp. {X t
N , t ≥ 0} and ΠN) be CMTC

description and steady-state probability distribution for, either
both finite or both infinite systems S1 (resp. SN). Then for any
multi-Pstates system SΓ : E[XN ]≤ E[XΓ]≤ E[X1]

T N ≤ TΓ ≤ T 1
ΠN(B)≤ΠΓ(B)≤Π1(B)

(14)

The last inequality only holds for finite models, due to task
dropout from a full system.

Proof: First, notice that when the system considers only
one Pstate, then S1 and SN are reduced to an M/M/C (resp.
M/M/C/B) queue in infinite (resp. finite) system with service
rate µ1 and µN . By applying Stoyan theorem between S1 and



SΓ, also between SΓ and SN and knowing that µ1 ≤ µN , then
we obtain :

{X t
N , t ≥ 0} ≤st {X t

Γ, t ≥ 0} ≤st {X t
1, t ≥ 0}

⇒ ΠN ≤st ΠΓ ≤st Π1.

For infinite or finite models, mean number of jobs and response
time are comparable since we establish the ”st” comparison
between SN and SΓ, and between SΓ and S1, hence using the
same justification approach of Corollary 4, we obtain the two
first equations of (14). Finally, the last equation is a direct
consequence of the ”st” comparison in finite systems for the
state k = B.

MUTLI-OBJECTIVE OPTIMIZATION ANALYSIS

The threshold vector Γ is an inherent element of the sys-
tem dynamics. This vector drastically affects the performance
and consumption. The optimization process seeks to find the
optimal thresholds (or compromise thresholds) between perfor-
mance (mean response time and reject probability of tasks) and
power consumption. Note that, these three objectives derive
from the closed form proposed in Theorem 1. As mentioned
in our first work (Youssef et al. 2021), the analysis of a system
with one or two Pstates remains very reasonable. However,
the behavior of the system becomes more challenging when
the number of Pstates is increasing (N > 2). We, nevertheless,
provide Corollary 4 and 5 to compare performance metrics
only based on the parameters of the system. On the other hand,
the mean power consumption is difficult to analyse as it is
neither monotonous (in the sense of ”st” comparison) neither
a convex function.

First, we can reduce the optimisation space to two objec-
tives: power consumption and response time. Probability of
rejecting tasks is positively correlated to the response time (i.e
fast servers leads to high consumption, low response time and
low reject probability). We can also state that a system with
high threshold values switches tardily to higher Pstates, thus
consumes less but shows deteriorated performance in terms of
response time and rejection rate. In the following, we study this
balanced behavior between power consumption and response
time and provide optimal thresholds for this trade-off.

We express the non-convex optimization problem as :
min PWΓ

min TΓ

s.t. Γ= [th1, th2, . . . , th(N−1)],
∀ i ∈ {1,N−2}, 0 < thi < thi+1 < B,
∀ i ∈ {1,N−1}, thi ∈ N∗.

(15)

Let D be decision space of this problem, then |D| is a
function of N and B, with B≥ N ≥ 2 :

|D|= (B−1)!
(N−1)!(B−N)!

=
Π

N−1
i=1 (B−N + i)
(N−1)!

. (16)

It is, therefore, necessary to consider fast resolution algorithms.
To solve this problem, we analyse two main approaches
(Gunantara 2018) in MOO. In each one we propose a greedy
approximation algorithm and we compare its results to some
classical algorithms.

TABLE III: Main notations for MOO analysis

Notation Description
Γ∗ Optimal vector of thresholds obtained with a WSM

method
D Decision space set

H(th,k) Set of all feasible integer values at position k
having th as a fixed value in the last constructed
vector Γ∗k−1

V(Γ,k) Set of feasible neighbors values at position k
obtained by adding (or emitting) 1,2, ...,∆ to Γ(k)

Sk Non-dominated set obtained at iteration k in ap-
proximate Pareto Algorithm

S Exact Pareto set obtained with Kung algorithm

Single solution approach

Here, we consider the Weighted Sum Method (WSM)
which consists on the scalarization (ibid.) of the set of objec-
tives into a single one. This method is based on the additive
utility assumption (Fishburn 1967). It requires a high-level
information that estimates the relative importance of each
objective. Let w ∈ [0,1] (resp. 1−w) be the weight assigned
to the response time (resp. mean power consumption). We
also need to normalize objectives. Let T

′
Γ

(resp. PW ′
Γ
) be the

normalized objectives. Hence Equation (15) becomes : min wT ′
Γ
+(1−w)PW ′

Γ

s.t. Γ= [th1, th2, . . . , th(N−1)],
∀ i ∈ {1,N−2}, 0 < thi < thi+1 < B,
∀ i ∈ {1,N−1}, thi ∈ N∗.

(17)

Where

T ′Γ =
TΓ−TΓ,min

TΓ,max−TΓ,min
and PW ′Γ =

PWΓ−PWΓ,min

PWΓ,max−PWΓ,min
.

Lemma 3: Normalization approach we consider consists
in bringing all objectives to the range [0,1], then for a system
with N Pstates :

TΓ,min = T N and TΓ,max = T 1,
PWΓ,min =Cp1,Id and PWΓ,max =CpN +C ∑

N−1
j=1 s j+1

Proof: For response time objective, we use Corollary 5 to
derive the upper and lower bound. However, strong stochas-
tic ”st” comparison does not hold for power consumption
(Equation (8)). We, then, propose that PWΓ,min is the power
consumption when all servers are in idle state in the lowest
Pstate, and inversely PWΓ,max is the power consumption when
all servers are active in the highest Pstate plus the switching
UP power of the intermediate Pstates.

Lemma 4: If one wants to optimize only the response time
TΓ (i.e. w = 1), then optimal solution is Γ∗ = [1,2, . . . ,N−1].

Proof: According to Corollary 4. A lower threshold vector
(in the sense of ≤el comparison), presents a lower response
time. Hence, vector [1,2, . . . ,N−1] which is the lowest feasible
solution provides the best performance measures. In this case,
higher Pstates are quickly attainable. Otherwise, if one wants
to optimize only power consumption (i.e. w = 0) or both
objectives (i.e. 0 < w < 1). One should proceed with an
optimization method.



The approximate greedy approach we propose (details in
Algorithm 2) is based on a local resolution from a two Pstates
system and we progressively add a new Pstate level until
achieving the N Pstates system: we solve the problem with N =
2 Pstates with a naive method, it is not time consuming since
we only have one threshold (i.e. a single decision variable).
Let Γ∗1 = [th1] be the optimal solution at iteration 1. Then,
for the next iteration, we construct the new threshold vector
as Γ∗2 = Γ∗1 ⊞ th2 where th2 ∈ {th1 + 1, . . . ,B−N + 2}. We
append (i.e. ⊞ operator) the new thk to threshold vector Γ∗k−1.
We continue this process until reaching N Pstates. We also add
an exploration step in this algorithm. In order to improve the
quality of the solution, we explore the neighborhood of the last
element of the previous iteration. Let ∆≥ 0 be the exploration
factor, then we define the two sets as: H(th,k) is the set of
possible values in the position k knowing that at position k−1
we have the value th, this set derives from the constraint of
strict inferiority between thresholds. The second set V(Γ,k)
represents the neighborhood possibilities of a given threshold
value in position k.{ H(th,k) = {th+1, th+2, . . . , B−N + k},

V(Γ,k) = {m / ∀i ∈ {0,1, . . . ,∆},
Γ(k−1)< m = Γ(k)∓ i < B−N + k }.

∆ parameter improves the quality of the solution but also
increases time complexity. In many cases ∆ = 0 is sufficient
to reach the optimal solution (see Tables V, VI and VII).

Lemma 5: Let bk ≤ B and ck ≤ B then temporal com-
plexity of the proposed greedy approximate algorithm is
B∑

N−1
k=1 bkck in average case and O((N−1)B2) in best case.

Proof: Solve() method’s (i.e. Algorithm 1) complexity is
O(B) (one can refer to the latest version of the XBorne tool;
Fourneau et al. 2016 to solve numerically classical birth-death
processes). And, for each iteration k, we calculate the mini-
mum of the objective functions in the first set H(th,k) which
is upper bounded by B (i.e. bk = |H(th,k)| ≤ B) that depends
on the neighborhood set ck = |V(Γ,k)| ≤ B. In best case, one
considers ∆ = 0 hence ck = |V(Γ,k)|= 1, therefore complexity
reaches B∑

N−1
k=1 bk which is in the order of O((N−1)B2). Note

that a naive research method is in the order of O(B|D|).
This algorithm, indeed, does not ensure a global optimal

solution, but besides being faster, it benefits from an optimal
sub-structure property that produces an optimal solution in
several investigated cases.

Algorithm 1: Solve(Γ,P , w)
Input : Vector of thresholds Γ, vector of Pstates P ,

weight w.
Output: Calculating rewards given a vector of

thresholds

1 Calculate the steady-state distribution (Theorem 1)
2 Derive the mean response time T Γ and mean power

consumption PWΓ (Lemma 2)
3 Normalize the objectives (Lemma 3)
4 Derive the cost function using weight w.

Although the weighted sum approach is simple to analyse
and reaches an optimal solution, it suffers from many diffi-
culties (Godwin 2013): we need to know the weights (w), the

Algorithm 2: Approximate greedy algorithm for opti-
mal thresholds
Input : Vector of Pstates P , number of servers C,

system capacity B, arrivals rate λ , preferred
objective w.

Output: Optimal vector of thresholds Γ∗ of the system

1 if w = 1 then
2 Γ∗ = [1,2, . . . , N−1] ▷ Lemma 4
3 else
4 Γ∗0← [ ] ▷ Initialize with an empty vector
5 th∗1←miny∈H(0, 1) Solve(Γ∗0 ⊞ y, P(1 : 2),w)
6 Γ∗1← Γ∗0 ⊞ th∗1
7 for k← 2 to N−1 do
8 x← Γ∗k−1(k−1) ▷ Last element in Γ∗k−1

9 th∗k←minx∈V(Γ∗k−1, k−1)

[
miny∈H(x, k) Solve(Γ∗k−1

10 ⊞ y, P(1 : k+1),w)
]

11 Γ∗k ← Γ∗k−1 ⊞ th∗k ▷ Extend the optimal vector
12 end
13 end

inability to find some Pareto-optimal solutions (those in non-
convex region), also each algorithm execution provides a single
solution. In next, we analyse the Pareto-Optimal approach
which consists in proposing a set of non-dominated solutions
(i.e set of compromise solutions).

Pareto-Optimal approach

This approach consists in finding a set of solutions in
which an objective cannot be improved without deteriorating
at least one of the other objectives ”Vilfredo Pareto”. This set
is composed of non-dominated solutions.

Definition 2: A point Γ ∈ D dominate Γ′ ∈ D iff :

(TΓ ≤ TΓ′ ∧PWΓ ≤ PWΓ′)∧ (TΓ < TΓ′ ∨PWΓ < PWΓ′).

Otherwise, Γ′ is not dominated by Γ.

Definition 3: Let S be the set of non-dominated points (i.e
Pareto set). Then

∀ Γ ∈ S, ∀ Γ
′ ∈ D, Γ is not dominated by Γ

′.

Several algorithms exists in the literature to find the Pareto set.
They are mainly grouped in two sections. Exact algorithms and
the approximate (or approached) algorithms: (i) The exact al-
gorithms consists in searching the whole Pareto set. The naive
approach consists in checking the dominance property for each
solution, which is highly time-consuming with O(|D|2) and
particularly inefficient for our case (see Equation (16)). There
are also many fast and efficient methods, the most widely used
one is Kung’s method (Kung et al. 1975). This algorithm is
mainly driven by sorting and dividing the population which
results on a time-complexity of O(|D|log(|D|)) in the case of
two objectives. Many algorithms has been proposed to improve
this complexity as Ding’s method (Ding et al. 2003) based on
the scoring definition and Jun Du (Du et al. 2007) based on
ranking and indexing sets. (ii) For approximate approaches,
genetic algorithms are the most widely used, the algorithms
consists on improving the quality of a random population
until approaching the real Pareto Set. In genetic algorithms



one aims to converge to the optimal front and to maintain
as diverse as possible the population set. Most common ones
are Deb’s methods (Deb and Goldberg 1989) as NSGA ”Non-
dominated Sorting Genetic Algorithm” and NSGA II ”Elitist
NSGA” (Deb and Goel 2001). Although there exists many
other genetic algorithms (VEGA, MOGA ...).

In next, we propose Algorithm 4 that merges our greedy
approach with Kung’s method (Algorithm 3). One should note
that Kung’s algorithm is indeed very fast, but it requires
to have the decision space and the objective space. Yet we
have |D| solutions where each one costs O(B) to compute
it’s performance and power consumption. So the preliminary
step of the Kung method costs O(|D|B). Which results with
a total complexity of O(|D|log(|D|)+ |D|B). Main idea of the
approximate Pareto algorithm we propose, is to not explore all
the decision space. We construct the Pareto set progressively
from the system with two Pstates to the given system. The
assumption here is quite similar to the one used in NSGA
II where the goal is to emphasize non-dominated solutions
from a generation to another: from non-dominated solutions
of the sub-system with N − 1 Pstates (i.e. Sk−1), we create
a new domain space S′k that will be resolved by a Kung
iteration. Based on the assumption of sub-optimal structure this
algorithm provides a valuable approximation of the Pareto set
in a reasonable time.

Lemma 6: For an iteration k in Algorithm 4, complexity
depends on the size of the non-dominated set obtained at itera-
tion k−1. Hence, we have a complexity of |Sk−1||H(x,k)|(B+
log(|Sk−1||H(x,k)|). The worst case is when, at each iteration,
the whole decision set is a non-dominated set. Complexity in
this particular case tends to an exhaustive method. Inversely,
with reasonable non-dominating sizes dominated solutions are
disengaged earlier which makes the algorithm faster than a
classical Kung’s method. In best case, when non-dominated
set is reduced to only one solution complexity is reduced
to O((N − 1)(B2 + Blog(B)) which is much equivalent to
Algorithm 2 complexity in best case.

Algorithm 3: Kung’s recursive Pareto algorithm
Input : Decision space D
Output: Pareto set S

1 Sort D according to descending order of the first
objective. Let P be that set and let S= /0.

2 Front(P) : ▷ Recursive function
3 if |P|= 1 then
4 return P
5 else
6 Sort P according to second objective
7 s1 = Front( P( 1 : ⌊ |P|/2 ⌋) )
8 s2 = Front( P( ⌊ |P|/2 ⌋+1 : |P|) )
9 if an element x in s2 is not dominated by any

element in s1 then
10 S= S∪ x
11 end
12 return S
13 end

NUMERICAL RESULTS
DVFS systems are widely used in cloud computing. Es-

pecially in virtualized environments. Physical servers can host

Algorithm 4: Approximate Pareto algorithm
Input : Vector of Pstates P , number of servers C,

system capacity B
Output: Pareto set S

1 S1 = Kung(H(0, 1)) ▷ Kung’s method for N = 2
2 for k← 2 to N−1 do
3 S′k = /0
4 for Γ ∈ Sk−1 do
5 x← Γ(k−1)
6 for th ∈H(x, k) do
7 S′k = S′k ∪ (Γ⊞ th)
8 end
9 end

10 Sk = Kung(S′k)
11 end
12 return SN−1

many virtual machines (VMs). Each VM can be assigned one
or more virtual processor. In the following, we use our model
to evaluate the trade-off between performance and energy
consumption considering C VMs where each VM has 1 vCPU
and a capacity queue of size B. The hypervisor of the physical
server receives task requests with rate λ and assigns them to
VMs on a first-come, first-served policy and a DVFS strategy
across all VMs.

In Table IV we present a Pstate support inspired from AMD
Opteron processor (AMD 2005). We analyse three scenarios
where we increase progressively the scalability of the problem.
As we can see in the last column, decision space increases
exponentially with N and B (refer to Equation (16)).

We have considered several instances for each of the
three scenarios. Each instance of the problem is based on the
combination of parameters 1 ≤ λ ≤ B, w ∈ {0,0.1,0.2, . . . ,1}
also different possibilities of Pstates. For instance, scenario A
supports N = 4 Pstates, hence we can derive the following
possibilities of systems [P1,P2,P3,P4], [P2,P4,P5,P6] ... also,
without loss of generality, we fixed: the switching UP power
to Pstate i as equal to the active power si = pi, α = 0.25
(i.e. a power gain of 75% in idle state), number of cycles per
instruction to CPI = 1 and number of instructions per tasks to
b = 109 so that mean response time is expressed in seconds.

TABLE IV: Pstates support for a system supporting 6 Pstates
and parameters of three different scenarios

Pstates P1 P2 P3 P4 P5 P6

Frequency (GHz) 1 1.8 2 2.2 2.4 2.6
Power (W) 32 55 65 76 90 95

Parameters B C N |D|
Scenario A 45 20 4 13244
Scenario B 80 30 4 79079
Scenario C 100 40 5 3764376

Comparison of algorithms
For weighted sum methods, we compare the proposed

greedy approximation (Algorithm 2) with a local search
method and a Tabu search, and also an exhaustive method to
evaluate the success rate. The local search and Tabu search are



classical neighborhood methods. The local search starts with
a random seed solution and improves this latter locally until
there is no more possible improvement in the neighborhood.
However, it can get stuck in a local optimum. To avoid this
behavior, we have opted for the Tabu search method; a method
that gets out of a local optimum. In the Tabu method, we store
all previous local optimums in a Tabu list of reasonable size
(that we fixed to 4BN). The Tabu list is updated progressively
and keeps the most recent local optimums as long as possible in
order to avoid cycling phenomena. The algorithm stops when
no improvement occurs during several iterations. Note that, to
compare results, we fixed the same randomized seed for both
search methods.

Contrary to WSM methods, in Pareto methods, we need to
compare two sets of vectors instead of two vectors. Therefore,
we use Jaccard similarity index between the exact and the
approximated Pareto front. The proposed success rate is the
mean Jaccard index for all investigated instances. We also
show |Savg| the average size of Pareto set for all instances.
Here, we no longer need preferency parameter w, so we have
less instances to compare, but more computing time for each
instance (refer to algorithms complexity in previous section).
Due to the scalability of scenarios B and C, in WSM Methods
we perform one simulation only for the exhaustive search to
keep track of the computation time. Thus, we use the %Min
rate instead of %Success rate. %Min rate is the percentage of
optimality of each, non-exhaustive, method among the others.
The simulations have been performed on a laptop with 10 cores
(8 of them at 3.2 GHz peak frequency and two others at 2 GHz
peak frequency) with 16GB RAM.

TABLE V: Scenario A, Comparison of 2024 instances

WSM Methods Success rate Time (s)
Exhaustive search 100% 54.18

Greedy approx (∆ = 0) 96% 0.49
Greedy approx (∆ = ∆Max) 99% 7.50

Local search 59% 0.81
Tabu search 71% 3.16

Kung Pareto Method Pareto set size Time (s)
Light load |Savg|= 9515 59.24

Moderate load |Savg|= 3454 56.10
Heavy load |Savg|= 475 55.24

Approximate Pareto Success rate Time (s)
Light load 100% 49.23

Moderate load 100% 17.38
Heavy load 100% 3.24

The numerical results (Table V, VI, VII) show that:

• The proposed greedy approaches are the most efficient
methods among those studied, notably on the quality
of the solutions and the execution time. Whether in
scalarization method or in Pareto method. In many
cases it is not required to add an exploratory step
(∆ = 0) to improve the quality. Also, as observed
in Scenario B and C, greedy methods are scalable.
WSM greedy approach solves a system of 40 VMs and
3.7x106 feasible solution in approximately 3 seconds
with an optimality rate of 95%.

• The classical methods of exploration, in particular the
local search or the meta-heuristic Tabu search, show

TABLE VI: Scenario B, Comparison of 1540 instances

WSM Methods %Min rate Time (s)
Exhaustive search 100% 604.16

Greedy approx (∆ = 0) 96% 1.88
Greedy approx (∆ = ∆Max) 99% 48.02

Local search 65% 2.20
Tabu search 73% 7.50

Kung Pareto Method Pareto set size Time (s)
Light load |Savg|= 72863 870.02

Moderate load |Savg|= 33846 653.11
Heavy load |Savg|= 5368 601.51

Approximate Pareto Success rate Time (s)
Light load 100% 845.20

Moderate load 100% 339.99
Heavy load 99% 54.40

TABLE VII: Scenario C, Comparison of 1012 instances.

WSM Methods %Min rate Time (s)
Exhaustive search 100% 33848

Greedy approx (∆ = 0) 95% 3.32
Greedy approx (∆ = ∆Max) 98% 122.52

Local search 53% 4.12
Tabu search 61% 28.51

Approximate Pareto Pareto size Time (s)
Moderate load |Savg|= 89661 1756.43

Heavy load |Savg|= 29543 677.39

weaker results as they strongly depend on the shape
of the scalarized function, particularly in our model
where rewards formulas are complex and decision
space is factorial.

• Pareto methods require more computation time. But
they are much more valuable to provide a panel of
disparate compromise solutions instead of a single one
(see Fig. 1 and Fig. 2). The proposed Approximate
Pareto method is efficient for moderate and heavy load
traffic. It can reach 100% (resp. 99%) of the Pareto
front in 3 (resp. 54) seconds instead of 55 (resp. 601)
seconds for scenario B (resp. scenario C).

System dynamic analysis

To analyze the system dynamics, we consider scenario A.
In a first step (Fig. 1), we investigate the influence of the
system workload on the response time and the power. Then
(Fig. 2), we fix the load of the system and then extend the
number of Pstates (from N = 3 to N = 5) for a case with neg-
ligible switching UP power of Pstates and a case considering
switching UP power. We notice that : a) The higher the system
is loaded, the more likely it is to reach the highest Pstates
and thus the objective space becomes more disparate unlike
unloaded systems where not all Pstates are explored. b) In
order to minimize the response time, the system tends to move
towards high Pstates (i.e. with small thresholds) which would
consume more, however to reach them the different switching
phases must be handled (arcs patterns in the graphics). The
system also has to avoid successive switch UP (and switch
DOWN) effects. This makes the optimal choice more difficult.
c) The model with negligible switch UP power, generates



a much simpler behavior as it is not subject to switching
power overheads or successive UP/DOWN effects. d) The
exact (resp. Approx) Pareto method i.e. red points (resp. blue
points) allows to clearly distinguish the equilibrium solutions
between response time and power consumption. The Greedy
method also approximately reaches the Pareto zone, however
the distribution of points (yellow ones) remains a matter of
discussion as some Pareto points are difficult to reach. Finally,
we show the trajectory of the Tabu search promoting the
response time (case of w = 0.8) and power consumption (case
of w = 0.05), where we observe the convergence to different
points of the Pareto front. For instance, in Fig. 2 with N = 5,
weights w∈{0,0.01,0.02}, w∈{0.03,0.04}, w∈{0.05,0.08},
w= 0.09 and w≥ 0.1 provides, respectively, optimal thresholds
vector [41,42,43,44], [1,42,43,44], [1,2,43,44], [1,2,3,44]
and [1,2,3,4] that is to remain for a long time in a single
Pstate 2, 3, 4, 5 and 6, thus avoiding switching UP overheads.
While in the same model with negligible switching costs (the
case of AMD 2005 Opteron processor), system changes Pstates
more frequently: for w ∈ {0,0.01,0.02}, w = 0.03, w = 0.04,
w = 0.05 and w = 0.06 optimal thresholds are, respectively,
[41,42,43,44], [40,42,43,44], [32,37,43,44], [27,31,34,35],
[24,27,29,30] until reaching [1,2,3,4] with w = 1. Hence,
switching costs si has an important impact on the system
dynamism and must be chosen appropriately in order to benefit
from the various Pstate levels avoiding the successive switch
UP/DOWN changes.

CONCLUSION

In this paper, we proposed a new model to analyse DVFS
systems with N ≥ 1 Pstates. We propose a ”st” comparison
of system’s performance measures and a closed formula to
compute rapidly rewards of the system thus to proceed with
a MOO analysis. In the optimization phase we considered the
two main approaches in MOO. The scalarization of objectives
and the Pareto front method. By analyzing the results, we
observe that a greedy heuristic approach generates accurate
results in a very convenient time. However, for WSM methods,
preferency parameter and distribution of optimal point in
objective space remain an issue. This will lead us to analyze
Kung’s approach, which is the most commonly used exact
Pareto front method. This latter method suffers from the
scalability of decision and objective space, by adjusting it with
our greedy approach we can get fast results of a non-dominated
set that is remarkably close to Pareto front, especially when
dealing with systems with moderate and heavy load. Finally
we compare two DVFS systems: one with switching UP power
of the Pstates, and one with absence of switching power. We
naturally observe an increase of the average consumption in
the system with switching power. But more specifically, a
disparate and complex decision space is formed where the
system does not necessarily consume the most in the highest
Pstates that we can observe in the model without switching
power, thus making the optimal decision further challenging.
Several perspectives can emerge from this work: adding a non-
negligible delay for the Pstate change, considering a network
of DVFS systems. This will lead to investigate further fast
optimization methods or reinforcement learning methods to
analyse the performance and power consumption trade-off.

SOURCE CODE
The proposed DVFS analysis is available in GitHub frame-

work.
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Fig. 2: Response time Vs Power consumption for three DVFS systems [P2,P3,P4], [P2,P3,P4,P5], [P2,P3,P4,P5,P6] in moderate
mode λ = 20. The first (resp. second) row represents models with negligible (resp. non-negligible) switch UP power
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