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ABSTRACT

Verification of embedded software relying on black-
box hardware is challenging whenever precise specifica-
tions of the underlying systems are incomplete or not
available. Learning structured hardware models is a
powerful enabler of verification in these cases, but it
can be inefficient when the system to be learned is data-
intensive rather than control-intensive. We contribute
a methodology to attack this problem based on a spe-
cific class of automata which are well suited to model
systems wherein data paths are known to be decoupled
from control paths. We show the effectiveness of our
approach by combining learning and verification to as-
sess the correctness of embedded programs relying on
FIFO register circuitry to control an elevator system.

INTRODUCTION

It is a known fact that our reliance on the func-
tioning of information-and-communication systems is
growing rapidly. Today, for the most part, they per-
vade our lives in the form of embedded systems such
as mobile phones, vehicle control units, and TV sets.
It is expected that in the future all sorts of objects of
daily use might be equipped with some computing ca-
pability, including personal medical devices, home ap-
pliances, and even clothes [AMO00]. Absence of errors,
as well as safety and security guarantees, are thus cru-
cial in embedded systems while their reliable operation
is already of large social importance. In this direc-
tion, formal methods are one of the key technologies
expected to improve the quality of our embedded sys-
tem designs [HS06].

The main hurdle on the path towards adoption of for-
mal methos is that formal specifications are notoriously
hard to come by. While several reasons contribute to
this state of affairs, the consequence is that many sys-
tems in use today lack adequate specifications or make
use of under-specified components [HS14]. In practice,
this situation is all but infrequent in embedded sys-
tems where third-party hardware components are used
as parts, but only their interface and some informal de-
scription about their behavior is available. To overcome
the problem posed by such black-boxr components, sev-
eral authors considered automata learning techniques
— see, e.g., [PVY99], [GPYO06], [Sha08] — to obtain
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precise models through controlled experimentation. In
spite of many success stories, and the availability of
effective tools like LEARNLIB [RSBMO09], learning com-
ponents which cannot be modeled as having finite-size
input alphabets is still challenging [HIST12]. This is
a problem when dealing with data-intensive, rather
than control-intensive (sub)systems, because Angluin-
based [Ang87] methods are not well suited for such sys-
tems.

In this paper we consider the problem of verifying
embedded software relying on black-box hardware com-
ponents. Such components are assumed to be data-
intensive, i.e., to be useful, the characterization of their
behavior must take into account data exchanged be-
tween the components and their embedding context.
The practical usage scenario is that of an embedded
program developed on top a third-party computing
platform, where a precise specification of the facilities
offered by the platform is not available. With respect to
other works in the literature [HIS*12], [Aar14] we make
a simplifying, but realistic assumption, i.e., that the
data path and the control path are separable. By this
we mean that the specific values exchanged between
the embedding context and the system will have no ef-
fect on the control path of the system. On the other
hand, the actual values exchanged are important to as-
sess the correctness of the component. For instance,
in a serial data bus, the actual content of transmitted
packets does not alter the transmission protocol, but it
is expected that packets will be received in the same
order they were transmitted. The separability assump-
tion still allows us to deal with interesting components
— e.g., different kind of registers, memories, and data
buses — while avoiding the theoretical and practical
intricacies connected to more expressive models.

Several researchers addressed the problem of find-
ing models for black-box hardware circuits. Most of
these works aim to find a specification in the form of
invariants — see, e.g., the GoldMine tool [Shell] —
or, more generally, in the form of temporal properties
— see, e.g., the IODINE tool [HNCCO05]. There are
also some previous efforts devoted to learning hardware
circuits as finite state machines [MKK14]. In [AR12],
authors proposed to abstract the I/O functionality of
continuous-time dynamical systems as Finite State Ma-
chines and to infer them using Angluin’s [Ang87] al-
gorithm. Our approach differs both from [MKK14],
in that we do not wish to disregard entirely the data
component, and from [AR12], in that we are interested
in high-level behavioral simulations rather than accu-
rate gate-level representations. There are works in the
literature which consider automata learning as an en-
abler for formal verification of black-box systems. The
pioneering work in this domain is Black-box checking



(BBC) [PVY99] which challenges the problem of verify-
ing black-box systems through model checking. Adap-
tive model checking (AMC) [GPY06] is an extension
of BBC where it is assumed that some model of the
system to be verified exists, but such model might be
inaccurate or partially obsolete. The main idea behind
AMC is that initializing the learning algorithm with ex-
isting information improves on the performances of the
whole verification process when compared to the BBC
approach. While both BBC and AMC present some
commonalities with our approach, the main difference
is that in both BBC and AMC the system to be verified
is the same of the system to be learned and, to some
extent, verification and learning are intertwined. In our
case, learning is performed only on the black-box hard-
ware, whereas verification involves both the program
relying on such hardware and the models thereof.

Summing up, our main contribution in this paper is
to show that learning (models of) components whose
data and control paths are separable is not hindering
the ability to perform model checking on the whole sys-
tem including such components. In more details, we
consider the following steps:

e Learning the model of a FIFO register by interact-
ing with a VHDL simulator using our tool AIDE [KT]
(Automata IDentification Engine).

o Encoding of models obtained by AIDE into the lan-
guage of the model checker SPIN [Hol97]; albeit the
example we show is specific to the FIFO register, the
econding can be applied to every kind of model learned
by AIDE.

o Verifying an elevator control system built around the
FIFO register using SPIN; the model of the control sys-
tem is based on previous contributions by Nagafuji and
Yamaguchi [NY14] and Attie et al. [ALPCO06].

Our experiments show that learning models from black-
box hardware parts is an effective path to increase re-
liance in the system as a whole. At least in our experi-
ence, the scalability challenge is still mainly on the side
of model checking, i.e., AIDE can learn models larger
than those verifiable with SPIN.

The remainder of this paper is organized as follows.
In the “Background” section we introduce basic defi-
nitions and terminology about automata learning and
model checking. In the “Learning and Verification” sec-
tion we describe the elevator control system case study,
including the properties that we wish to verify, and the
encoding of learned automata for SPIN. In section “Ex-
perimental Analysis” we present experimental data re-
lated to the learning phase with AIDE, as well as the
verification phase with SPIN. We conclude the paper
in with some final remarks and a tentative agenda for
future research.

BACKGROUND
A. Learning models of black-box components

Automata learning — also known as automata-based
identification or grammatical inference — is a set of
techniques that enables the inference of formal mod-
els of systems considering examples of their execution.

Automata learning can be divided into two wide cat-
egories, i.e., passive and active learning. In passive
learning, there is no control over the observations re-
ceived to learn the model, whereas in active learn-
ing, the target system can be experimented with, and
experimental results are collected to learn a model.
In this paper, we focus on the latter kind of tech-
niques, thereby assuming that the system under learn-
ing (SUL) is always available for controlled experimen-
tation. Since we are interested in systems in which
there is a clear separation between user-provided in-
puts and system-generated output, we consider Mealy
machines as reference models for black-box systems.
Active learning of Mealy machines was first devel-
oped by Niese [Nie03] and it was further extended by
Shahbaz’s [Sha08] L}, algorithm — for more details,
see [SHM11]. However, since modeling real-life sys-
tems often requires a finite number of interaction prim-
itives (methods, operations, commands, protocol mes-
sages), but actual interactions often carry additional
data values (parameters, resource identifiers, authen-
tication credentials), standard Mealy machines might
be not expressive enough. Register Mealy Machines
(RMMs) are an extension that equips the structural
skeleton of Mealy machines with a finite set of registers.
The increase in expressiveness of RMMs makes learning
such models intrinsically more complex. In [Aarl4] an
approach based on counterexample guided abstraction
refinement (CEGAR) is proposed to construct models
of black-box RMMs. This approach is implemented in
a tool called TOMTE! which, together with the learn-
ers provided by LEARNLIB [RSBMO09], enables iden-
tification of RMMSs. Another approach for inference
of RMMs is presented in [HIST12], where a dedicated
learning algorithm is proposed. At the time of this
writing, an implementation of this approach is made
available in the LEARNLIB public repository.

While RMMs could fit our purposes, our case study
requires learning models of black-box systems wherein
the control component is independent from the data
component. This is a substantial simplification over
RMMs, one that allows for simpler learning algorithms
and a more efficient identification process with respect
to RMMs. To reap these benefits, we have introduced
Parametrized Mealy Machines (PMMs), a restricted
class of RMMs, together with their inference algorithm.
In the following, we briefly describe PMMs to the ex-
tent required to understand the case study and the
experiments in this paper. For lack of space, we do
not describe the inference algorithm for PMMs which
turns out to be a relatively straightforward extension
of Shahbaz’s [Sha08] L}, algorithm to infer Mealy au-
tomata. The algorithm is implemented in our tool
AIDE? which features learners for several classes of
deterministic and non-deterministic models of compu-
tation — see [KT14] for details. PMMs are defined
assuming an unbounded domain D of data values, a fi-
nite set of input symbols X7, and a finite set of output

Thttp://tomte.cs.ru.nl/.
’https://aide.codeplex.com/.



symbols Yo where each input or output symbol is pa-
rameterized and takes a single formal parameter from
D.? The set X1 (Xp) is called the input (output) al-
phabet of the machine. Let further X = {z1,..., 2.}
be a finite set of registers. An assignment is a partial
mapping p: X — X UX;. A Parametrized Mealy Ma-
chine (PMM) is a tuple (@, q0, X1, 20, D, X, 7) where
Q@ is a finite set of locations; qo € Q is the initial lo-
cation; X7 and Yo are the finite sets of parametrized
input and output symbols, respectively; D is the data
domain of input and output parameters; X is the set of
registers; and 7 is a finite set of transitions in the form
(q,¢, (i,d;), (0,d,), p) where ¢ and ¢’ are the source and
destination locations of the transition, ¢ € ¥ is the in-
put symbol, o € Y is the output symbol, d; € D is
the user-provided input data, d, € D is the generated
output data, and p is an assignment.

To characterize the semantics of PMMSs, we first de-
fine a valuation as a partial mapping v : X — D which
determines the values of active registers. A state is
a pair (¢q,v) where ¢ is allocation and v is a valua-
tion. The initial state of the machine is always (g, ),
i.e., it has an empty valuation and no register is active.
One step of a PMM takes it from state (g,v) to state
(¢’,v') by input (i,d) and emits the output (o,d’) if
there is a transition (g, ¢, (i,d), (0,d’), p) such that v/
is the updated valuation, where v/(z;) = v(zy) when-
ever p(z;) =z and v/ (z;) = d whenever p(z;) =i. In
each step, (i) an input ¢ with its parameter d is given
to the machine, (i¢) the machine may assign the value
of the input parameter d to one of its registers x;, pro-
vided that p(z;) = 4, (4it) registers may be copied, if
there is some j, k such that p(z;) = xy, (fv) an output
action o with its parameter d’ is generated, and finally
(v) the current location of machine changes from ¢ to
¢'. Notice that in (4) the PMM may change the value
of a register, and in (i4i) active registers may change
and/or their values can be copied. The generated out-
put parameter d’ may come from a register or it can be
some constant in D. Similarly to RMMSs, the execution
of machine is defined as a finite alternating sequence
of states and steps ug, So, U1, ..., un such that u; is a
concrete state and s; is one step for all ¢ < n.

B. Model checking system properties

Model checking — see, e.g., [BK08] — is a prominent
formal verification technique for assessing functional
properties of information and communication systems.
The prerequisites of model checking are (i) a model of
the system under consideration and (i) a list of prop-
erties that the system must fulfill expressed in some
formal logic. While not essential in theory, the avail-
ability of a system that can automate the check is taken
for granted in practical applications. The task of such
system is to perform an exploration of the state space of
the system, until either a violation of the stated prop-
erty is found, or no more new states can be explored.

3Notice that we consider only input and output symbols of
arity one. This can be extended for arbitrary, but fixed a priori,
number of parameters.

While there are various tools that support model check-
ing for a variety of modelling and property-specification
languages, they can be divided into two broad cate-
gories, namely explicit-state and symbolic-state model
checkers. The former category encompasses tools that
maintain the set of explored states using an explicit
data structure, i.e., one in which the main elements
stored are descriptions of the explored states. The lat-
ter category encompasses tools that represent the set
of explored states as a logical formula on state vari-
ables, such that the formula is satisfied only when the
variables are evaluated to explored states. The details
of model checking algorithms are beyond the scope of
this paper — see,e.g., [CGP99] for further details. Here
it is sufficient to say that the crucial problem is that,
while many model checking algorithms are polynomial
in the size of the state space, the state space size is huge
for all but the simplest models. At present, this is the
main limit for the applicability of model checking tech-
niques, which makes scalability the main parameter of
evaluation in our experimental analysis.

In our experiments, we use the explicit-state model
checker SPIN [Hol97] to evaluate correctness of proper-
ties. The reason of our choice is that SPIN is a mature
and well-maintained tool which has been successfully
deployed to verify a wide variety of industrial-size appli-
cations, from operating systems software and communi-
cations protocols to railway signaling systems [Hol97].
The modeling language of SPIN is PROMELA (PRO-
cess MEta LAnguage), a formalism to describe com-
municating finite-state machines. The basic building
blocks of PROMELA are Process, Data Objects and
Message Channels. A Process defines the behaviour
of a (sub)system, and it is defined by the keyword
Proctype followed by the process name, the list of input
parameters, and the body of the process which consists
of data declarations and statements. Data objects are
declared in a C-language style. Finally, Message Chan-
nels admit two operations, send and receive, where each
channel has associated a message type, and only mes-
sages of that type can be sent and received. The chan-
nel declaration allows for the specification of a capac-
ity. When the capacity is zero, the channel implements
a rendezvous communication, i.e., the sender cannot
proceed unless the receiver reads a message, and sim-
metrically, the reader cannot proceed unless the sender
sends a message. When the capacity is at least one,
and unless the buffer is either full or empty, the reader
and the sender can process messages without the need
of synchronizing. This is called a buffered channel in

PROMELA.

Correctness properties expressing requirements about
the behavior of a stystem are specified using Linear
Temporal Logic (LTL) in SPIN. The language of LTL
can be defined as follows. Given a set Prop of propo-
sitional letters, the set {—,V,A, <>} of propositional
connectives, the set {T, L} of propositional constants
and the set {X, U } of modal connectives, the set Form
of formulas is defined as the smallest set such that
T € Form, L € Form; if p € Prop then p € Form,;



if @ € Form then -« € Form; if a € Form then
Xa € Form; if o, 8 € Form then (a«® ) € Form where
©® € {V,A, <, U }. A formula is interpreted over com-

putations. A computation 7 : N — 2F70P ig a function
which assigns truth values to the elements of Prop at
each time instant (natural number). For a computa-
tion 7 and a point ¢ € N, we have that: 7,7 £ L and
mi = T; w1 Epfor p e Propiff p € n(i); m,i = —«
ifmita;miEXaiflmi+lEomiE(@®p)is
interpreted in the usual way for Boolean connectives,
whereas for the modal connective U (“until”) the se-
mantics is that 7,4 = o U S iff for some j > i, we have
m,j | B and for all k, i < k < j we have m, k | a.
We say that m satisfies a formula ¢, denoted 7 = ¢, iff
7,0 = ¢. We see the formula Fa (“eventually” «) as
an abbreviation of T U «, and the formula Ga (“glob-
ally” «) as an abbreviation of —=F—a. Intuitively, the
task of SPIN is to check whether a given requirement
¢ is such that m |= ¢ for every possible computation
of the system model described in PROMELA. If this is
not the case, then SPIN should exhibit the computation
7m* (the “counterexample”) such that 7* £ .

LEARNING AND VERIFICATION
A. Elevator system case study

The behavior of the system under consideration is
schematized in Figure 1. The system is composed by
N elevators moving through M different floors. On
each floor, users have access to a number pad from
which requests to go to specific floors can be made.
Each request is queued and then it is served by the
first available elevator. From an implementation point
of view, we assume that the control system is imple-
mented as a program whose source code is available to
us, whereas the FIFO register used to queue users’ re-
quests is available as a part of an off-the-shelf emebed-
ded computing platform whereon the control system
runs. For this reason, a verification of the whole sys-
tem is not possible unless a precise model of the FIFO
queue is made available by the vendor of the comput-
ing platform. Practice tells us that it is unlikely that
vendors supply such models, therefore we assume that
a model of the FIFO queue must be inferred by exper-
imenting with the system. In the following, we briefly
describe the PROMELA model of the control system
and the requirements it should satisfy as LTL formulas.
In the next subsection we describe the learned model of
the black-box FIFO queue together with its encoding
in PROMELA.

The model of the system presented in Figure 1, is

composed by three submodels, namely number pad,
user requests queue and elevator. In more details:
e A number pad is a PROMELA process which ran-
domly generates a request — thereby simulating user
input to the system — and adds it to the user requests
queue (see below). As a convention, each number pad
process is named as Pad[f], where f is the floor asso-
ciated to the number pad. For each floor, there is only
one internal variable storing the request made by the
user which can be accessed with the syntax f.request.

o The user requests queue maintains data about user
requests and corresponds to the black-box FIFO reg-
ister available in the embedded computing platform.
The process model is inferred as described in the next
subsection. Here we just mention that the only two op-
erations supported by the user request queue are push
and pop primitives with the usual semantics.

o Each elevator is also a PROMELA process named as
FElevator[e], where e is the unique identification num-
ber of the elevator. An elevator has three main state
variables, namely floor representing the current floor of
the elevator, state indicating if the elevator is moving
up (UP) , moving down (DOWN) or stopping (STOP);
finally, request stores the floors that must served and
has the value NONE if no request has to be served.
The internal state of an elevator e can be accessed us-
ing the syntax e.<wvariable> where <wariable> is one
of floor, state and request.

An elevator system like the one described above
should fulfill a number of safety and liveness require-
ments. Considering the literature [ALPC06], [NY14],
we were able to find a number of typical constraints
that we describe next. The motors, due to physical
constraints, cannot be switched from going down (up)
to going up (down) without stopping first. This re-
quirement can be translated in LTL as

G((e.state = UP) — )
((e.state = UP)U (e.state = STOP))) (1)

where e is a generic elevator, a — 3 is an abbreviation
for ma VvV 8 and A = B is the usual Boolean equality
predicate — which is predefined in PROMELA. The
same property must be instantiated for the DOWN
state, and both properties must be checked for each el-
evator of the system. Each user request should always
be satisfied — a typical liveness property. In order
to make the check easier, we split the property in two
parts. Firstly, we require that a user request is always
accepted by at least an elevator. This corresponds to
the LTL formula

G((f.-request = r) — ]:(\/fil e;.request = 1)) (2)

where \/fil «; stands for a3 V...V ay, and N is the
number of elevators. Secondly, we require that a re-
quest accepted by an elevator is always satisfied with
the following constraint:

G((e.request = (1, d)) —
((e.request = (I, d)) U (3)
(e.floor =1 A e.state = STOP)))

where (I, d) is a generic request with load floor [ and
delivery floor d. Both properties (2) and (3) should be
checked for each possible request. Notice that property
(3) states that if an elevator e accepts a request (I, d)
then it has to stop at floor [ before serving another
request, but it does not constrain the elevator to go
to floor d afterwards. Finally, an obvious requirement
is that no elevator tries to go beyond the top floor or
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below the ground floor. The LTL formulas for these
two properties are:

G((e.floor = (M —1)) — )
((e.floor = (M — 1)) U (e.state = STOP)))

and

G((e.floor =0) — (5)
((e.floor = 0) U (e.state = STOP)))

where e is a generic elevator, M is the number of floors
and 0 is the ground floor number. Also these properties
should be checked for each elevator.

B. Encoding of user request queue

A model for the user request queue learned by AIDE
with the PMM inference algorithm is shown in Figure 2
(left). In this case we have assumed that the queue has
3 elements at most, which correspond to three PMM
registers RO, R1 and R2. The system has only two in-
teraction primitives (input symbols), namely PUSH and
POP. The identified system has a total of four states
and 0 is the initial state. Every transition is labeled as
“i/o/r” where i is the concrete input symbol, o is the
output symbol and r are the register operations. For
instance from state 0 to state 1 the action “PUSH, d
/ NONE / RO = d” means that data item d is pushed
on the queue, no output is given and the data item
is stored in RO. Notice that subsequent PUSH opera-
tions use registers in increasing order, and correspond-
ing POP operations “shift” the registers to maintain
queue ordering.

In Figure 2 (right) we show the encoding of the
PMM in Figure 2 (left) into PROMELA. The encod-
ing procedure is standard and works for any model in-
ferred by AIDE. In particular every PMM is translated
into a PROMELA process with two input channels,
namely inCH and outCH, both with capacity 0. In
the learned FIFO model, inCH is used to comunicate
PUSH and POP operations from some external pro-
cess, and outCH is used to return the output of the
request, i.e., the first request to be served in case of
a POP request. The translation also caters for some
local variables, namely “S”, “d” and an array “R”.
Variable “S” is used to store the current state of the
PMM, variable “d” is used as a temporary storage for
incoming data, and array “R” corresponds to the reg-
isters. In the learned FIFO model, “S” takes values in
{0,1,2, 3}, corresponding to the states of the PMM in
Figure 2 (left) and “R” is an array of three elements

Size of queue oQ EQ | Time (s)
5 1768 2 46
10 11406 4 150
15 43496 6 466
20 106650 7 1257

TABLE I: Running time of AIDE to learn a model of the user

request queue.

— indexed from 0 to 2 — corresponding to the three
registers of the PMM. The main body of the process
corresponding to a PMM is just a loop which updates
the state according to the current state and the input
channel value, thereby implementing the PMM com-
putation semantics. For instance, the transition from
state 2 to state 3 in Figure 2 (left) is coded into lines
5-8 in Figure 2 (right): when a PUSH,d is received as
input, the guard at line 5 becomes true, the result of
the operation — NONE in this case — is given as out-
put (line 6), then the value of the input is stored into
the first empty register (line 7), and the state is up-
dated (line 8). It is easy to see how the example given
in Figure 2 can be generalized to the same FIFO model
with a different number of places in the queue, and it is
also straighforward to see how the construction is apt
to simulate any PMM learned by AIDE.

EXPERIMENTAL ANALYSIS

All the experiments reported in this section ran on
an Intel i7 3.4GHz PC equipped with 32GB of RAM
and running Ubuntu 14.04. The inference of the FIFO
queue models is performed by AIDE using a VHDL sim-
ulator loaded with an industrial-grade hardware system
design. The system originally caters for a FIFO queue
with 10 positions, but it is easy to modify the design
in order to increase/decrease the size of the queue and
thus evaluate the scalability of learning. The running
time spent by AIDE to learn FIFO queues of various
sizes is presented in Table I. Here we report the size
of the queue, the number of output queries (OQ) and
equivalence queries (EQ) performed by AIDE, as well
as the total runtime (in CPU seconds). Output queries
correspond to experiments in which AIDE asks the
VHDL simulator to provide output on a specific input.
The answer is used by AIDE to construct a conjecture
about the structure of the SUL. Equivalence queries
correspond to sets of experiments in which AIDE tries
to understand whether its current conjecture could be
a model of the SUL or not. As it could be expected,
by increasing the number of positions, the number of



POP / NONE
PUSH, d / NONE /RO = d ! /

POP/ RO/

PUSH, d / NONE / R1=d | POP/RO/RO=R1 10:
PUSH, d / NONE / :

\/) 12:
PUSH, d /NONE /R2 = d 13:
\_ﬁ 14:

POP /RO /RO=RL, R1 = R2 15:

proctype PMM(chan inCH, outCH) {

int d,S;
int R[3];

do

it (S < 3) && (inCH ? PUSH , d) —

outCH ! NONE;

R[S] = d;
S=S+1;
i (S > 0) && (inCH ? POP , d) —
outCH ! R[0];
R[0] = R[1];
R[1] = R[2]
S=S-1;

it (S == 3) && (inCH ? PUSH , d) —

outCH | NONE;

i (S == 0) && (inCH ? POP , d) —

od

outCH ! NONE;

Fig. 2. FIFO queue model as learned by AIDE (left); translation into a PROMELA Process (right)

output queries and the number of steps to obtain the
right conjecture increases. Indeed, the PMM inference
algorithm built in AIDE is able to learn FIFO registers
of up to 20 places in about 20 minutes of CPU time.
As we will see in the following, verification turns out to
be unfeasible already for much smaller queue sizes.

In the verification experiments we consider two
stages. In the first stage, we compile the PROMELA
code without any optimization technique, while in the
second stage we use the flags -DCOLLAPSE, -DMA=n,
where n is suggested by SPIN after the first stage.
Since property (2) is a liveness property we also en-
force (weak) fairness conditions to verify it by adding
-DNFAIR=n as a flag, where n is the number of pro-
cesses fired in this case. We consider different instances
of the elevator system — including the model inferred
by AIDE — varying the number P of places in the
queue with P € {3,5,10}, the number E of elevators
with £ € {1,2,3} and the number F of floors with
F € {2,3,4,5}, for a total of 27 different configurations.
The results of verification for properties (1-5) on all the
configurations are presented in Table 3, where each line
of the table represents a different configuration of the
elevator system. The columns in the table are divided
into two parts: the first three columns (“System”) rep-
resent the system configuration, while the second group
of columns shows the verification results of each prop-
erty, where Pi stands for property (¢) in Section -B. For
each property, we report the result (column “R”) which
is either “S” for a successfull verification (the property
holds), “E” for an unsuccessfull verification (the prop-
erty does not hold), and “M” stands for memory out;
the column “T” reports the CPU time used by SPIN
to verify the properties. Observing Table 3, we can see
that most configurations with P = 3 can be verified by
SPIN, whereas only about half of those with P = 5 are
completed, and only the simplest one with one elevator
and three floors can be handled for P = 10. Under this
perspective, while the time spent for learning the FIFO
model is not negligible with respect to the time spent
for verification, we observe that (i) the learning time of
AIDE for a user request queue with a given number of
places is amortized over several configurations, and (i)
SPIN exhausts the main memory before completing the
property check for all but the simplest configurations.

As a side remark, we notice that the only property that
cannot be satisfied is (2), i.e., it is not guaranteed that
a user request will be always served by an elevator. In-
specting the counterexample provided by SPIN we can
see that this is the case because when the queue is full,
further requests will be dropped, thus invalidating the
property. As for the second stage, we did not report de-
tailed results as they are not very different from those
of the first stage. In particular, even allowing SPIN 2
hours of CPU time for each run, the number of sys-
tem configurations that can be verified increases only
by two, namely the ones that were not verified in stage
one with 3 places in the FIFO.

CONCLUSIONS

Our experimental results, albeit restricted to learn-
ing a FIFO register for an elevator control systems,
witness that PMMs are an effective model of hardware
circuits wherein data and control paths are separable.
Indeed, scalability in the verification of the whole de-
sign was limited by SPIN results before we could con-
sider the largest FIFO register learned by AIDE as a
component. Given these results, we think of extending
our research along different directions. The first one
is aimed to experiment with other components which
can still be modeled as PMMs and try to improve on
the verification part. In this direction, we could as well
consider more complex models, like RMMs, and see if
similar results can be obtained, or learning becomes less
efficient than verification. A second direction is aimed
to consider different model checkers, such for example
the MCRL2 toolset [CGK™13], and see if they can in-
crease the scalability of our approach. Finally, it would
be interesting to try if a dynamic combination between
learning and verification — possibly based on abstrac-
tion in the spirit of [Aarl4] — may turn out to be more
effective for systems like the one herewith considered.
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